
On Formal Specification of Emergent Be-
haviours in Swarm Robotic Systems

Alan FT Winfield1; Jin Sa1; Mari-Carmen Fernández-Gago2; Clare Dixon2 & Michael
Fisher2
1Intelligent Autonomous Systems Laboratory, University of the West of England, Coldharbour Lane,
Bristol BS16 1QY
email:{Alan.Winfield,Jin.Sa}@uwe.ac.uk
2Liverpool Verification Laboratory, Department of Computer Science, University of Liverpool, Liv-
erpool L67 7ZF
email:{M.C.Gago,C.Dixon,M.Fisher}@csc.liv.ac.uk

Abstract: It is a characteristic of swarm robotics that specifying overall emergent swarm
behaviours in terms of the low-level behaviours of individual robots is very difficult. Yet
if swarm robotics is to make the transition from the laboratory to real-world engineering
realisation we need such specifications. This paper explores the use of temporal logic to
formally specify, and possibly also prove, the emergent behaviours of a robotic swarm. The
paper makes use of a simplified wireless connected swarm as a case study with which to
illustrate the approach. Such a formal approach could be an important step toward a
disciplined design methodology for swarm robotics.
Keywords: swarm robotics, formal specification, temporal logic.

1. Introduction

In a previous paper (Winfield et al., 2005) we in-
troduced the notion of a ‘dependable swarm’, that
is a distributed multi-robot system based upon the
principles of swarm intelligence upon which we
can place a high degree of reliance. That paper
concluded that, although some of the tools needed
to assure a swarm for dependability exist, most do
not, and set out a roadmap of the work that needs
to be done before embodied swarm intelligence can
make the transition from the research laboratory
to real-world applications.

One of the defining characteristics of robotic
swarms is that overall swarm behaviours are, typ-
ically, an emergent consequence of the interac-
tion of robots with each other and their environ-
ment (Bonabeau et al., 1999), (Şahin, 2005). If fu-
ture real-world robotic swarms are to exploit emer-
gence and self-organisation to generate desired
system behaviours then we will need to be able to
verify, or better still prove, that those behaviours
are guaranteed to emerge (since few real-world ap-
plications would tolerate only some possibility of
desired behaviour).

Within swarm robotics research relatively little
work has been done in the direction of mathemati-
cal analysis and modelling; for a recent review see

1http://www.ias.uwe.ac.uk
2http://www.csc.liv.ac.uk/˜liverlab

(Lerman et al., 2005). Perhaps the most successful
analytical modelling approach to date is the work
of (Martinoli et al., 2004), which uses a stochastic
approach in which an ensemble of probabilistic fi-
nite state machines describe the overall structure
of the swarm in terms of its microscopic (individual
robot) parameters. Martinoli’s work is concerned
with modelling rather than specification, or formal
proof.

(Kiriakidis and Gordon-Spears, 2002) modelled
a multi-robot system as a Discrete Event Sys-
tem (DES) and went further than modelling, to-
ward formal verification, using automata-theoretic
model checking. However, the multi-robot system
of Kiriakidis and Gordon-Spears employs a cen-
tral supervisory controller which assures the be-
haviour of the overall system by constraining the
actions of individual robots. By contrast the work
of this paper is concerned with fully distributed
robotic swarms in which there is no centralised
command and control structure. Thus we are faced
with the difficult problems of, firstly, designing and
specifying individual robot behaviours such that
when the robots of the swarm interact with each
other and their environment the desired overall
swarm behaviours will emerge and, secondly, veri-
fying those emergent behaviours.

There has been recent work in the area
of applying formal methods to specifying and
verifying swarm intelligent systems, notably

A. Winfield, et al., “On the Formal Specification of Emergent Behaviours of Swarm Robotics Systems”, International Journal of Advanced Robotics
Systems, vol. 2, pp. 363-371, 2005.
NICS Lab. Publications: https://www.nics.uma.es/publications

within the NASA project ‘Autonomous Nano-
Technology Swarm’ (ANTS) (Rouff et al., 2003,
Rouff et al., 2004). That work evaluated and
compared four formal specification techniques:
Communicating Sequential Processes (CSP), the
Weighted Synchrononous Calculus of Sequential
Systems (WSCCS), Unity Logic and X-Machines
and concluded that none of those approaches is -
on its own - sufficient for the task of formal speci-
fication and verification of robotic swarms.

By contrast, in this paper we shall explore
the use of a temporal logic to formally spec-
ify and verify emergent behaviours of a robotic
swarm system. The recent theoretical results
that have led to the mechanisation of fragments
of first-order temporal logic are exciting new re-
sults that, for the first time, open up the possibil-
ity of applying first order temporal theorem prov-
ing in areas such as swarm verification. Tem-
poral logics have been shown to be useful for
specifying dynamical systems that change over
time (Manna and Pnueli, 1992), and we believe
that this ability is essential for describing emer-
gent behaviours. Indeed, in the world of multi-
agent systems, temporal formalisms (often ex-
tended with modal logics) have been widely used
for specification, verification, and even implemen-
tation (Fisher, 2005).

This paper proceeds as follows. In section 2
we introduce the wireless connected robotic swarm
that forms the case study of this paper. Section 3
proposes a formal approach to swarm specification
and verification, then introduces the linear-time
temporal logic that we propose to use, and its no-
tation. Section 4 then applies this formal approach
to the wireless connected swarm of our case study.
Finally, section 5 summarises the findings of the
work to date.

2. Case study: A Wireless Connected Swarm

We have developed a class of algorithms which
make use of local wireless connectivity infor-
mation alone to achieve swarm aggregation
(Nembrini et al., 2002, Nembrini, 2005). These al-
gorithms use situated communications in which
connectivity information is linked to robot motion
so that robots within the swarm are wirelessly
‘glued’ together. This approach has several ad-
vantages: firstly the robots need neither absolute
nor relative positional information; secondly the
swarm is able to maintain its coherence (i.e. stay
together) even in unbounded space and, thirdly,
the connectivity needed for, and generated by, the
algorithms means that the swarm naturally forms
an ad-hoc communications network. Such a net-
work would be a significant advantage in many
swarm robotics applications. In this case study we

Figure 1: Robot Finite State Machine

Figure 2: Swarm with α = 5 (left) and α = 10 (right)

make use of the simplest (alpha) algorithm. The
basic premise of this algorithm is that each robot
has range-limited wireless communication which,
for simplicity, we model as a circle of radius rw

with the robot at its centre. The boundary of the
circle represents the threshold beyond which an-
other robot is out of range. Each robot also has
collision avoidance sensors with a range ra, where
ra < rw . The basic algorithm is very simple. The
default behaviour of a robot is forward motion.
While moving each robot periodically broadcasts
an ‘I am here’ message. The message will of course
be received only by those robots that are within
wireless range - its neighbours. If the number of a
robot’s neighbours should fall below the threshold
α then it assumes it is moving out of the swarm
and will execute a 180◦ turn. When the number
of neighbours rises above α (when the swarm is
regained) the robot then executes a random turn.
This is to avoid the swarm simply collapsing in on
itself. In the interests of simplicity we can con-
sider each robot as having three basic behaviours,
or states: move forward (default); avoidance (trig-
gered by the collision sensor), and coherence (trig-
gered by the number of neighbours falling below
α). Figure 1 shows the finite state machine (FSM)
for the individual robots in the swarm.

The alpha algorithm achieves useful swarm co-
herence in which a larger value of α results in
a smaller more highly connected swarm and a
smaller value of α in a larger more loosely con-
nected swarm, as shown in figure 2.

3. A Formal Method for Swarm Develop-
ment

It is the contention of this paper that formal meth-
ods can be usefully applied to swarm robotic sys-
tem specification and development, especially in
relating emergent behaviours to individual robot
behaviours. We propose the following formal
methodology:

1. Formally specify the individual robots, includ-
ing their safety and liveness properties.

2. Formally specify the swarm by combining the
specifications of individual robots.

3. Formally specify any anticipated or desired
emergent behaviours.

4. Carry out proofs to determine if the swarm
specification satisfies any of the emergent be-
haviours.

Safety3 and liveness are defined as follows. The
safety property specifies the set of legal actions, i.e.
the set of actions that are allowed. If the robot per-
forms actions from within this set, it will not make
the system unsafe. The liveness property specifies
the dynamic behaviour, i.e. the set of eventualities
that will occur. If we only have the safety property,
we cannot guarantee that anything will happen at
all. If we only have the liveness property, we can-
not guarantee that what is happening is safe. So
we need to establish both safety and liveness.

The four steps proposed above can be applied it-
eratively. The outcomes of each iteration - typi-
cally ‘proven’, ‘not-proven’ or ‘unable to determine
either way’ - will provide feedback to the swarm de-
signer. Based on these outcomes, modifications to
individual robot specifications may be carried out.
Expectations of overall emergent behaviours may
also be adjusted.

3.1 A Linear Time Temporal Logic

Temporal logic is an extension of classical logic,
in which time becomes an extra parameter
when considering the truth of logical state-
ments (Emerson, 1990). The variety of temporal
logic we are particularly concerned with is based
upon a discrete, linear model of time, having both
a finite past and infinite future, i.e.,

σ = s0, s1, s2, s3, . . .

Here, a model (σ) for the logic is an infinite se-
quence of states which can be thought of as ‘mo-
ments’ or ‘points’ in time. As we use a first-order

3In this paper, we adopt the convention that the safety prop-
erty defines the set of valid actions. In some literatures, the
safety property is defined as the set of invalid actions. Both
approaches can be used to the same effect.

temporal logic, associated with each of these states
is a first-order structure.

The temporal language we use is that of classi-
cal logic extended with various modalities charac-
terising different aspects of the temporal structure
above. Examples of the key operators include ‘©ϕ’,
which is satisfied if the formula ϕ is satisfied at the
next moment in time, ‘♦ϕ’, which is satisfied if ϕ is
satisfied at some future moment in time, and ‘ ϕ’,
which is satisfied if ϕ is satisfied at all future mo-
ments in time.

More formally, the semantics of the language
can be defined with respect to the model (σ) in
which the statement is to be interpreted, and the
moment in time (i) at which it is to be interpreted.
Thus, the semantics for the key temporal operators
is given as follows:

〈σ, i〉 |=©A iff 〈σ, i + 1〉 |= A

〈σ, i〉 |= A iff for all j ≥ i. 〈σ, j〉 |= A

〈σ, i〉 |= ♦A iff exists j ≥ i. 〈σ, j〉 |= A

We also allow standard first-order quantifiers,
such as ‘∃’, ‘∀’ and arithmetical operators.

Such a logic is widely used in the specification of
concurrent and distributed systems, in both Com-
puter Science (Manna and Pnueli, 1992) and Arti-
ficial Intelligence (Fisher et al., 2005a).

Note: as abbreviations later, we will often use for-
mulae such as

©p = p

meaning that the value of the variable ‘p’ remains
the same between the current and next state. This
is actually short-hand for the (legal) first-order
temporal formula

∃v. (p = v) ∧ ©(p = v)

i.e. ‘p’ has exactly the same value in the next state
as it has now.

4. Applying our Formal Approach

In this section we formally specify a simplified ver-
sion of the wireless connected swarm (the alpha
algorithm) outlined in section 2.

4.1 A simplified alpha algorithm

For simplicity, we discretise the robot space so that
the robots move in a grid world, and make the fol-
lowing assumptions.

1. The bearing of each robot will have only one of
these four values: N , S, E, and W .

2. The maximum connected distance between two
robots is rw units.

Figure 3: Area of Connectivity, showing movement grid

3. At each time step a robot moves a units (a �
rw).

4. A robot can move forward, turn 90◦ left before
making a move, turn 90◦ right before making a
move or turn 180◦ back before making a move.

5. Given a robot i in position x, y, if another robot
j is in the shaded area shown in Figure 3, then
robots i and j are ‘connected’.

6. We simplify the FSM of figure 1 by omitting the
avoidance state.

7. We assume a value of α = 1 so that the loss of
any connection triggers the coherence state.

These assumptions may appear to be severe but,
we argue, do not compromise the thesis of this pa-
per. For example, the avoidance behaviour, while
necessary in a real-world swarm, is not essential
to the emergent swarm behaviours we seek. Simi-
larly, a swarm with α = 1 may have limited prac-
tical value, but our contention that temporal logic
can be used to specify swarm properties, including
emergence, is uncompromised by this assumption.

Given the above assumptions, the behaviour of
each robot can be described as follows. Each robot
can be in one of two motion states: forward or co-
herence. The connectivity of each robot can also be
in one of two states: connected or not connected.
The combination of the motion states and the con-
nectivity states give us four possible state transi-
tions:

In the forward state, when connected → move for-
ward

In the forward state, but not connected → turn
180◦ and change the motion state to ‘coherent’

In the coherent state, but not connected → move
forward

In the coherent state, when connected → perform
a random turn (i.e. either left or right) and
change the motion state to ‘forward’.

Now, given a swarm of robots with the above be-
haviours, there may potentially be the following
(desirable) emergent behaviours:

• Property 1: It is repeatedly the case that for
each robot, we can find another robot so that
they are connected.

• Property 2: Eventually it will always be the
case that every robot is connected to at least
k robots, where k is a pre-defined constant.

4.2 Specification of individual robots

Before defining the specification of individual
robots, we need some auxiliary definitions to make
the specification more readable.

The following local variables and global constants
are used in the subsequent specifications:

xi, yi: position of roboti.
θi: bearing of roboti. This can be N, S, E or W .
motioni: flag indicating whether roboti is in the

forward or coherence state.
N : total number of robots in the swarm.
rw : connectivity range.
a: distance of one move.
πi: roboti will transition from the current state

to the next state if πi is true.

4.2.1 Auxiliary definitions

Set of Robots
robotSet denotes the set of robots in the collection:

robotSet := {1, ..., N} (1)

Detection of Connectivity
Two robots i and j are within the connection range
if the Euclidian distance between their x, y coordi-
nates is less than the connection distance, thus:

inRange(i, j) := (|x − y| < rw) (2)

Robot i is connected to some other robots in the set
if there exists another robot within its connection
range, thus:

connected(i) := ∃j ∈ robotSet \ {i}.inRange(i, j)
(3)

Movements
First, we specify the ‘move north’ action. If in the
next time step robot i moves in the direction north
by a units, the value of the x-coordinate of robot i

in the next state is the same as the value of the x-
coordinate now; and the value of the y-coordinate
of robot i in the next state is the same as the value
of the y-coordinate now plus the distance a. Thus:

moveN(i) := (©xi = xi) ∧ (©yi = yi + a) (4)

And for directions south, east and west respec-
tively:

moveS(i) := (©xi = xi) ∧ (©yi = yi − a) (5)
moveE(i) := (©xi = xi + a) ∧ (©yi = yi) (6)
moveW (i) := (©xi = xi − a) ∧ (©yi = yi)(7)

We now specify the ‘move forward’ action. If the
current direction is north, in the next time step,
the robot remains in the same direction and moves
north by a units. If the current direction is south,
in the next time step, the robot again remains in
the same direction and moves south by a units, etc.
Thus:

moveF (i) :=

(θi = N) ∧ (©θi = N) ∧ moveN(i) ∨

(θi = S) ∧ (©θi = S) ∧ moveS(i) ∨

(θi = W) ∧ (©θi = W) ∧ moveW (i) ∨

(θi = E) ∧ (©θi = E) ∧ moveE(i) (8)

The turn90Move() action specifies that in the next
step robot i turns 90◦ randomly and moves a units
in the new direction:

turn90Move(i) :=

(θi = S) ∧ (©θi = W) ∧ moveW (i) ∨

(θi = S) ∧ (©θi = E) ∧ moveE(i) ∨

(θi = W) ∧ (©θi = N) ∧ moveN(i) ∨

(θi = W) ∧ (©θi = S) ∧ moveS(i) ∨

(θi = E) ∧ (©θi = N) ∧ moveN(i) ∨

(θi = E) ∧ (©θi = S) ∧ moveS(i) ∨

(θi = N) ∧ (©θi = E) ∧ moveE(i) ∨

(θi = N) ∧ (©θi = W) ∧ moveW (i) (9)

The turn180Move() action specifies that in the
next step robot i turns 180◦ and moves a units in
the new direction:

turn180Move(i) :=

(θi = S) ∧ (©θi = N) ∧ moveN(i) ∨

(θi = W) ∧ (©θi = E) ∧ moveE(i) ∨

(θi = N) ∧ (©θi = S) ∧ moveS(i) ∨

(θi = E) ∧ (©θi = W) ∧ moveW (i) (10)

State transitions
We can now specify the four possible combinations
of motion states and connectivities, described in
section 4.1, as follows. forwardConnected(i) spec-
ifies that the robot is in the forward motion state
and is connected:

forwardConnected(i) :=

(motioni = forward) ∧ connected(i) (11)

and for the other three state transitions:

forwardNotConnected(i) :=

(motioni = forward) ∧ ¬connected(i) (12)

coherentNotConnected(i) :=

(motioni = coherent) ∧ ¬connected(i) (13)

coherentConnected(i) :=

(motioni = coherent) ∧ connected(i) (14)

Idle situation
Finally, we specify the ‘idle’ situation.

idle(i) :=

(©xi = xi) ∧

(©yi = yi) ∧

(©θi = θi) ∧

(©motioni = motioni) (15)

The above formula specifies that in the next step
robot i does not make any change.

4.3 Specification of Robot i

Let Roboti denote the specification of robot i:

Roboti := (Safetyi ∧ Livenessi) (16)

The above formula states that the behaviour of
Roboti will always satisfy both its safety and live-
ness properties.

4.3.1 Specification of safety for Robot i

The safety properties specify the valid actions. In
our specification, concurrency is modelled through
interleaving. So, for each robot, we need to specify
two cases: one for the robot taking an action and
another for the robot not taking an action. The
first case we label the component action and the
second the environment action. The component
action defines what robot i is allowed to do. The
environment action defines what the environment
is allowed to do to robot i. Now the environment of
robot i consists of all the other robots, but the en-
vironment action does not need to specify all pos-
sible actions of the other robots, only those that
affect robot i. In our particular case study, when
the environment is taking an action, there will be
no changes to robot i; robot i will thus be idle.

To distinguish between a component step and a
environment step for robot i, we use the proposi-
tion πi to label robot i’s actions. Therefore πi is
true if robot i is taking an action; it is false if it is
not taking an action. Thus:

Safetyi :=

πi ∧ CompActioni ∨

¬πi ∧ idle(i) (17)

The Safetyi formula above specifies what robot
i is allowed to do when it is taking an action (i.e. a
component action) or that it remains idle when it
is not taking an action. This idle period leaves the
space for the environment to take some actions.

The CompActioni formula specifies three al-
lowed actions:

CompActioni := moveF (i) ∨

turn90move(i) ∨

turn180move(i) (18)

4.3.2 Specification of liveness for Robot i

We can now specify liveness for robot i. The
livenessi formula specifies that if, in the current
step, robot i is active (πi = true), and it is in the
forward state, and it is connected to another robot,
then it will move forward and remain in the for-
ward state; if robot i is in the forward state and it
is not connected to another robot, it will do a 180◦

turn and change the motion state to ‘coherent’, and
so on. Thus:

Livenessi :=

(πi ∧ forwardConnected(i) ⇒

(moveF (i) ∧©motioni = forward)) ∧

(πi ∧ forwardNotConnected(i) ⇒

(turn180Move(i) ∧©motioni = coherent)) ∧

(πi ∧ coherentNotConnected(i) ⇒

(moveF (i) ∧©motioni = coherent)) ∧

(πi ∧ coherentConnected(i) ⇒

(turn90Move(i) ∧©motioni = forward)) (19)

4.4 Specification of the overall swarm

The swarm of robots consists of all robots execut-
ing concurrently. Therefore our specification for
the whole collection is defined as the logical ‘and’
of all the individual robots. As we use interleaving
to model concurrency, we also need to ensure that
only one robot is taking an action at a time. This
mutual exclusion is specified by the exclusive ‘or’
(⊕) condition. Thus:

Swarm :=

Robot1 ∧ Robot2 ∧ ... ∧ RobotN ∧

(π1 ⊕ π2 ⊕ ...πN) (20)

The exclusive or condition ensures that at any mo-
ment in time, if πi is true, only robot i is taking
an action, all the other robots are idling. For ex-
ample, if π1 is true, π2 to πN are false. Therefore
according to the safety property specification, the
behaviour of robot 1 is specified by compActioni, i.e.
one of the three actions: moveF (i), turn180Move(i)

and turn90Move(i). The behaviour of all the other
robots are specified by their environment action,
i.e. idling.

It is important to recognise that the specifica-
tion of the swarm above specifies the set of all pos-
sible orderings of interleaved actions of all robots.
The swarm specification must not be taken to im-
ply that the actions of robot 1, robot 2, etc, are in-
terleaved in order 1, 2...N .

4.5 Specification of emergent behaviours

In this subsection, we demonstrate how we can use
the same notation to describe possible emergent
behaviours.

Property 1: It is infinitely often the case that, for
each robot, we can find another robot so that they
are connected.

property1 := ♦(∀i ∈ robotSet. connected(i))
(21)

Property 2: Eventually it will always be the case
that every robot is connected to at least k distinct
robots, where k is pre-defined.

property2 :=

♦ (∀i ∈ robotSet.

(∃j1 ∈ robotSet \ {i}. inRange(i, j1) ∧

∃j2 ∈ robotSet \ {i}. inRange(i, j2) ∧

...

∃jk ∈ robotSet \ {i}. inRange(i, jk) ∧

distinct(j1, j2, ..., jk))) (22)

where distinct() is defined as,

distinct(i1, i2, ..., ik) := | {i1, i2, ..., ik} | = k (23)

Thus property1 specifies that each robot has just
1 connected neighbour; property2 is stronger, and
specifies that each robot in the swarm has k con-
nected neighbours. However, property2 does still
admit the possibility that our swarm of N robots
might split into a number of connected subswarms
each with k + 1 robots (which, in fact, can happen
with the alpha algorithm). However, the purpose
of this paper is not to derive a full specification,
but to demonstrate the validity of the approach we
are advocating.

Since the disposition and connectivity of our
swarm experiences a time evolution we also need
to assume that property1 and property2 are true at
the initial moment, in other words that our robots
are initially tightly swarmed and fully connected.
Over time the swarm will tend to disperse but
the purpose of the alpha algorithm is to maintain
swarm connectivity. Thus we seek to prove that
property1 and property2 remain true.

4.6 Potential for proving emergent swarm proper-
ties

Our goal for this stage in our formal approach is to
prove (or disprove) that the swarm of robots satis-
fies the emergent behaviours, i.e.

Swarm ⇒ property1 (24)

Swarm ⇒ property2 (25)

Currently we are experimenting with mapping
specifications for the swarm and the emergent
behaviours into a monodic first-order temporal
logic (FOTL) so that a monodic4 first-order tem-
poral prover can be used to prove if the swarm
robotic system satisfies the anticipated emergent
behaviours. Our initial study has indicated that by
rewriting the problem specification and the emer-
gent behaviours into a monodic first order tempo-
ral specification, we are indeed able to use the tem-
poral prover TeMP to carry out such proofs. Note
that, whereas the scenario described in previous
sections for the swarm of robots assumes infinite
domains, we have used finite domains for the re-
written specification. In particular, we have as-
sumed a finite number of robots involved as well
as a finite grid. This is necessary in order to map
the specification into the monodic form. Although
mapping to the monodic temporal logic produces a
large number of clauses and the time taken for the
proof is relatively long, this is a first step towards
a solution for designing dependable swarm robotic
systems that will guarantee certain emergent be-
haviours.

TeMP (Hustadt et al., 2004) is a resolution-
based theorem-prover for first-order temporal
logic (FOTL). This logic is very expressive and,
consequently, problems expressed in FOTL are
often difficult (and sometimes impossible) to
prove automatically. However, the restriction
to monodic FOTL (Hodkinson et al., 2000) helps
us considerably. Monodic FOTL has many ap-
pealing properties, for instance it is often pos-
sible to automatically prove monodic FOTL for-
mulae when an appropriate first-order basis is
used. In order to build tools that achieve this,
the clausal resolution method for propositional
temporal logic (Fisher et al., 2001) has been ex-
tended to monodic FOTL (Degtyarev et al., 2004,
Konev et al., 2005). This has been imple-
mented as TeMP, which currently utilises Vam-
pire (Riazanov and Voronkov, 2001) (the fastest
prover for first-order logic) for the base first-order
proving activities. Specification using monodic
FOTL, and then proof of properties in TeMP, has

4A monodic first-order temporal logic is one in which any
subformulas beginning with a temporal operator contain at
most one free variable.

already been used in a number of areas, including
security verification (Gago et al., 2005) and dis-
tributed protocols (Fisher et al., 2005b).

It should be noted that in its re-written finite,
form, the finite-state descriptions of the robots
could also be verified using model-checking tech-
niques (Clarke et al., 2000). However, our aim is
to revise the specification in order to take more
first-order cases into consideration, thus allowing
techniques such as in (Fisher et al., 2005b) to be
utilised.

5. Conclusions and Further Work

This paper has proposed the use of a formal
method, which would normally be used to spec-
ify and prove properties of a software system, in
swarm robotics. We have argued that a linear
time temporal logic formalism can be applied to
the specification of swarm robotic systems, because
of its ability to model concurrent processes and -
we maintain - robots in a swarm can usefully be
modelled as concurrent processes in a highly par-
allel system. We have applied this temporal logic
schema to the specification of a wireless connected
swarm, starting with the specification of individ-
ual robots and building up to the overall swarm.
Furthermore, we have mapped the specification to
a form that can be proven in an automated prover,
and validated its suitability.

This work is developing and we have made a
large number of simplifying assumptions. Our ex-
ample specification thus falls well short of specify-
ing even the simple alpha algorithm of our case
study. We have argued, however, that our sim-
plifying assumptions do not compromise the con-
tention of this paper, that temporal logic can be
used to specify swarm behaviours, including emer-
gent behaviours. We would further argue that the
logic proposed here is perfectly valid for real-world
problems. Our discretisation of robot movement,
for instance, while necessary to reduce the num-
ber of logic clauses to a manageable level does not
compromise real-world applicability since we can
reduce the movement and time steps to arbitrar-
ily small values to specify smooth motion. Sim-
ilarly, the time interleaving approach needed to
model the swarm does not compromise the valid-
ity of the approach, since the specification makes
no assumptions about the order of interleaving
and, indeed, describes all possible orderings. Note
also that our swarm specification is expressed from
an external point-of-view in which we (the design-
ers) are allowed to know each robot’s position and
bearing at any time. However, we seek here a
swarm specification not a controller design, and
the individual robot controllers do not need to
have this global knowledge. Thus the principles of

swarm intelligence remain uncompromised by our
approach.

We are confident that there is merit in the
approach proposed in this paper. We believe
that such an approach could be an important
step toward a disciplined design methodology for
swarm robotics and, if we combine formal spec-
ification using temporal logic with a method for
provable design of the individual robots of the
swarm (Harper and Winfield, 2005), then we have
a methodology for verifyable design at all levels of
the robotic swarm.

Further work will include:

1. development of the case study to reduce the
number of simplifying assumptions and hence
improve the fidelity of the formal specification
of our wireless connected swarm;

2. further work to understand the scope and im-
plications of the use of the temporal prover to
prove the emergent properties of the swarm,
and

3. work to extend and generalise this approach
to other types of robotic swarm and hence de-
termine whether the approach has merit as a
generic tool in swarm engineering.

Acknowledgements

The authors gratefully acknowledge discussion
and feedback from Krysia Broda of the Depart-
ment of Computing, Imperial College London, and
the constructive and insightful comments of the re-
viewers. This work was partially supported by the
EPSRC under research grant GR/R45376.

References

Bonabeau, E., Dorigo, M., and Théraulaz, G.
(1999). Swarm Intelligence: from natural to
artificial systems. Oxford University Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).
Model Checking. MIT Press.

Degtyarev, A., Fisher, M., and Konev, B. (Ac-
cepted April 2004). Monodic temporal reso-
lution. ACM Transactions on Computational
Logic, to appear.

Emerson, E. (1990). Temporal and Modal Logic.
In van Leeuwen, J., (Ed.), Handbook of Theo-
retical Computer Science, pages 996–1072. El-
sevier.

Fisher, M. (2005). Temporal Development Meth-
ods for Agent-Based Systems. Journal of Au-
tonomous Agents and Multi-Agent Systems,
10(1):41–66.

Fisher, M., Dixon, C., and Peim, M. (2001).
Clausal Temporal Resolution. ACM Transac-
tions on Computational Logic, 2(1):12–56.

Fisher, M., Gabbay, D., and Vila, L., (Eds.)
(2005a). Handbook of Temporal Reasoning in
Artificial Intelligence, volume 1 of Advances in
Artificial Intelligence. Elsevier.

Fisher, M., Konev, B., and Lisitsa, A. (2005b).
Practical infinite-state verification with tem-
poral reasoning. In Workshop on Verification
of Infinite State Systems and Security (VIS-
SAS).

Gago, M.-C. F., Hustadt, U., Dixon, C., Fisher, M.,
and Konev, B. (Accepted 2005). First-order
temporal verification in practice. Journal of
Automated Reasoning, to appear.

Harper, C. and Winfield, A. (Accepted October
2005). A methodology for provably stable
behaviour-based intelligent control. Robotics
and Autonomous Systems, to appear.

Hodkinson, I., Wolter, F., and Zakharyashev, M.
(2000). Decidable fragments of first-order tem-
poral logics. Annals of Pure and Applied Logic,
106:85–134.

Hustadt, U., Konev, B., Riazanov, A., and
Voronkov, A. (2004). TeMP: A temporal
monodic prover. In Basin, D. A. and Rusi-
nowitch, M., (Eds.), Proceedings of the Sec-
ond International Joint Conference on Auto-
mated Reasoning (IJCAR 2004), volume 3097
of LNAI, pages 326–330. Springer.

Kiriakidis, K. and Gordon-Spears, D. (2002). For-
mal modeling and supervisory control of re-
configurable robot teams. In Formal Ap-
proaches to Agent-Based Systems, pages 92–
102. LNCS 2699, Springer-Verlag.

Konev, B., Degtyarev, A., Dixon, C., Fisher, M.,
and Hustadt, U. (2005). Mechanising first-
order temporal resolution. Information and
Computation, 199(1-2):55–86.

Lerman, K., Martinoli, A., and Galstyan, A.
(2005). A review of probabilistic macroscopic
models for swarm robotic systems. In Şahin,
E. and Spears, W., (Eds.), Swarm Robotics
Workshop: State-of-the-art Survey, number
3342, pages 143–152. Springer-Verlag.

Manna, Z. and Pnueli, A. (1992). The Tempo-
ral Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag.

Martinoli, A., Easton, K., and Agassounon, W.
(2004). Modeling swarm robotic systems: A
case study in collaborative distributed manip-
ulation. In Int. Journal of Robotics Research,
volume 23(4), pages 415–436.

Nembrini, J. (2005). Minimalist Coherent
Swarming of Wireless Networked Autonomous
Mobile Robots. PhD thesis, University of the
West of England.

Nembrini, J., Winfield, A., and Melhuish, C.
(2002). Minimalist coherent swarming of
wireless connected autonomous mobile robots.
In Proc. Simulation of Artificial Behaviour
(SAB’02). Edinburgh.

Riazanov, A. and Voronkov, A. (2001). Vampire
1.1 (system description). In Proc. IJCAR 2001,
pages 376–380. LNAI 2083, Springer-Verlag.

Rouff, C., Hinchey, M., Truszkowski, T., and
Rash, J. (2004). Formal methods for au-
tonomic and swarm-based systems. In 1st
International Symposium on Leveraging Ap-
plications of Formal Methods (ISoLA 2004).
Cyprus.

Rouff, C., Truszkowski, W., Rash, J., and
Hinchey, M. (2003). Formal approaches to in-
telligent swarms. In IEEE/NASA Software
Engineering Workshop, 2003, pages 51–57.
IEEE press.

Şahin, E. (2005). Swarm robotics: From sources
of inspiration to domains of application. In
Şahin, E. and Spears, W., (Eds.), Swarm
Robotics Workshop: State-of-the-art Survey,
number 3342, pages 10–20. Springer-Verlag.

Winfield, A., Harper, C., and Nembrini, J. (2005).
Towards dependable swarms and a new disci-
pline of swarm engineering. In Şahin, E. and
Spears, W., (Eds.), Swarm Robotics Workshop:
State-of-the-art Survey, number 3342, pages
126–142. Springer-Verlag.

