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Abstract
The notion of controllability, informally the ability to force a system into a

desired state in a finite time or number of steps, is most closely associated with
control systems such as those used to maintain power networks and other critical
infrastructures, but has wider relevance in distributed systems. It is clearly highly
desirable to understand under which conditions attackers may be able to disrupt
legitimate control, or to force overriding controllability themselves. Following
recent results by Liu et al., there has been considerable interest also in graph-
theoretical interpretation of Kalman controllability originally introduced by Lin,
structural controllability. This permits the identification of sets of driver nodes
with the desired state-forcing property, but determining such nodes is a W [2]-hard
problem. To extract these nodes and represent the control relation, here we ap-
ply the POWER DOMINATING SET problem and investigate the effects of targeted
iterative multiple-vertex removal. We report the impact that different attack strate-
gies with multiple edge and vertex removal will have, based on underlying non-
complete graphs, with an emphasis on power-law random graphs with different
degree sequences.

Keywords: Structural Controllability, Attack Models, Complex Networks

1 Introduction
Structural controllability was introduced by Lin’s seminal work [1] as an alternative to
the controllability, identifying a graph-theoretical model equivalent to Kalman’s con-
trol [2] in order to reach a desired state from an arbitrary state in a finite number of
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steps. Although the Kalman’s model enables the use of a general, rigorous, and well-
understood framework for the design and analysis of not only control systems but also
of networks in which a directed control relation between nodes is required, the model
presents some restrictions for complex and large systems. A time-dependent linear
dynamical system A is controllable if and only if rank[B,AB,A2B, . . . ,An−1B] = n
(Kalman’s rank criterion), where A is the n×n adjacency matrix identifying the inter-
action among nodes and the n×m input matrix B identifies the set of nodes controlled
by the input vector, which forces the system to a desired state. Whilst straightforward,
for large networks the exponential growth of input values as a function of nodes is
problematic, giving importance to concept of structural controllability. In this con-
text, the graph-theoretical interpretation would be G(A,B) = (V,E) as a digraph where
V =VA∪VB is the set of vertices and E = EA∪EB is the set of edges. In this represen-
tation, VB comprises nodes able to inject control signals into the entire network.

Moreover, recent work by Liu et al. [3] has renewed interest in this approach as it
allows the identification of driver nodes (nd corresponding to VB) capable of observ-
ing the entire network (graph). This work is relied on a non-rigorous formulation of
the maximum matching problem and has been expanded upon multiple times [4, 5].
However, we here focus on the equivalent POWER DOMINATING SET (PDS) problem,
originally introduced as an extension of DOMINATING SET by Haynes et al. [6], mainly
motivated by the structure of electric power networks, and the need of offering efficient
monitoring of such networks. A real world scenario related to this field is precisely the
current control systems (e.g. SCADA systems) which deploy their elements follow-
ing a mesh distribution to supervise other critical infrastructures (e.g. power systems),
where G = (V,E) depicts the network distribution with V illustrating the elements (e.g.
control terminal units, servers, etc.), and E representing the communication lines. In
this context, PDS can be defined using the two following observation rules simplified
by Kneis et al. [7]: OR1, a vertex in the power dominating set observes itself and all
its neighbours; and OR2, if an observed vertex v of degree d ≥ 2 is adjacent to d− 1
observed vertices, the remaining unobserved vertex becomes observed as well.

With the omission of OR2, this reverts to the DOMINATING SET problem already
known to be NP-complete with a polynomial-time approximation factor of Θ(logn)
as shown by Feige [8]. The approach relies on creating directed acyclic graphs G =
(V,E) to find a sequence of driver nodes (denoted as ND/ ∀ nd ∈ ND) such that ND ⊆V
can observe all vertices in V satisfying OR1 and OR2. Instances of driver nodes from
a given G = (V,E) are not unique and clearly depend on the selection order of vertices
∈ V to create DS using OR1. Here, we follow the three strategies defined in [9]: (1)
Obtain the set of driver nodes with maximum out-degree satisfying OR1 (Nmax

D ); (2)
find the set of driver nodes with minimum out-degree satisfying OR1 (Nmin

D ); and (3)
obtain the set of random nodes satisfying OR1 (Nrand

D ). Hence, each Nstrat
D represents a

partial order given by the out-degree (≤ or ≥) in case of Nmax
D or Nmin

D , respectively; in
case of Nrand

D , no such relation exists as its elements are randomly chosen.
These three strategies have already been analysed for non-interactive scenarios,

in which a single vertex is exposed to a particular type of attack. Our contribution
in this paper is therefore to expand the approach from [9] to multiple-round attacks,
studying the robustness of controllability when multiple and combined attacks affect
control in several different graph classes, namely random (Erdős-Renyi (ER)), small-
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world (Watts-Strogatz (WS)), and power-law (both (Barabási-Albert (BA)) and general
power-law (PLOD) distributions)1. In addition, we also analyse here the interaction be-
tween different multi-round attack strategies and the underlying control graph topology
on robustness, considering both the earlier work on single attacks [9] and new three
multi-round attack scenarios. These scenarios are as follows: (1) Removal of some
random edges ∈ E from a single or several vertices, (2) isolation of some vertices ∈ V ,
and (3) removal of some random edges and vertices from a dense power-law subgraph.

The remainder of this paper is structured as follows: Section 2 describes the threat
model based on three different multi-round attack scenarios and on a set of attack mod-
els characterised by the number of targets. Later, in section 3 we proceed to evaluate the
impact of exploiting strategic points of the mentioned topologies and its controllability
(Nmax

D , Nmin
D , or Nrand

D ), discussing the results obtained on connectivity and observabil-
ity terms. Finally, conclusions together with our on-going work are given in section
4.

2 Multi-Round Threat Model
In order to study the robustness of the different types of network topologies, first we
consider the different attack types (edge and vertex removal), which may disrupt con-
trollability (e.g. denial of service attacks to communication lines in order to leave parts
of a system uncontrolled, unprotected or isolated by nd), and the resulting effects that
such attacks may cause in the control, the network connectivity and observability (as
the dual of controllability). The threats studied here are multi-round attacks with prior
knowledge, but do not explicitly take mitigating responses of defenders into account.

Algorithm 2.1: ATTACK MODELS (G (V,E),Nstrat
D ,AM,Scenario)

output (Attack o f one vertex f or a given G (V,E));
local i, target;

if AM == AM1 (F)
then

{
target← Nstrat

D [1];

else



if AM == AM2 (M)
then

{
target← Nstrat

D [(SIZE(Nstrat
D ))/2];

else



if AM == AM3 (L)
then{
target← Nstrat

D [(SIZE(Nstrat
D ))];

else


if AM == AM4 (BC)

then{
target← BETWEENNESS CENTRALITY(G (V,E));
else

{
target← OUTSIDE Nstrategy

D (G (V,E),Nstrat
D );

if Scenario == SCN-1
then REMOVE SELECTIVE EDGES(G (V,E), target);

if Scenario == SCN-2
then ISOLATE VERTEX(G (V,E), target);

return (G (V,E))

These threats are based on the combination of five attack models (AMs), which
have been grouped into three scenarios for the purposes of further analysis: Scenario
1 (SCN-1), it focuses on removing a small number of random edges of one or several

1For more detail on these distribution networks, please go to [9].
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Targets Combination of AM−x Num. of Attacks
TG-1 F, M, L, BC, O 5
TG-2 F-M, F-L, F-BC, F-O, M-L, M-BC, M-O, L-BC, L-O, BC-O 10
TG-3 F-M-L, F-M-BC, F-M-O, F-L-BC, F-L-O, F-BC-O, M-L-BC, M-L-O, M-BC-O, L-BC-O 10
TG-4 F-M-L-BC, F-M-L-O, F-M-BC-O, F-L-BC-O, M-L-BC-O 5
TG-5 F-M-L-BC-O 1

Table 1: Five attacks rounds with permuted AM

vertices, which may compromise controllability of dependent nodes or disconnect parts
the of control graph and underlying network. The selection of target nodes depends on
the AM described below, and the removal of edges avoids spurious node isolation.
Scenario 2 (SCN-2) destined to isolate one or several vertices from the network by
intentionally deleting all the links from these vertices. This threat may result in the
isolation of vertices which depend on the compromised node or the partition of the
network into several sub-graphs. Scenario 3 (SCN-3) aims to attack one or several
vertices of a sub-graph by randomly deleting part of their links (SCN-1), or carry out
the isolation of such nodes (SCN-2) so as to later assess the resulting effect of the threat
with respect to the entire graph. For the extraction of the sub-graph, we consider the
Girvan-Newman algorithm to detect and obtain specific communities within a complex
graph [10]. A community structure refers to a subset of nodes with dense links within
its community and with few connections to nodes belonging to less dense communi-
ties. For this, links between communities are sought by progressively calculating the
betweenness of all existing edges and removing edges with the highest betweenness.

Algorithm 2.2: MULTI-ROUND ATTACKS( G (V,E),Nstrat
D ,TG-x,Scenario)

output (Attack o f one or several vertices f or a given G (V,E));
local i,Combination AM,AM,SCN;

if Scenario == SCN-3

then

Gsub(V,E)← GIRVAN-NEWMAN(G (V,E));
Nstrat

D ← EXTRACT DRIVER NODES FROM SUBGRAPH(Gsub(V,E),Nstrat
D );

SCN← DETERMINE NEW SCN-1-2();
Combination AM← COMBINE ATTACKS(TG-x);comment: See table 1;

for i← SIZE(Combination AM)

do


AM←Combination AM[i];
if Scenario == SCN-3

then

{
G (V,E)← ATTACK MODELSII(G (V,E),Gsub(V,E),Nstrat

D ,AM,SCN);
comment: Algorithm analogous to 2.1, but considering Gsub(V,E)

else
{
G (V,E)← ATTACK MODELS(G (V,E),Nstrat

D ,AM,Scenario);
return (G (V,E);)

For each scenario, we select a set of attacks in which it is assumed that an attacker is
able to know the distribution of the network and the power domination relation (control
graph). In real scenarios, these attackers could be insiders who belong to the system,
such as human operators, who known the topology and its system itself; or outsiders
who observe and learn from the topology to later damage the entire system or sub-parts.
The mentioned attacks, summarised in algorithm 2.1, are denoted as AM-1 to AM-5.
AM-1 consists of attacking the first (F) driver node nd in a given ordered set Nstrat

D .
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Nomenclature Definition
nd Driver node

AM-x Attack model following a particular attack strategy x, such that x ∈ {AM-1,. . . , AM-5}
TG-x Number of target nodes such that x ∈ {TG-1,..., TG-5}
Nstrat

D Set of driver nodes nd following a particular controllability strategy such as Nmax,min,rand
D

Nmax,min,rand
D An attack with minor impact on structural controllability Nmax,min,rand

D

N
max† ,min† ,rand†
D An attack with intermediate impact on structural controllability, intensifying effect caused by Nmax,min,rand

D

N
max‡ ,min‡ ,rand‡
D An attack with major impact on structural controllability, intensifying effect caused by †

∗ Symbol stating for all the cases
Nstrat

Ds,l,∗
Representation of small and large networks

*,{AM-x} Influence of all attacks, but with a special vulnerability for AM-x
{X-AM-x} Any X threat combined with AM-x

x− y% Minimum and maximum rate of observability

Table 2: Nomenclature for analyses

Depending on the attack scenario, the attacker could randomly delete some edges or
completely isolate the nd from G = (V,E). In constrast, AM-2 aims to attack or isolate
a vertex nd belonging to a given ordered Nstrat

D positioned in the middle (M) of the
set. AM-3 attacks the last (L) driver node nd in the ordered set given by Nstrat

D . AM-4
compromises the vertex v ∈ V with the highest betweenness centrality (BC), whereas
AM-5 randomly chooses a vertex v ∈ V and /∈ Nstrat

D (outside (O)).
Combinations of AM-x (which are only representative of wider classes), such that

x ∈ {1,2,3,4,5}, result in a set of rounds based on multi-target attacks, which are repre-
sented in table 1 and described as follows: 1 Target (TG-1) illustrates a non-interactive
scenario in which a single vertex v ∈ V is attacked according to an AM-x, being v a
driver node or an observed node. In contrast, 2 Targets (TG-2) corresponds to a multi-
round scenario based on two attacks AM-x and AM-y where x, y ∈ {1,2,3,4,5} such
that x 6= y, e.g. the attack F-BC identifies multiple attacks of type AM-1 and AM-4, in
which one or several attackers compromise two strategic nodes. Note that 3-5 Targets
(TG-3-5) is a multi-round scenario based on 3, 4 or 5 threats with analogous goals
and similar features to TG-2. All objectives are summarised in algorithm 2.2, which
depends on the type of scenario and the number of targets to be attacked. For scenarios
of type SCN-3, we first extract the sub-graph from G (V,E) using the Girvan-Newman
algorithm and its driver nodes to be attacked. For the attack, we not only consider the
sub-graph itself but also G (V,E) to study the effects that attacks on dense sub-graphs
may have on the overall network.

3 Attack Scenarios on Structural Controllability
So as to evaluate the structural controllability strategies defined in [9] (Nmax

D , Nmin
D ,

Nrand
D ) with respect to ER, WS, BA and PLOD distributions, scenarios SCN-1, SCN-

2 and SCN-3 defined in section 2 were studied through Matlab simulations. Several
topologies and network sizes were generated, giving small (≤ 100) and large (≥ 100)
networks with 100, 1000 and 2000 nodes, and with low connectivity probability so as
to represent sparse networks.
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Under these considerations, we assess here the robustness from two perspectives:
First, the degree of connectivity using the diameter, the global density and the local
density using the average clustering coefficient (CC). These statistical values should
maintain small values in proportion to the growth and the average degree of links per
node, and more specifically, after an attack. Second, the degree of observability by
calculating the rate of unobserved nodes after a threat using OR1 [9]. On the other
hand, and given the number of simulations and results obtained2, we have defined a
language to summarize and interpret results shown in table 2.

3.1 SCN-1 and SCN-2: Exploitation of Links and Vertices in Graphs
For SCN-1 (see table 3), we observe that ER topologies are sensitive in connectiv-
ity terms. The diameter for small networks is variable and, particularly, for networks
under the control of Nmax,min

D , with a special emphasis in scenarios TG-3 where a com-
plete break up of the network is verified and the observation rate is largely influenced,
reaching null values. As for local and global density, it is also variable for all network
distributions and for all TG-x, where the controllability Nmin,rand

D are mainly affected.
For WS graphs, the diameter changes for any distribution, but particularly for small
networks, and the greatest effect is obtained when launching a TG-3 attack. For this
topology, the density of the network is slightly modified when performing a TG-2 at-
tack, whereas no relevant effect has been registered for the other cases. This does not,
however, hold for local density, since the effects on the network become more and
more evident as the number of targets increases, especially when the number of nodes
that constitute the network is not high (as expected in small-world networks). The im-
pact on the observability is not very accentuated for this topology, as the effect is more
evident when performing an attack to the nd with the maximum out-degree in small
networks.

For BA graphs, the diameter shows a small variation for any Nstrat
D and for both

single and multiple targets. The difference is made by the TG-3 strategy, for which the
consequences on the network are remarkable both for small and large networks. The
global density of the network is influenced mainly when a small network is considered
and the links of a random nd are damaged (Nrand

D ). Unlike ER and WS, the CC of
the BA does not significantly change, but its observability is heavily compromised for
any TG-x where the control relies on Nmax

D . In contrast, power-law distributions with
α = 0.1, 0.3, 0.5 show a high robustness in connectivity and observability terms where
observation rate reaches values ' 100%. The global density is not affected even if CC
mainly varies for small networks and the diameter specially impacts on both Nmin,rand

D
for dense distributions with α = 0.5 and Nmax,min

D for different exponents in TG-3
scenarios.

2Full results and code is available from authors
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Connectivity Observability
TGx Network Diameter Density CC Attack Observation Attack Rate

T
G

-1

ER N
max† ,min† ,rand†
Ds N

max,min† ,rand†
Ds Nmax,min,rand

Ds * N
max† ,min,rand†
Dl * 96.8-100%

WS N
max† ,min† ,rand
Ds - Nmax,min,rand

Ds *,{BC} N
max† ,min,rand
Ds * 84-99%

BA Nmax,min,rand
Ds - - *,{BC} N

max† ,min,rand
Ds *,{F} 16-100%

PLOD α ' 0.1 Nmax,min,rand
D∗ - N

max† ,min,rand†
Ds *,{BC} - - ' 100%

PLOD α ' 0.3 Nmax,rand
D∗ - Nmax,min,rand

Ds *,{BC} - - ' 100%

PLOD α ' 0.5 N
max,min‡ ,rand‡
D∗ - Nmin,rand

Ds * - - ' 100%

T
G

-2

ER Nmax,min,rand
D∗ N

max,min† ,rand†
D∗ N

max,min† ,rand†
D∗ *, {X-BC} N

max† ,rand†
Dl * 96.7-100%

WS Nmax,min,rand
Ds Nmin,rand

Ds N
max† ,min† ,rand†
D∗ * N

max† ,min,rand
D∗ * 88-97.85%

BA Nmax,min,rand
Ds Nmin,rand

Ds Nmax,min,rand
Ds * N

max† ,min,rand
Ds *, {F-BC,L-BC} 4-100%

PLOD α ' 0.1 N
max,min† ,rand†
D∗

- N
max† ,min,rand
Ds

*, {F-BC, M-BC, - - ' 100%BC-O}

PLOD α ' 0.3 N
max,min† ,rand†
D∗

- Nmax,min,rand
Ds

*, {M-BC, L-BC, - - ' 100%BC-O}

PLOD α ' 0.5 N
max,min† ,rand†
D∗ - N

max,min,rand†
Ds * - - ' 100%

T
G

-3

ER N
max‡ ,min‡ ,rand
D∗ N

max,min† ,rand†
D∗ N

max,min† ,rand†
D∗ *, {M-BC-O, L-BC-O} N

max‡ ,min‡ ,rand
D∗ *, {M-BC-O, L-BC-O} 0-100%

WS N
max‡ ,min‡ ,rand
D∗ - N

max‡ ,min‡ ,rand‡
D∗ *, {M-BC-O, L-BC-O} N

max† ,min† ,rand
D∗ *, {M-BC-O, L-BC-O} 2-98%

BA N
max‡ ,min‡ ,rand
D∗

Nrand
Ds - *, {M-BC-O, L-BC-O} N

max‡ ,min‡ ,rand
D∗

*, {F-M-L, 0-100%M-BC-O, L-BC-O}

PLOD α ' 0.1 N
max‡ ,min‡ ,rand
D∗ - Nmax,min,rand

Ds *, {M-BC-O, L-BC-O} N
max‡ ,min‡
D∗ *, {M-BC-O, L-BC-O} 0-100%

PLOD α ' 0.3 N
max‡ ,min‡ ,rand
D∗ - Nmax,min,rand

Ds *, {M-BC-O, L-BC-O} N
max‡ ,min‡
D∗ *, {M-BC-O, L-BC-O} 0-100%

PLOD α ' 0.5 N
max‡ ,min‡ ,rand
D∗ - N

max,min,rand†
Ds *, {M-BC-O, L-BC-O} N

max‡ ,min‡
D∗ *, {M-BC-O, L-BC-O} 0-100%

T
G

-4

ER Nmax,min,rand
Ds N

max,min† ,rand†
D∗ N

max,min† ,rand†
D∗ * Nmax,rand

Dl * 96.4-100%

WS Nmax,min,rand
Ds - N

max‡ ,min‡ ,rand‡
Ds * N

max† ,min† ,rand†
Ds * 86-97.85%

BA Nmax,min,rand
Ds Nrand

Ds - *, {F-M-L-O} N
max† ,min,rand
Ds

*, {F-M-L-O, 4-100%F-M-BC-O}

PLOD α ' 0.1 Nmax,min,rand
D∗ - N

max† ,min,rand
Ds * - - ' 100%

PLOD α ' 0.3 Nmax,min,rand
D∗ - Nmax,min,rand

Ds * - - ' 100%

PLOD α ' 0.5 N
max,min† ,rand†
D∗ - Nmax,min,rand

Ds * - - ' 100%

T
G

-5

ER Nrand
Ds N

max,min† ,rand†
D∗ N

max† ,min† ,rand†
D∗ * Nmax,rand

Dl * 96.3-100%

WS Nmax,min,rand
Ds - N

max‡ ,min‡ ,rand‡
Ds * N

max† ,min† ,rand†
Ds * 86-97.85%

BA Nmax,min,rand
Ds Nrand

Ds - * N
max† ,min,rand
Ds * 14-100%

PLOD α ' 0.1 Nmax,rand
D∗ - Nmin,rand

Ds * - - ' 100%

PLOD α ' 0.3 Nmax,min,rand
D∗ - Nmax,min,rand

Ds * - - ' 100%

PLOD α ' 0.5 Nmax,min,rand
D∗ - Nmax,min,rand

Ds * - - ' 100%

Table 3: SCN-1: Removal of a small number of edges ∈ E from one or several vertices
∈ V
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Connectivity Observability
TGs Network Diameter Density CC Attack Observation Attack Rate

T
G

-1
ER Nmax,min,rand

Ds N
max† ,min† ,rand‡
Ds N

max‡ ,min† ,rand†
Ds *, {F, BC} N

max† ,rand†
Ds *, {F,M} 86-100%

WS Nmax,min,rand
D∗ - N

max† ,min† ,rand‡
D∗ *, {BC} Nmax,min,rand

Ds * 89-100%

BA - - - - N
max‡ ,min,rand
Ds *, {F, M, L, BC} 2-100%

PLOD α ' 0.1 Nmax,min,rand
D∗ - N

max† ,min,rand†
Ds *, {BC} Nmax,min,rand

D∗ *, {O} 99-100%

PLOD α ' 0.3 Nmax,min,rand
D∗ - N

max† ,min‡ ,rand†
D∗ *, {BC} Nmax,min

D∗ * 98-100%

PLOD α ' 0.5 Nmax,min,rand
D∗ - N

max† ,min† ,rand†
Ds *, {BC} Nmax

Ds * 97-100%

T
G

-2

ER Nmax,min,rand
Ds N

max‡ ,min‡ ,rand‡
D∗ N

max† ,min‡ ,rand†
D∗ *, {F, BC} N

max‡ ,min,rand†
D∗ *,{F-M,F-BC,F-O} 70-100%

WS Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max‡ ,min‡ ,rand‡
D∗ * N

max‡ ,min,rand
D∗ *,{F-O} 84-98%

BA - Nmin,rand
Ds - * N

max‡ ,min,rand†
D∗ * 2-100%

PLOD α ' 0.1 Nmax,min,rand
D∗ - N

max† ,min,rand†
Ds

*, {F-BC, M-BC,
Nmax,min,rand

Ds
* 99-100%L-BC, BC-O}

PLOD α ' 0.3 N
max† ,min† ,rand†
D∗ N

max,min,rand†
Ds N

max† ,min‡ ,rand†
Ds *,{L-BC, BC-0} Nmax,min

Ds * 98-100%

PLOD α ' 0.5 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max† ,min† ,rand†
Ds

*, {F-BC, M-BC, Nmax
Ds * 97-100%L-BC, BC-O}

T
G

-3

ER N
max‡ ,min‡ ,rand
D∗ N

max‡ ,min† ,rand†
D∗ N

max‡ ,min† ,rand†
D∗ *,{M-BC-O, L-BC-0} N

max‡ ,min‡ ,rand†
D∗ *,{M-BC-O, L-BC-0} 0.15-99.90%

WS N
max‡ ,min‡ ,rand†
D∗ N

max† ,min,rand
Ds N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-0} N

max‡ ,min‡ ,rand
D∗ *,{M-BC-O, L-BC-0} 2-98%

BA N
max‡ ,min‡ ,rand
D∗ Nmin,rand

Ds - *,{M-BC-O, L-BC-0} N
max‡ ,min‡ ,rand†
D∗ *,{M-BC-O, L-BC-0} 0-100%

PLOD α ' 0.1 N
max‡ ,min‡ ,rand
D∗ Nmax,min,rand

Ds N
max† ,min,rand
Ds *,{M-BC-O, L-BC-0} N

max‡ ,min‡ ,rand
D∗ *,{M-BC-O, L-BC-0} 0.15-100%

PLOD α ' 0.3 N
max‡ ,min‡ ,rand
D∗ N

max,min† ,rand†
Ds Nmax,min,rand

Ds *,{M-BC-O, L-BC-0} N
max‡ ,min‡
D∗ *,{M-BC-O, L-BC-0} 0-100%

PLOD α ' 0.5 N
max‡ ,min‡ ,rand
D∗ Nmax,min,rand

Ds N
max,min† ,rand†
D∗

*,{M-L-O, L-BC-0}
N

max‡ ,min‡ ,rand
D∗

*,{M-BC-O, L-BC-0} 0-100%L-BC-O, M-BC-O}

T
G

-4

ER Nmax,min,rand
Ds N

max‡ ,min‡ ,rand‡
D∗ N

max‡ ,min‡ ,rand‡
D∗ * N

max† ,min,rand†
D∗ * 66-99.90%

WS Nmax,min,rand
D∗ N

max‡ ,min† ,rand†
Ds N

max‡ ,min‡ ,rand‡
D∗ * N

max† ,min† ,rand†
D∗ * 82-97.85%

BA - N
max,min,rand†
Ds Nmin,rand

Ds * N
max‡ ,min,rand†
Ds * 2-100%

PLOD α ' 0.1 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max‡ ,min,rand‡
Ds * Nmax,min,rand

Ds * 99-100%

PLOD α ' 0.3 Nmax,min,rand
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * Nmax,min

Ds * 98-100%

PLOD α ' 0.5 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max† ,min† ,rand†
Ds * Nmax

Ds * 96-100%

T
G

-5

ER Nmax,min,rand
Ds N

max‡ ,min‡ ,rand‡
D∗ N

max‡ ,min‡ ,rand‡
D∗ * N

max† ,min,rand†
D∗ * 68-99.85%

WS Nmax,min,rand
D∗ N

max‡ ,min† ,rand†
Ds N

max‡ ,min‡ ,rand‡
D∗ * N

max† ,min† ,rand†
D∗ * 84-97.85%

BA - N
max,min,rand†
Ds Nmin,rand

Ds * N
max‡ ,min,rand†
Ds * 2-100%

PLOD α ' 0.1 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max‡ ,min,rand‡
Ds * Nmax,min,rand

Ds * 99-99.85%

PLOD α ' 0.3 Nmax,min,rand
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * Nmax,min

Ds * 98-100%

PLOD α ' 0.5 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max† ,min† ,rand†
Ds * Nmax

Ds * 96-100%

Table 4: SCN-2: Isolation of one or several vertices ∈ V

For SCN-2 scenarios, we observe that ER topologies continues to be very sensitive
in connection terms, and the global and local density drastically vary for any TG-x.
The observation rate is moderately high, but it presents certain weaknesses to attack
models containing AM-1, AM-2, AM-4 and AM-5 aiming to break down Nmax,rand

D .
The diameter in WS networks slightly changes for any Nstrat

D where the global density
remains invariant for TG-1 and its value notably decreases according to the number of
isolated nodes, and specifically for small networks despite the drastic change for CC.
The observation rate remains high with exception to multi-interactive threat scenarios
based on TG-3. As in SCN-1, the diameter, density and the CC of BA in SCN-2
networks remains almost invariant what shows its robustness degree for all types of
AM-s. Nonetheless, the densities can suffer some changes when three or more nodes
are compromised and these nodes belong mainly to Nrand

D . Moreover, the rate reaches
' 2% of the observation when driver nodes primarily of the Nmax

D are compromised.
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Connectivity Observability
TGs Network Diameter Density CC Attack Observation Rate Attack

T
G

-1
PLOD α ' 0.1 N

max,min,rand†
D∗ - Nmax,min,rand

Ds {M, L, BC} Nmax,rand
Ds {F, M, L, BC} 99.70-100%

PLOD α ' 0.2 Nrand
Dl - Nmax,rand

Ds {L} - - ' 100%

PLOD α ' 0.3 Nmax,min
Dl - Nmax,min,rand

Ds {L, BC} - - ' 100%

PLOD α ' 0.4 Nmax,min,rand
D∗ - Nmax,min,rand

Ds {M, L, BC} Nmax
Ds * 98-100%

PLOD α ' 0.5 Nmax,min
Dl - Nmax,min,rand

Ds {L, BC} Nmax
Ds * 98-100%

T
G

-2

PLOD α ' 0.1 N
max‡ ,min‡ ,rand‡
D∗ - N

max,min,rand†
Ds *,{X-BC} Nmax,rand

Ds * 99.70-100%

PLOD α ' 0.2 Nmax,min,rand
D∗ - Nmax,min,rand

Ds {F-O, F-L, M-L, M-O} - - '100%

PLOD α ' 0.3 N
max† ,min† ,rand†
Dl - N

max† ,min† ,rand
Ds * - - '100%

PLOD α ' 0.4 N
max† ,min† ,rand†
D∗ - N

max† ,min,rand
Ds * Nmax

Ds * 97-100%

PLOD α ' 0.5 - - N
max† ,min,rand
Ds {L, BC} Nmax

Ds * 98-100%

T
G

-3

PLOD α ' 0.1 N
max‡ ,min‡ ,rand‡
D∗ - N

max,min,rand†
Ds *,{M-BC-O, L-BC-0} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-0} 0-100%

PLOD α ' 0.2 N
max‡ ,min‡ ,rand‡
D∗

- Nmax,min,rand
Ds

{M-L-O,M-BC-O}
N

max‡ ,min‡ ,rand‡
D∗

* {M-BC-O, L-BC-0} 0-100%L-BC-0}

PLOD α ' 0.3 N
max‡ ,min‡ ,rand‡
D∗ - N

max† ,min† ,rand
Ds *,{M-BC-O, L-BC-0} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-0} 0-100%

PLOD α ' 0.4 N
max‡ ,min‡ ,rand‡
D∗ - N

max† ,min,rand
Ds *,{M-BC-O, L-BC-0} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-0} 0-100%

PLOD α ' 0.5 N
max‡ ,min‡ ,rand‡
D∗ - N

max† ,min† ,rand
Ds *,{M-BC-O, L-BC-0} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-0} 0-100%

T
G

-4

PLOD α ' 0.1 N
max‡ ,min‡ ,rand‡
D∗ - N

max,min,rand†
Ds * Nmax,rand

Ds * 99-100%

PLOD α ' 0.2 Nmax,min,rand
Dl

- Nmax,min,rand
Ds

{F-L-BC-O,F-M-L-O} - - ' 100%F-M-L-BC}

PLOD α ' 0.3 Nmax,min,rand
Dl - N

max† ,min† ,rand
Ds * - - ' 100%

PLOD α ' 0.4 N
max† ,min† ,rand†
D∗ - Nmax

Ds *, {F-M-BC-O} Nmax
Ds *, {F-M-BC-O} 97-100%

PLOD α ' 0.5 Nmax
Ds - N

max† ,min† ,rand
Ds {M-L-BC-O} Nmax

Ds * 98-100%

T
G

-5

PLOD α ' 0.1 N
max‡ ,min‡ ,rand‡
Dl - N

max,min,rand†
Ds * Nmax,rand

Ds * 99-100%

PLOD α ' 0.2 Nmin,rand
Dl - Nrand

Ds * - - ' 100%

PLOD α ' 0.3 Nmax,min,rand
Dl - Nmax,min,rand

Ds * - - ' 100%

PLOD α ' 0.4 Nmax,min,rand
Dl - - * Nmax

Ds * 97-100%

PLOD α ' 0.5 - - N
max† ,min,rand
Ds * Nmax

Ds * 98-100%

Table 5: SCN-3: Removal of a few edges (SCN-1) of a given sugraph Gsub = (V,E)

This does not occur with general power-law networks where the observability de-
gree, except for TG-3, reaches the 90% of the observation at all times, in addition to
following similar behaviour pattern for any exponent value. While no effect is appre-
ciated in diameter, the density decays only in small networks when two or more nodes
are excluded from the graph. The consequences on the CC for small networks are not
negligible, but the greatest consequences have been observed in observability when 3
nodes are removed. Lastly, common behaviours in SCN-1 and SCN-2 arise. The re-
moval of random links in three vertices or the isolation of three vertices (TG-3) using
the combination M-BC-O and L-BC-O can cause the breakdown of the entire graph.
These two configurations seem to be the most menacing within the configuration given
in table 1, in which the observability is largely influenced for any distribution and the
diameter is drastically decreased for Nmax,min

D . In addition, threats of the type AM-
4 stand out from the rest, underlying the importance of protecting the node with the
highest centrality.

3.2 SCN3: Exploitation of Links and Vertices in Power-Law Sub-
graphs

Tables 5 and 6 show results obtained for attacks on a small number of random edges
(SCN-1) or isolation of one or several vertices (SCN-2) from power-law subgraphs.
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Varying the exponent, we observe that these types of networks have similar behavioural
characteristics to those analysed in section 3.1. Unfortunately, the observation degree
decays extremely when the graph is subjected to attacks of type M-BC-O and L-BC-O,
where two nd of the sub-graph and a vertex of the sub-graph, but outside the Nstrat

D , are
attacked simultaneously. Moreover, these two attack combinations are also dangerous
in connectivity terms. The diameter values radically vary for any Nstrat

D and for any
distribution, although the global density remains broadly constant. Obviously, when
the sub-graph is subjected to massive attacks to isolate a single or multiple nodes, the
diameter, density, and CC of the entire network vary. Table 6 shows this, where the
diameter primarily changes for any large distribution, whereas the local and global
densities impact on small networks. As in the previous case, the observability is high
at all times, even if insignificant variations caused by attacks in Nmax

D arise.

Connectivity Observability
TGs Network Diameter Density CC Attack Observation Rate Attack

T
G

-1

PLOD α ' 0.1 N
max† ,min† ,rand†
D∗ - N

max,min,rand†
Ds {M, L, BC} Nmax,rand

Ds * 99-100%

PLOD α ' 0.2 Nmax,min,rand
Dl Nmax,min,rand

Ds Nmax,min,rand
Ds *{L,BC} - - ' 100

PLOD α ' 0.3 N
max† ,min† ,rand†
Dl - Nmax,min,rand

Ds {L, BC} - - ' 100

PLOD α ' 0.4 N
max† ,min† ,rand†
D∗ Nmax,min,rand

Ds N
max† ,min† ,rand†
Ds *{M, L, BC} N

max† ,rand
Ds *, {M, BC} 96-100%

PLOD α ' 0.5 Nmax,min,rand
D∗ - Nmax,min,rand

Ds {M, L} Nmax
Ds * 99.60-100%

T
G

-2

PLOD α ' 0.1 N
max† ,min† ,rand†
D∗ Nmax,min,rand

Ds N
max,min,rand†
Ds {F-O, M-L, X-BC} Nmax,rand

Ds * 98-100%

PLOD α ' 0.2 Nmax,min,rand
D∗ Nmax,min,rand

Ds N
max† ,min,rand†
Ds *{F-O, M-L, L-O} - - ' 100%

PLOD α ' 0.3 N
max,min† ,rand†
Dl - N

min† ,rand
Ds {M-L, X-BC} - - ' 100%

PLOD α ' 0.4 N
max† ,min† ,rand†
D∗ N

max† ,min† ,rand†
Ds N

max‡ ,min† ,rand†
Ds *{X-BC} N

max† ,rand
Ds *, {F-X, X-BC} 97-100%

PLOD α ' 0.5 N
max† ,min,rand
Ds - N

max† ,min† ,rand
Ds *,{F-L, M-L, X-BC} Nmax

Ds *,{BC-O} 96-100%

T
G

-3

PLOD α ' 0.1 N
max‡ ,min‡ ,rand‡
D∗ Nmax,min,rand

Ds N
max,min,rand†
Ds *,{M-BC-O, L-BC-O} N

max‡ ,min‡ ,rand‡
D∗ * 0-100%

PLOD α ' 0.2 N
max‡ ,min‡ ,rand‡
D∗ Nmax,min,rand

Ds N
max† ,min,rand†
Ds *,{M-BC-O, L-BC-O} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-O} 0-100%

PLOD α ' 0.3 N
max‡ ,min‡ ,rand‡
D∗ Nmax,min,rand

Ds N
max,min† ,rand
Ds *,{M-BC-O, L-BC-O} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-O} 0-100%

PLOD α ' 0.4 N
max‡ ,min‡ ,rand‡
D∗ N

max† ,min† ,rand†
Ds N

max‡ ,min† ,rand†
Ds *,{M-BC-O, L-BC-O} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-O} 0-100%

PLOD α ' 0.5 N
max‡ ,min‡ ,rand‡
D∗ Nmax,min,rand

Ds N
max† ,min† ,rand†
Ds *,{M-BC-O, L-BC-O} N

max‡ ,min‡ ,rand‡
D∗ *,{M-BC-O, L-BC-O} 0-100%

T
G

-4

PLOD α ' 0.1 N
max‡ ,min‡ ,rand‡
D∗ Nmax,min,rand

Ds N
max,min,rand†
Ds * Nmax,min,rand

Ds * 99-100%

PLOD α ' 0.2 Nmax,min,rand
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * - - ' 100%

PLOD α ' 0.3 N
max† ,min† ,rand†
Dl Nmax,min,rand

Ds N
min† ,rand
Ds * - - ' 100%

PLOD α ' 0.4 N
max† ,min† ,rand‡
D∗ N

max‡ ,min‡ ,rand‡
Ds N

max‡ ,min† ,rand†
Ds * N

max† ,rand
D∗ * 96-100%

PLOD α ' 0.5 N
max† ,min,rand
D∗ Nmax,min,max

Ds N
max† ,min,rand
D∗ * Nmax

Ds * 96-100%

T
G

-5

PLOD α ' 0.1 N
max‡ ,min‡ ,rand‡
D∗ Nmax,min,rand

Ds Nmax,min,rand
Ds * Nmax,min,rand

Ds * 99-100%

PLOD α ' 0.2 Nmax,min,rand
Dl Nmax,min,rand

Ds Nmax,rand
Ds * - - ' 100%

PLOD α ' 0.3 N
max† ,min,rand
D∗ Nmax,min,rand

Ds N
min† ,rand
Ds * - - ' 100%

PLOD α ' 0.4 N
max‡ ,min,rand‡
D∗ N

max‡ ,min‡ ,rand‡
Ds N

max,min‡ ,rand‡
Ds * N

max† ,rand
D∗ * 96-100%

PLOD α ' 0.5 N
max† ,min,rand
D∗ Nmax,min,max

Ds N
max† ,min,rand
D∗ * Nmax

Ds * 96-100%

Table 6: SCN-3: Isolation of vertices (SCN-2) of a given sugraph Gsub = (V,E)

Given this, we conclude that both the connectivity and observation not only depend
on the network topology and construction strategies of driver nodes (Nstrat

D ), but also on
the nature of the perturbation [5], where degree-based attacks (e.g. AM-1) and attacks
to centrality (AM-4) are primarily significant. On the other hand, BA (see table 3) and
power-law (PLOD) distributions present analogous behaviours with respect to observ-
ability. Both are mainly vulnerable to threats given in Nmax

D for small networks, and
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they are no only sensitive to TG-3 attacks, but also to TG-4 based on a planned F-M-
BC-O attack in SCN-1. This also means that an adversary with sufficient knowledge
of the network distribution and its power domination can disconnect the entire network
and leave it without observation at very low cost.

4 Conclusions
We have reported results of a robustness analysis on structural controllability through
the POWER DOMINATING SET problem, extending the study given in [9] to consider
multi-round attack scenarios. We have primarily focused on random (Erdös-Renyi),
small-word (Watts-Strogatz), scale-free (Barabási-Albert) and power-law (PLOD) dis-
tributions, where we have observed that these networks are sensitive in connectivity and
observability terms. These weaknesses are mainly notable when nodes with the highest
degree distribution and with the maximum value of betweenness centrality are compro-
mised. Moreover, we have shown that combined attacks based on three specific nodes
(M-BC-O and L-BC-O) can become highly disruptive, even if the power-law network
has proven to be robust with respect to the rest of topologies. Regarding future work,
sub-optimal approximations to repair the controllability when the power dominance
relationship might have been partially severed will be considered taking into account
the handicap of the non-locality of the PDS and the NP-hardness demonstrated in [6].
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