
Optimized Multi-Party Certified Email
Protocols ?

Jianying Zhou1, Jose Onieva2, and Javier Lopez2

1 Institute for Infocomm Research
21 Heng Mui Keng Terrace

Singapore 119613
jyzhou@i2r.a-star.edu.sg

2 Computer Science Department
E.T.S. Ingenieria Informatica

University of Malaga
Spain, 29071-Malaga

{onieva,jlm}@lcc.uma.es

Abstract. As a value-added service to deliver important data over the
Internet with guaranteed receipt for each successful delivery, certified
email has been discussed for years and a number of research papers
appeared in the literature. But most of them deal with the two-party
scenarios, i.e., there are only one sender and one recipient. In some ap-
plications, however, the same certified message may need to be sent to
a set of recipients. In this paper, we present two optimized multi-party
certified email protocols. Both of them have three major features. (1) A
sender could notify multiple recipients of the same information while only
those recipients who acknowledged are able to get the information. (2)
Both the sender and the recipients can end a protocol run at any time
without breach of fairness. (3) The exchange protocols are optimized,
each of which has only three steps, and the TTP will not be involved
unless an exception (e.g., a network failure or a party’s misbehavior)
occurs.

Keywords: certified email, non-repudiation, multi-party protocol

1 Introduction

Email has grown from a tool used by a few academics on the Arpanet to a ubiq-
uitous communications tool. Certified email is a value-added service of ordinary
email, in which the sender wants to obtain a receipt from the recipient. In addi-
tion, fairness is usually a desirable requirement thus the recipient gets the mail
content if and only if the sender obtains a receipt.

Certified email has been discussed for years, and a number of research papers
appeared in the literature [1, 2, 4, 11, 14–16]. But most of them deal with the

? Major results have been published at ICICS’04 [13] and INC’04 [12].

J. Zhou, J. A. Onieva, and J. Lopez, “Optimised Multi-Party Certified Email Protocols”, Information Management & Computer Security Journal,
vol. 13, pp. 350-366, 2005.
NICS Lab. Publications: https://www.nics.uma.es/publications



two-party scenarios, i.e., there are only one sender and one recipient. In some
applications, however, the same certified message may need to be sent to a
set of recipients. Multi-party certified email protocols were first proposed by
Markowitch and Kremer, using an on-line trusted third party [7], or an off-line
trusted third party [8]. In ISC’02, Ferrer-Gomila et. al presented a more efficient
multi-party certified email protocol [6]. However, this protocol suffers from a
number of serious security problems [13].

In this paper, we present two optimized multi-party certified email protocols,
based on Ferrer-Gomila et. al’s protocol [6] and Micali’s protocol [10], respec-
tively. They have three major features: (1) A sender could notify multiple recip-
ients of the same information while only those recipients who acknowledged are
able to get the information; (2) Both the sender and the recipients can end a
protocol run at any time without breach of fairness; (3) The exchange protocols
are optimized, each of which has only three steps, and the trusted third party
will not be involved unless an exception (e.g., a network failure or a party’s
misbehavior) occurs.

The rest of the paper is organized as follows. We first review Ferrer-Gomila
et. al’s multi-party certified email protocol in Section 2, then present a modified
version that overcomes its security flaws and weaknesses in Section 3. After that,
we extend Micali’s two-party certified email protocol to a multi-party scenario
with asynchronous timeliness in Section 4. Finally, we conclude the paper in
Section 5.

2 Analysis of FPH Protocol

A multi-party certified email protocol was presented in [6]. (We call it FPH
protocol in this paper.) The sender A of a certified email and a set of recipients
B exchange messages and non-repudiation evidence directly, with the exchange
sub-protocol. If the exchange sub-protocol is not completed successfully, a trusted
third party TTP will be invoked, either by A with the cancel sub-protocol, or
by B with the finish sub-protocol.

FPH protocol is efficient, but suffers from a number of serious security prob-
lems.

2.1 FPH Protocol

Here, we give a brief description of FPH protocol with the same notation used
in the original paper.

– X, Y : concatenation of two messages X and Y .
– H(X): a collision-resistant one-way hash function of message X.
– EK(X) and DK(X): symmetric encryption and decryption of message X.
– PU (X) and P−

U (X): asymmetric encryption and decryption of message X.
– SU (X): principal U ’s digital signature on message X.
– U → V : X: entity U sends message X to entity V .



– A ⇒ B: X: entity A sends message X to a set of entities B.
– M : certified message to be sent from A to the set B.
– K: symmetric key selected by A.
– c = EK(M): ciphertext of message M , encrypted with key K.
– kT = PT (K): key K encrypted with the TTP’s public key.
– hA = SA(H(c), B, kT ): first part of evidence of origin for every recipient

Bi ∈ B.
– hBi = SBi(H(c), kT ): evidence of receipt for A.
– kA = SA(K, B′): second part of evidence of origin for Bi ∈ B′.
– k′T = ST (K, Bi): alternative second part of evidence of origin for Bi.
– hAT = SA(H(c), kT , hA, B′′): evidence that A has demanded the TTP’s

intervention to cancel the exchange sub-protocol with Bi ∈ B′′.
– hBiT = SBi(H(c), kT , hA, hBi): evidence that Bi has demanded the TTP’s

intervention to finish the exchange sub-protocol with A.

The exchange sub-protocol is as follows, where Bi ∈ B and B′ is a subset of
B that have replied message 2.

1. A ⇒ B : c, kT , B, hA

2. Bi → A : hBi

3. A ⇒ B′ : K, B′, kA

If A did not receive message 2 from some of the recipients B′′, A may initiate
the following cancel sub-protocol, where B′′ = B −B′.

1′. A → TTP : H(c), kT , B, hA, B′′, hAT

2′. TTP : FOR (all Bi ∈ B′′)
IF (Bi ∈ B′′ finished) THEN retrieves hBi

ELSE appends Bi into B′′ cancelled
3′. TTP → A : all retrieved hBi , B′′ cancelled,

ST (“cancelled”, B′′ cancelled, hA), ST (B′′ finished)

If some recipient Bi did not receive message 3, Bi may initiate the following
finish sub-protocol.

2′. Bi → TTP : H(c), kT , B, hA, hBi
, hBiT

IF (Bi ∈ B′′ cancelled) 3′. TTP → Bi : ST (“cancelled”, hBi
)

ELSE {3′. TTP → Bi : K, k′T
4′. TTP : appends Bi into B′′ finished,

and stores hBi}

Dispute of Origin

In the case of dispute of origin, a recipient Bi claims that he received M from
A while A denies having sent M to Bi. Bi has to provide M, c,K, kT , B, hA and
B′, kA (or k′T ) to an arbiter. The arbiter will check

(O-1) if hA is A’s signature on (H(c), B, kT ), and Bi ∈ B;



(O-2) if kA is A’s signature on (K, B′) and Bi ∈ B′, or if k′T is the TTP’s signature
on (K, Bi);

(O-3) if the decryption of c (i.e., DK(c)) is equal to M .

Bi will win the dispute if all of the above checks are positive.

Dispute of Receipt

In the case of dispute of receipt, A claims that a recipient Bi received M while
Bi denies having received M . A has to provide M, c,K, kT , hBi

to an arbiter.
The arbiter will check

(R-1) if hBi is Bi’s signature on (H(c), kT );
(R-2) if kT is the encryption of K with the TTP’s public key;
(R-3) if the decryption of c (i.e., DK(c)) is equal to M .

If one of the above checks fails, A will lose the dispute. Otherwise, the ar-
biter must further interrogate Bi. If Bi is able to present a cancellation token
ST (“cancelled”, hBi

), it means that Bi had contacted the TTP and was notified
that A had executed the cancel sub-protocol. Then A will lose the dispute as
well. If all of the above checks are positive and Bi cannot present the cancellation
token, A will win the dispute.

2.2 Vulnerabilities

V-1. Who is TTP

In FPH protocol, it is not expressed explicitly that all users share a unique
TTP. There may be a number of TTPs and the sender may have the freedom
to select the TTP, which may not be the one that the recipient is aware of.

In the exchange sub-protocol, the sender A needs to select a TTP and uses
the TTP’s public key to generate kT . However, A did not provide the identity
of the TTP in message 1. If A terminates the protocol without sending message
3, it is very likely that the recipient Bi is unable to identify which TTP should
be invoked to launch the finish sub-protocol. That means Bi can neither obtain
M by decrypting c with K from the TTP nor get ST (“cancelled”, hBi

) to prove
cancellation of receiving M .

On the other hand, A can use hBi to prove that Bi has received M when Bi

cannot present the cancellation token ST (“cancelled”, hBi
).

There are two possible solutions to this problem. We might assume that all
users share a single TTP. Then Bi can always initiate the finish sub-protocol with
this TTP. Obviously, this assumption is unrealistic in the actual deployment.

Alternatively, A should specify the TTP explicitly in message 1. Then, Bi

could decide whether or not to accept A’s choice of this TTP. If not, Bi can
simply terminate the exchange sub-protocol. Otherwise, Bi should include the
identity of the TTP in hBi

when replying message 2. A modified exchange sub-
protocol is as follows, where the modified parts are underscored.



hA = SA(H(c), B,TTP, kT )
hBi = SBi(H(c),TTP, kT )

1. A ⇒ B : c, kT , B,TTP, hA

2. Bi → A : hBi

3. A ⇒ B′ : K, B′, kA

If A cheats at Step 1 in the revised exchange sub-protocol by encrypting
K with a public key of the TTP1 but indicating to Bi as the TTP, A will
not be able to get the valid evidence of receipt. When A presents M, c, kT1 =
PT1(K), hBi = SBi(H(c),TTP, kT1), K to an arbiter, the arbiter will identify
the TTP in hBi

and use the TTP’s public key to verify whether encryption of
K equals kT1

1, which obviously leads to the failure of requirement (R-2). That
means A cannot win in the dispute of receipt.

Therefore, the above modified exchange sub-protocol can prevent the sender’s
attack on the use of a TTP that the recipient is unaware of.

V-2. How can B verify evidence of origin along

In FPH protocol, it is claimed that an arbitrary asymmetric cryptography
could be used as a building block. Unfortunately, this may not be true.

In the exchange sub-protocol, the sender A may send a different key K1 and
kA1 = SA(K1, B′) instead of K and kA at Step 3. Then, the recipient Bi believes
that the exchange is successful and Bi holds the evidence hA and kA1 which can
prove M1 = DK1(c) is from A. On the other hand, A can use hBi

to prove that
Bi received M .

To protect against this attack, Bi needs to check whether K received at
Step 3 is consistent with kT received at Step 1. If not, Bi needs to initiate the
finish sub-protocol.

Suppose a non-deterministic public encryption algorithm (e.g., the ElGamal
cryptosystem [5]) is used, and A has discarded the random seed used during the
encryption phase. Then, even if Bi holds kT , K, and the TTP’s public key, Bi

cannot verify whether kT is the encryption of K with the TTP’s public key.
Of course, Bi may always initiate the finish sub-protocol to either get K

(and thus M) or get ST (“cancelled”, hBi
) from the TTP. However, the merit of

FPH protocol is that the TTP is invoked only in the abnormal situation (i.e.,
either A did not receive message 2 or B did not receive message 3). If the TTP
is involved in every protocol run, it becomes an on-line TTP, and the protocol
will be designed in a totally different way.

A straightforward solution is to ask A to supply the random seed with K in
message 3 thus B can verify K in PT (K) directly.

Alternatively, the problem could be solved if A provides H(K) in message 1,
and Bi includes H(K) in hBi so that Bi is only liable for receipt of a message
1 If the algorithm is non-deterministic, A needs to provide the random seed used in

encryption so that the arbiter can verify whether kT1 is the encryption of K with
the TTP’s public key. Otherwise, the TTP has to be invoked to decrypt kT1 first.



decrypted with the key that is consistent in H(K) and kT . The exchange sub-
protocol is further modified as follows.

hA = SA(H(c), B,TTP,H(K), kT )
hBi

= SBi
(H(c),TTP,H(K), kT )

1. A ⇒ B : c,H(K), kT , B,TTP, hA

2. Bi → A : hBi

3. A ⇒ B′ : K, B′, kA

Two additional checks should be taken in the settlement of disputes.

(O-4) K certified in kA or k′T must match H(K) certified in hA.
(R-4) H(K) and kT certified in hBi must match, i.e., H(P−

T (kT )) = H(K).

If A cheats at Step 1 in the revised exchange sub-protocol by providing
kT1 = PT (K1) and hA = SA(H(c), B,TTP,H(K), kT1), Bi will reply with
hBi

= SBi
(H(c),TTP,H(K), kT1). Then, no matter A sends K or K1 at Step 3,

A cannot use hBi
to prove either Bi received M = DK(c) or Bi received

M1 = DK1(c). The verification on hBi
will fail when H(P−

T (kT1)) 6= H(K).
If A cheats only at Step 3 by providing K1 and kA1 = SA(K1, B′), Bi

can detect the cheat by checking whether H(K1) = H(K) where H(K) is re-
ceived at Step 1. If the check fails, B should initiate the finish sub-protocol.
Then, there are two possibilities. If A did not cancel the exchange, Bi will re-
ceive K and thus M = DK(c). If A has cancelled the exchange, Bi will receive
ST (“cancelled”, hBi

). In either case, A cannot get any advantage when A wants
to use hBi

to settle the dispute.
With the above modification of the protocol, the restriction on the use of an

asymmetric algorithm for public encryption could be removed. Moreover, this
modification could also stop another attack described below.

V-3. How to stop B misusing evidence of origin

In FPH protocol, it is assumed that the elements to link messages of an
exchange is omitted in order to simplify the explanation. However, as these
elements are critical to the protocol security and not so obvious to handle, they
cannot be omitted in any way.

With the original definition of hA and kA (or k′T ), the recipient Bi can
misuse the evidence in settling disputes of origin. Suppose Bi received hA1 =
SA(H(c1), B, kT1), kA1 = SA(K1, B′), and the related messages in the first pro-
tocol run. Bi also received hA2 = SA(H(c2), B, kT2), kA2 = SA(K2, B′), and the
related messages in the second protocol run. If the protocol is designed correctly,
Bi can only use hA1 and kA1 to prove that M1 = DK1(c1) is from A, and use
hA2 and kA2 to prove that M2 = DK2(c2) is from A.

Note that the original rules in settling disputes of origin do not check whether
decryption of kT certified in hA equals K certified in kA (or k′T ). Then, Bi can
use hA1 and kA2 to prove that M3 = DK2(c1) is from A, and use hA2 and kA1



to prove that M4 = DK1(c2) is from A. But the fact is that A never sent M3
and M4.

With the modification given in V-2, such an attack could also be stopped.
The evidence received by Bi will be as follows.

– hA1 = SA(H(c1), B,TTP,H(K1), kT1) and kA1 = SA(K1, B′) in the first
protocol run, and

– hA2 = SA(H(c2), B,TTP,H(K2), kT2) and kA2 = SA(K2, B′) in the second
protocol run.

If Bi presents hA1 and kA2 to claim that M3 = DK2(c1) is from A, the
arbiter will find that the hash of K2 certified in kA2 does not equal H(K1)
certified in hA1, and thus reject Bi’s claim. Similarly, Bi cannot present hA2 and
kA1 to claim that M4 = DK1(c2) is from A.

V-4. How can TTP detect B’s cheating

In FPH protocol, an intended recipient could collude with any party to cheat
the TTP to decrypt kT and generate k′T . This will lead to the breach of fairness.

Suppose A initiates the exchange sub-protocol with a set of recipients B. Once
Bi ∈ B receives message 1 (c, kT , B, hA) from A, it quits. Then Bi asks a colluder
Z to generate hZ = SZ(H(c′), B, kT ), and launches the finish sub-protocol by
sending H(c′), kT , B, hZ , h′Bi

, h′BiT
to the TTP, where h′Bi

= SBi
(H(c′), kT ) and

h′BiT
= SBi(H(c′), kT , hZ , h′Bi

). The TTP only knows that Z is exchanging with
Bi by examining hZ . As Z has not cancelled the exchange, the TTP sends K, k′T
back to Bi. Then Bi gets M , and holds evidence of origin (hA, k′T ) to prove that
M is from A!

On the other hand, if A did not receive hBi
= SBi

(H(c), kT ) from Bi in the
exchange sub-protocol, it launches the cancel sub-protocol. As the TTP did not
find Bi ∈ B′′ finished related to the exchange with A, it only issues a cancel
token to A.

To avoid the attack, the TTP needs to know who are the originator and the
indented recipients of kT . This can be achieved by making the further changes
to hA and hBi as follows.

hA = SA(H(c), B,TTP,H(A,B,K), kT )
hBi

= SBi
(H(c),TTP,H(A,B,K), kT )

When the TTP receives a finish request, it can use H(A,B, K) to identify the
originator and recipients of kT and only releases K to the intended recipients.

V-5. How to prevent collusion among recipients

In FPH protocol, fairness is a major security requirement. However, it is
unfair to the sender A if an intended recipient, after receiving message 1, in-
tercepts message 3 without replying message 2. Although that recipient did not
obtain valid evidence of origin in such a case, he got the message anyway with-
out releasing evidence of receipt. This problem could be solved if the session key



K in message 3 is encrypted in transmission. However, it does not work if two
recipients collude.

Suppose B1 and B2 are two intended recipients specified by the sender A (i.e.,
B1, B2 ∈ B). In the exchange sub-protocol, after receiving message 1, B1 knows
that B2 is also a recipient, and vice versa. If they collude, B1 can continue the
protocol while B2 terminates the protocol. At the end, B1 receives the message
M and forwards it to B2, but A only holds the evidence that B1 received the
message M .

To prevent such an attack, we could re-define the set of intended recipients
B as follows.

B = PB1(B1), PB2(B2), · · ·

As each intended recipient’s identity is encrypted with their public key, when
a recipient receives message 1, he can verify whether himself is an intended
recipient included in B, but he does not know who are the other recipients.
Then he is unable to identify a colluder 2. The above change will not affect
settling the dispute of origin on requirement (O-1).

Note that B′ also needs to be re-defined in the above way, but for a sightly
different purpose. As B′ is a subset of B that have replied message 2, all of them
will receive the message M and there is no need to prevent collusion among
themselves. However, if B′ is transferred in clear text, an intended recipient Bi

that did not reply message 2 (i.e., Bi ∈ B − B′) could intercept message 3 and
identify a colluder.

Further note that once a valid recipient receives the message M , it can al-
ways forward M to any other parties. The above mechanism does not intend to
stop such an active propagation. Instead, it only tries to make all the intended
recipients anonymous to each other among themselves, thus it is hard for an
intended recipient to seek a colluder (another intended recipient) to obtain the
message without providing evidence of receipt to the sender.

2.3 Improvements

I-1. TTP need not keep evidence

In FPH protocol, in order to satisfy the requirement that the TTP is verifi-
able, the TTP must store evidence hAT of all protocol runs that the sender A
initiated the cancel sub-protocol. It will be used in the settlement of disputes
which may arise sometime well after the end of a protocol run. If A denies hav-
ing cancelled an exchange when the recipient Bi shows ST (“cancelled”, hBi

), the
TTP should present hAT to prove that it did not misbehave. Obviously, this is
a significant burden to the TTP.

A simple solution is to pass hAT to Bi and include hAT in the cancellation
token which becomes ST (“cancelled”, hBi

, hAT ). If a dispute arises, Bi can (and

2 We assume that an intended recipient will not try to find a colluder by broadcasting
message 1. This will expose the collusion to everyone.



should) use it to prove that the TTP cancelled the exchange demanded by A.
Therefore, the TTP is not required to be involved in such a dispute and need
not store the evidence for a long time.

I-2. B may not be involved in dispute of receipt

In FPH protocol, if there is a dispute of receipt, the recipient Bi has always
to be interrogated on whether holding a cancellation token. This process could
be optimized, thus Bi need not be involved unless the sender A did not invoke
the cancel sub-protocol.

When A initiates the cancel sub-protocol, A will receive a cancellation to-
ken ST (“cancelled”, B′′ cancelled, hA) from the TTP that proves which set of
recipients have cancelled the exchange. If A holds hBi and the cancellation to-
ken, A can present them to the arbiter to settle the dispute of receipt without
interrogating Bi.

– With hBi , A can prove Bi received c.
– With ST (“cancelled”, B′′ cancelled, hA), A can prove Bi received K if Bi /∈

B′′ cancelled.

Then, A can prove Bi received M = DK(c).

I-3. Some redundancy exists

In FPH protocol, some critical elements were “omitted” in order to simplify
the explanation. On the other hand, some redundancy exists.

In the finish sub-protocol, hBiT is a signature generated by the recipient Bi

and used as evidence that Bi has demanded the TTP’s intervention. However,
this evidence does not play any role in dispute resolution. When settling a dis-
pute of receipt, if the sender A presents evidence hBi , Bi cannot deny receiving
the message M unless Bi can show the cancellation token ST (“cancelled”, hBi)
issued by the TTP. Bi cannot deny receipt of M by simply claiming that if the
TTP cannot demonstrate hBiT , then Bi did not initiate the finish sub-protocol
to obtain the key K. (In fact, Bi may have received K from A at Step 3 in
the exchange sub-protocol.) Therefore, hBiT can be omitted in the finish sub-
protocol.

In the cancel sub-protocol, ST (B′′ finished) is a signature generated by the
TTP to notify A that Bi ∈ B′′ finished has initiated the finish sub-protocol.
This message can also be omitted as A only cares B′′ cancelled from the TTP
rather than B′′ finished. (Any Bi in B′′ but not in B′′ cancelled should obtain
K and thus M either from A or from the TTP.) Even if it is used for notifying A
of the current status, its definition is flawed since it lacks the critical information
(e.g., hA) that is related to a protocol run thus could be replayed by an attacker.

3 A Modified FPH Protocol

Here we present a modified version of FPH protocol, which overcomes the flaws
and weaknesses identified in the previous section. The modified parts are under-
scored and the redundant parts are removed.



3.1 Notation

– B = PB1(B1), PB2(B2), · · · , PT (B1, B2, · · ·): a set of intended recipients se-
lected by the sender A 3. Each recipient’s identity is encrypted with their
own public key.

– B′ = PB′
1
(B′

1), PB′
2
(B′

2), · · ·: a subset of B that have replied message 2 in the
exchange sub-protocol.

– B′′ = B −B′: a subset of B (in plaintext) with which A wants to cancel the
exchange.

– B′′ cancelled: a subset of B′′ (in plaintext) with which the exchange has
been cancelled by the TTP.

– B′′ finished: a subset of B (in plaintext) that have finished the exchange
with the finish sub-protocol.

– M : certified message to be sent from A to B.
– K: symmetric key selected by A.
– c = EK(M): ciphertext of message M , encrypted with key K.
– kT = PT (K): key K encrypted with the TTP’s public key.
– kB′ = PB′

1
(K), PB′

2
(K), · · ·: ciphertext of key K that only the recipients in

B′ can decrypt it.
– hA = SA(H(c), B,TTP,H(A,B,K), kT ): first part of evidence of origin for

every recipient Bi ∈ B.
– hBi

= SBi
(H(c), A,TTP,H(A,B,K), kT ): evidence of receipt for A.

– kA = SA(K, B′): second part of evidence of origin for Bi ∈ B′.
– k′T = ST (K, Bi): alternative second part of evidence of origin for Bi.
– hAT = SA(H(c), kT , hA, B′′): evidence that A has demanded the TTP’s

intervention to cancel the exchange sub-protocol with Bi ∈ B′′.

3.2 Protocol Description

The modified exchange sub-protocol is as follows.

1. A ⇒ B : c,H(A,B,K), kT , B,TTP, hA

2. Bi → A : hBi

3. A ⇒ B′ : kB′ , B′, kA

If A did not receive message 2 from some of the recipients B′′, A may initiate
the following modified cancel sub-protocol.

1′. A → TTP : H(c),H(A,B,K), kT , B, hA, PT (B′′), hAT

2′. TTP : FOR (all Bi ∈ B′′)
IF (Bi ∈ B′′ finished) THEN retrieves hBi

ELSE appends Bi into B′′ cancelled
3′. TTP → A : all retrieved hBi

, B′′ cancelled,
ST (“cancelled”, B′′ cancelled, hA)

3 PT (B1, B2, · · ·) is used by the TTP to check whether Bi ∈ B when Bi initiates the
finish sub-protocol.



There will be different results if A does not set B′′ = B − B′ in the cancel
sub-protocol. It is OK if A sets B′′ ⊃ B − B′, i.e., cancels some Bi that even
replied with hBi . (A possible scenario is that a Bi replied hBi after A initiated
the cancel sub-protocol.) But it is harmful for A if A sets B′′ ⊂ B − B′. That
means a Bi in (B − B′) − B′′ is able to receive K with the finish sub-protocol
(to decrypt c) while A does not have hBi

to prove Bi received M .

If some recipient Bi did not receive message 3, Bi may initiate the following
modified finish sub-protocol.

2′. Bi → TTP : H(c),H(A,B, K), kT , B, hA, A, hBi

IF (Bi ∈ B′′ cancelled) 3′. TTP → Bi : hAT , ST (“cancelled”, hBi , hAT )
ELSE {3′. TTP → Bi : PBi

(K), k′T
4′. TTP : appends Bi into B′′ finished,

and stores hBi}

If Bi received message 3, Bi needs to check whether K in kA matches
H(A,B,K) in hA. If not, Bi knows something wrong and should also initiate
the finish sub-protocol. Then the TTP will check whether H(A,B, P−

T (kT )) =
H(A,B,K). If not, Bi will be notified of the error, and neither A nor Bi will be
committed to each other on the message exchange.

3.3 Dispute Resolution

The process of dispute resolution is modified as follows. In the dispute of origin,
Bi has to provide M, c,K, H(A,B,K), kT , B,TTP, hA and B′, kA (or k′T ) to an
arbiter. The arbiter will check

(O-1) if hA is A’s signature on (H(c), B,TTP,H(A,B,K), kT ), and Bi ∈ B;
(O-2) if kA is A’s signature on (K, B′) and Bi ∈ B′, or if k′T is the TTP’s signature

on (K, Bi);
(O-3) if the decryption of c (i.e., DK(c)) is equal to M ;
(O-4) if K certified in kA or k′T matches H(A,B,K) certified in hA.

Bi will win the dispute if all of the above checks are positive.

In the dispute of receipt, A has to provide an arbiter with M, c,K, H(A,B,K),
kT ,TTP, hBi

, and B,B′′ cancelled, hA, ST (“cancelled”, B′′ cancelled, hA) if A
has. The arbiter will check

(R-1) if hBi is Bi’s signature on (H(c),A,TTP,H(A,B,K), kT );
(R-2) if kT is the encryption of K with the TTP’s public key;
(R-3) if the decryption of c (i.e., DK(c)) is equal to M ;
(R-4) if H(A,B,K) and kT certified in hBi match, i.e.,

H(A,B, P−
T (kT )) = H(A,B,K);

(R-5) if ST (“cancelled”, B′′ cancelled, hA) is the TTP’s signature, and
Bi /∈ B′′ cancelled.



A will win the dispute if all of the above checks are positive. If the first four checks
are positive but A cannot present evidence ST (“cancelled”, B′′ cancelled, hA),
the arbiter must further interrogate Bi. If Bi is unable to present evidence
ST (“cancelled”, hBi , hAT ), A also wins the dispute. Otherwise, A will lose the
dispute.

4 Extensions of Micali Protocol

Here we first give a brief description of Micali’s optimistic protocol for two-party
certified email [10], then we extend this protocol to a multi-party scenario with
asynchronous timeliness.

4.1 Micali Protocol

Micali presented two optimistic protocols in [10] for certified electronic mail
(CEM) and electronic contract signing (ECS), respectively. The protocols were
filed as a US patent No 5666420 in 1997 [9]. While CEM protocol is secure, ECS
protocol has a security flaw as pointed out in [3]. Here we only review CEM
protocol. To have a unified presentation, we use the same notation defined in
the previous sections.

Before sending the plaintext message M to the recipient B, the sender A
computes a secret Z protected with the TTP’s public encryption key as 4

Z = PT (A,B, PB(M))

To achieve timeliness, Micali proposed a cut-off time solution, where A chooses
a time t, after which the TTP should not help B in the conclusion of the protocol.
The exchange sub-protocol is as follows.

1. A → B : t, Z, SA(t, Z)
2. B → A : SB(Z)
3. A → B : PB(M)

Whenever B reaches Step 1 and verifies A’s signature, he must extract the
cut-off time t and estimate whether he will have enough time to contact the TTP
in case of A’s misbehavior or channel failure. tD denotes the maximum possible
time discrepancy B believes that may exist between his clock and that of the
TTP. If B receives Step 1 at time tB (i.e., B’s local time) such that tB + tD is
greater than or equal to t, then B halts; otherwise he proceeds to Step 2. After
verifying B’s signature, A sends PB(M) to B at Step 3, and B can decrypt it
with his private key to get M .

4 For simplicity, we assume that messages are encrypted directly with a public-key
algorithm. But, according to standard practice, we could first encrypt a big message
conveniently with a symmetric (session) key, and then encrypt this symmetric key
with a public-key algorithm.



After replying at Step 2, if B does not get the message within a reasonable
amount of time, or Z = PT (A,B, PB(M)) does not hold, B contacts the TTP
with the following finish sub-protocol.

2′. B → TTP : t, Z, SA(t, Z), SB(Z)
IF (tTTP < t) {3′.TTP → B : X

4′.TTP → A : SB(Z)}

In this sub-protocol, the TTP verifies whether B’s request arrives before A’s
cut-off time and also whether both signatures are correct. If so, the TTP decrypts
Z with its private key and, if the result is a triplet consisting of A, B, and an
unknown string X, it sends X to B and forwards B’s signature to A.

4.2 Extension to Asynchronous Timeliness

We believe that a cut-off time is not the best solution for a timeliness property.
Thus, we propose a different solution, asynchronous timeliness (i.e., either party
can finish the protocol at any time without loss of fairness).

In Micali’s protocol, even if B approximately calculates in each run the time
to contact the TTP, there can be always a situation in which the TTP is unac-
cessible for a longer time. In such a case B will not get the expected message
and it will be difficult to figure out who bears the responsibility for the breach
of fairness.

We introduce a new cancel sub-protocol. In this way, if A does not receive
message 2 in the exchange sub-protocol, A can abort it with the cancel sub-
protocol at any time. On the other hand, if B does not receive message 3 in the
exchange sub-protocol, B can resolve it at any time with the finish sub-protocol.

The revised exchange sub-protocol (and the only one needed in case both
parties behave and no error occurs in the communication channel) is as follows.

1. A → B : Z, SA(Z)
2. B → A : SB(Z)
3. A → B : PB(M)

The revised finish sub-protocol is as follows, which will be requested by B
under the same conditions as the original one.

2′. B → TTP : Z, SB(Z)
IF cancelled 3′. TTP → B : SA(cancel, Z)
ELSE {3′. TTP → B : PB(M)

4′. TTP : stores SB(Z)}

When the TTP receives such a request, it first checks B’s signature on Z.
If valid, the TTP further decrypts Z and extracts the identities of sender and
recipient of Z. If B is the intended recipient of Z and the exchange has not
been cancelled by A, the TTP marks the exchange status related to (A,B,Z)
as resolved, sends PB(M) to B, and stores SB(Z) (which will be collected by A



when A initiates the cancel sub-protocol). If the exchange has been cancelled by
A, the TTP forwards SA(cancel, Z) to B, and B can use this evidence to prove
that A has cancelled the exchange.

The new cancel sub-protocol is as follows.

1′. A → TTP : Z, SA(cancel, Z)
IF resolved 2′. TTP → A : SB(Z)
ELSE {2′. TTP → A : ack

3′. TTP : stores SA(cancel, Z)}

When the TTP receives such a request from A, it first checks A’s signature.
If valid, the TTP further decrypts Z and extracts the identities of sender and
recipient of Z. If A is the sender of Z and the exchange status related to (A,B, Z)
is marked as resolved, the TTP forwards SB(Z) to A. Otherwise, the TTP marks
the exchange status related to (A,B, Z) as cancelled, and acknowledges A of
cancellation.

Although in [10] there is no explicit definition of the dispute resolution pro-
cess, we think it is in general necessary for any fair exchange protocol. In this
process both parties must agree that an arbiter will evaluate the final outcome
of the protocol based on the evidence provided by the users. Consequently,
if A denies having sent a message in a CEM protocol run, B should provide
(M,PB(M), Z, SA(Z)) and the arbiter settles that A sent the message M if

– Z = PT (A,B, PB(M)) holds, where A and B are the sender and recipient of
Z, respectively;

– A’s signature on Z is valid.

Similarly, if B denies having received a message in a CEM protocol run, A
should provide (M,PB(M), Z, SB(Z)) and the arbiter settles that B received
the message M if

– Z = PT (A,B, PB(M)) holds, where A and B are the sender and recipient of
Z, respectively;

– B’s signature on Z is valid;
– B cannot provide SA(cancel, Z).

We assume a deterministic public encryption algorithm is used. Otherwise,
A cannot discard the random seeds if a non-deterministic public encryption
algorithm (e.g., the ElGamal cryptosystem [5]) is used.

4.3 Further Extension to Multi-Party Scenario

Here we further extend Micali’s two-party CEM protocol to a multi-party sce-
nario with asynchronous timeliness as well. Some additional notation in the
protocol description is as follows.

– B : a set of intended recipients selected by the sender A.



– B′ : a subset of B that have replied message 2 in the exchange sub-protocol.
– B′′ = B −B′ : a subset of B with which A wants to cancel the exchange.
– B′′ cancelled : a subset of B′′ with which the exchange has been cancelled

by the TTP.
– B′′ finished : a subset of B that have finished the exchange with the finish

sub-protocol.
– M : certified message to be sent from A to B.
– PB(M) = PB1(M), PB2(M), ... : an encryption concatenation of M for group

B 5.
– Z = PT (A,B, PB(M)) : a secret Z protected with the TTP’s public encryp-

tion key.

The extended exchange sub-protocol is as follows.

1. A ⇒ B : Z, SA(Z)
2. Bi → A : SBi

(Z) where each Bi ∈ B
3. A ⇒ B′ : PB′(M)

If A did not receive message 2 from some of the recipients B′′, A may initiate
the following extended cancel sub-protocol.

1′. A → TTP : PT (B′′), Z, SA(cancel, B′′, Z)
2′. TTP : FOR (all Bi ∈ B′′)

IF (Bi ∈ B′′ finished) THEN retrieves SBi
(Z)

ELSE appends Bi into B′′ cancelled
3′. TTP → A : all retrieved SBi(Z), B′′ cancelled, ST (B′′ cancelled, Z)

When the TTP receives such a request, it first checks A’s signature. If valid,
the TTP further decrypts Z and extracts the sender’s identity. If A is the sender
of Z, the TTP checks which entities in B′′ have previously resolved the protocol
and retrieves the evidence of receipt of those entities. Then, the TTP generates
an evidence of cancellation for the rest of entities and includes everything in a
message destined to A.

If some recipient Bi did not receive message 3, Bi may initiate the following
extended finish sub-protocol.

2′. Bi → TTP : Z, SBi
(Z)

IF (Bi ∈ B′′ cancelled) 3′.TTP → Bi : B′′ cancelled, ST (B′′ cancelled, Z)
ELSE {3′.TTP → Bi : PBi

(M)
4′.TTP : appends Bi into B′′ finished,

and stores SBi(Z)}

When the TTP receives such a request, it first checks Bi’s signature on Z.
If valid, the TTP further decrypts Z and extracts the identities of sender and
recipients of Z. If Bi is one of the intended recipients of Z and the exchange
5 An efficient implementation for a big message M could be PB(M) =

EK(M), PB1(K), PB2(K), ...



with Bi has not been cancelled by A, the TTP sends PBi
(M) to Bi, and stores

SBi
(Z) (which will be forwarded to A when A initiates the cancel sub-protocol).

If the exchange has been cancelled by A, the TTP sends ST (B′′ cancelled, Z) to
Bi, and Bi can use this evidence to prove that A has cancelled the exchange.

If Bi denies having received M , A can present B,B′′ cancelled, M,PBi(M),
PB(M), Z, SBi(Z), ST (B′′ cancelled, Z) and the arbiter settles that Bi received
the message M if

– Z = PT (A,B, PB(M)) holds, where Bi ∈ B and PBi
(M) ∈ PB(M);

– Bi’s signature on Z is valid;
– The TTP’s signature on ST (B′′ cancelled, Z) is valid, and Bi /∈ B′′ cancelled.

A will succeed on the dispute if all the above checks are positive. If the first
two checks are positive, but A cannot present evidence of cancellation, then the
arbiter must further interrogate Bi. If Bi cannot present ST (B′′ cancelled, Z) in
which Bi ∈ B′′ cancelled, A also wins the dispute. Otherwise, Bi can repudiate
having received the message M . Therefore, evidence provided by the TTP is
self-contained, that is, the TTP need not be contacted in case a dispute arises
regarding the occurrence of the cancel sub-protocol launched by A.

If A denies having sent M to Bi, a similar process can be applied to settle
such a dispute.

5 Conclusion

Certified email is a value-added service to deliver important data over the In-
ternet with guaranteed receipt for each successful delivery. Multi-party certified
email is useful when the same message needs to be sent to a set of recipients. In
this paper, we analyzed Ferrer-Gomila et. al’s multi-party certified email proto-
col and further presented a modified version that overcomes its security flaws and
weaknesses without compromising efficiency of the original protocol. We also ex-
tended Micali’s two-party certified email protocol to a multi-party scenario with
asynchronous timeliness.

Regarding our two multi-party certified email protocols presented in Sec-
tions 3.2 and 4.3, respectively,

– Both of them maintain fairness no matter what happens in the execution of a
protocol run. If an exception (e.g., a network failure or a party’s misbehavior)
occurs, any party can rectify a potential breach of fairness by contacting the
TTP.

– Both of them achieve asynchronous timeliness, i.e., any party can end a
protocol run (with the cancel sub-protocol for the sender or the finish sub-
protocol for the recipients) at any time without breach of fairness.

– Both of them are optimized in the sense that only 3 steps are required to
complete a protocol run in the normal case. This is a lower bound for a
certified email protocol.



In the modified FPH protocol, the certified message is split into two parts in
delivery: a secret key selected by the sender, and the ciphertext of the message
generated with this key. In the extended Micali protocol, however, the certified
message is not split in delivery.

Such a difference has its own advantage and disadvantage to the two proto-
cols. In comparison with the modified FPH protocol, the extended Micali proto-
col has simpler evidence for storage and dispute resolution but imposes heavier
overheads on the TTP.

The performance of the two protocols is similar in the normal case where only
the exchange sub-protocol is executed. However, when an exception occurs and
the TTP is invoked, the TTP’s communication and computing overheads of the
two protocols are different. In the modified FPH protocol, the TTP only needs
to receive, process, and forward the secret key while in the extended Micali
protocol, the TTP needs to receive, process, and forward the whole certified
message. Such a difference will be more significant if the size of the certified
message is very large.

Acknowledgement

This work has been partially funded by the Ministry of Science and Technology
under the project TIC2003-08184-C02-01. Additionally, the second author has
been funded by the Consejeŕıa de Innovación, Ciencia y Empresa (Junta de
Andalućıa) under the III Andalusian Research Plan.

References

1. M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified email with a light on-line
trusted third party: Design and implementation. Proceedings of 2002 International
World Wide Web Conference, pages 387–395, Honolulu, Hawaii, May 2002.

2. G. Ateniese, B. Medeiros, and M. Goodrich. TRICERT: Distributed certified email
schemes. Proceedings of 2001 Network and Distributed System Security Sympo-
sium, San Diego, California, February 2001.

3. F. Bao, G. Wang, J. Zhou, and H. Zhu. Analysis and improvement of Micali’s fair
contract signing protocol. Lecture Notes in Computer Science 3108, Proceedings of
2004 Australasian Conference on Information Security and Privacy, pages 176–187,
Sydney, Australia, July 2004.

4. R. Deng, L. Gong, A. Lazar, and W. Wang. Practical protocols for certified elec-
tronic mail. Journal of Network and Systems Management, 4(3):279–297, Septem-
ber 1996.

5. T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, July
1985.

6. J. Ferrer-Gomila, M. Payeras-Capella, and L. Huguet-Rotger. A realistic protocol
for multi-party certified electronic mail. Lecture Notes in Computer Science 2433,
Proceedings of 2002 Information Security Conference, pages 210–219, Sao Paulo,
Brazil, September 2002.



7. S. Kremer and O. Markowitch. A multi-party non-repudiation protocol. Proceed-
ings of 15th IFIP International Information Security Conference, pages 271–280,
Beijing, China, August 2000.

8. O. Markowitch and S. Kremer. A multi-party optimistic non-repudiation proto-
col. Lecture Notes in Computer Science 2015, Proceedings of 3rd International
Conference on Information Security and Cryptology, pages 109–122, Seoul, Korea,
December 2000.

9. S. Micali. Simultaneous electronic transactions. US Patent No. 5666420, September
1997.

10. S. Micali. Simple and fast optimistic protocols for fair electronic exchange. Proceed-
ings of 22nd ACM Annual Symposium on Principles of Distributed Computing,
pages 12–19, Boston, Massachusetts, July 2003.

11. M. Mut-Puigserver, J. Ferrer-Gomila, and L. Huguet-Rotger. Certified electronic
mail protocol resistant to a minority of malicious third parties. Proceedings of IEEE
INFOCOM 2000, Volume 3, pages 1401–1405, Tel Aviv, Israel, March 2000.

12. J. Onieva, J. Zhou, and J. Lopez. Enhancing certified email service for timeliness
and multicast. Proceedings of 4th International Network Conference, pages 327–
336, Plymouth, UK, July 2004.

13. J. Zhou. On the security of a multi-party certified email protocol. Lecture Notes in
Computer Science 3269, Proceedings of 2004 International Conference on Informa-
tion and Communications Security, pages 40-52, Malaga, Spain, October 2004.

14. J. Zhou and D. Gollmann. A fair non-repudiation protocol. Proceedings of 1996
IEEE Symposium on Security and Privacy, pages 55–61, Oakland, California, May
1996.

15. J. Zhou and D. Gollmann. Certified electronic mail. Lecture Notes in Computer
Science 1146, Proceedings of 1996 European Symposium on Research in Computer
Security, pages 160–171, Rome, September 1996.

16. J. Zhou and D. Gollmann. An efficient non-repudiation protocol. Proceedings of
10th IEEE Computer Security Foundations Workshop, pages 126–132, Rockport,
Massachusetts, June 1997.


