
Fair Traceable Multi-Group Signatures

Vicente Benjumea1,�, Seung Geol Choi2, Javier Lopez1,�, and Moti Yung3

1 Computer Science Dept. University of Malaga, Spain
{benjumea,jlm}@lcc.uma.es

2 Computer Science Dept. Columbia University, USA
sgchoi@cs.columbia.edu

3 Google Inc. & Computer Science Dept. Columbia University, USA
moti@cs.columbia.edu

Abstract. This paper presents fair traceable multi-group signatures (FTMGS),
which have enhanced capabilities, compared to group and traceable signatures,
that are important in real world scenarios combining accountability and anonymity.
The main goal of the primitive is to allow multiple groups that are managed sepa-
rately (managers are not even aware of the other ones), yet allowing users (in the
spirit of the Identity 2.0 initiative) to manage what they reveal about their identity
with respect to these groups by themselves. This new primitive incorporates the
following additional features.

– While considering multiple groups it discourages users from sharing their
private membership keys through two orthogonal and complementary ap-
proaches. In fact, it merges functionality similar to credential systems with
anonymous type of signing with revocation.

– The group manager now mainly manages joining procedures, and new en-
tities (called fairness authorities and consisting of various representatives,
possibly) are involved in opening and revealing procedures. In many sys-
tems scenario assuring fairness in anonymity revocation is required.

We specify the notion and implement it in the random oracle model.

1 Introduction

Group signatures. Group signatures, introduced by Chaum and Van Heyst [12], and
later studied and improved [10,2,24,26], were a major step in designing cryptographic
primitives supporting anonymity. In these schemes, users join groups and issue signa-
tures on behalf of the group. When these signatures are verified, we learn that some
member of the group generated them, but not which one. It is also impossible to link
two signatures generated by the same member of the group. However, the group man-
ager has the capability of opening a signature and trace its signer among the members
of the group (in [24] managing join of users and tracing by separate authorities was
suggested).

� This work has been partially supported by the project CRISIS (TIN2006-09242) and Con-
solider project ARES (CSD2007-00004), funded by the Spanish Ministry of Education and
Science.

G. Tsudik (Ed.): FC 2008, LNCS 5143, pp. 231–246, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

V. Benjumea, S. G. Choi, J. Lopez, and M. Yung, “Fair Traceable Multi-Group Signatures”, Financial
Cryptography and Data Security (FC08), LNCS vol. 5143, pp. 265-281, 2008.
NICS Lab. Publications: https://www.nics.uma.es/publications

232 V. Benjumea et al.

Multi-group signatures and sharing private keys. Ateniese et al. [3] extended group
signatures to deal with the case where a single anonymous user has to prove that she
is simultaneously a member of several groups. In this scenario, a multi-group member-
ship is proved by zero-knowledge proof of equality on some discrete logarithms in the
signatures from different groups. Though multi-group signatures are based on the abil-
ity of linking some designated group signatures (via equality proofs), such a fact does
not affect the main properties of group signatures such as anonymity and unlinkability
for other signatures. Note that the multi-group feature is very interesting in anonymous
authorization scenarios, since in these environments it is quite common for a user to
prove simultaneous possession of some properties in order to be authorized to carry out
some transaction. However, the scheme due to [3], as mentioned in the paper, presents
some problems when linking signatures from groups that are managed separately with
unrelated group keys.

Also, if a user is able to share some of the private keys with other users in a multi-
group anonymous environment, it is a severe handicap in a system where privileges
depend upon membership to some groups, since this sharing of private keys would
undermine the whole system assumptions.

Embedding some valuable information into sensitive data is a commonly used method
to dissuade users from sharing their private key. Dwork et al. [13] embedded some user’s
valuable information, such as the credit card number, into a key in order to protect digital
content from illegal redistribution. Also, Goldreich et al. [19] presented several schemes
to deter propagation of secondary secret keys in the field of self-delegation of personal-
ized rights. Moreover, Lysyanskaya et al. [25] embedded a user’s master secret key into
the secret that allows a user to prove possession of a credential on a pseudonym.

Traceable signatures. In group signatures, under critical circumstances such as dishon-
est behavior, the group manager is able to open a signature and identify the dishonest
user. If a user is under suspicion, a judge may decide to identify which transactions
were performed by such user. In this latter case, the group manager has to open all se-
lected signatures to identify which ones were issued by the user under suspicion. This
approach has two main disadvantages: (i) it discloses the identity of the issuers of the
signatures, violating their privacy, even for honest members; and (ii) the group manager
has to be involved in this heavy task, being a potential bottleneck for scalability.

Taking into account the above scenario, Kiayias et al. [23] introduced traceable sig-
natures as a group signature scheme with further refinement of tracing under anonymity.
This primitive incorporates a feature that enables the group manager to reveal a trap-
door for a given member of the group. The trapdoor allows the tracing agents to iden-
tify which signatures were issued by the member under suspicion without revealing
any further information. This approach benefits us by removing the aforementioned
disadvantages: (i) the privacy of non-involved members remains unaltered; and (ii) the
group manager is relieved from this task, which can be performed by several tracing
agents. Additionally, traceable signatures also incorporate a claiming facility, that al-
lows a member to claim that a given signature was issued by herself.

Splitting roles of the group manager. It is usually accepted that the group manager is
a trusted party with respect to joining new members to the group. However, in many

Fair Traceable Multi-Group Signatures 233

scenarios the group manager is a party in interest, and therefore it can not be trusted
with respect to user’s privacy. For example, a company can manage a group for em-
ployees and a group for clients, and can be trusted with respect to joining users that are
actually employees or clients respectively. However, the company does not offer any
guarantee with respect to keep users’ privacy, specially when they carry out anonymous
transactions with the company itself.

We note that in group signatures, there have been several proposals to divide the
duties of the group manager into two entities [24,26], one responsible for joining new
members and the other one responsible for opening signatures. However, in the context
of traceable signatures such splitting of duties has not been considered yet.

Our contribution. This paper presents Fair Traceable Multi-Group Signatures (FTMGS,
pronounced: fat-mugs), a new primitive that supports anonymity with extended con-
cerns that rise in realistic scenarios. It can be regarded as a primitive that has the flavor
of anonymous signatures with various revocations but with a refined notion of access
control (via multiple groups) and thus supporting anonymous activities in a fashion sim-
ilar to anonymous credential systems [25,8]. The main issues that make this primitive
suitable to various trust relationships are:

– It provides anonymous and unlinkable signatures in the way group and traceable
signatures do.

– It includes multi-group features to guarantee that several signatures have been is-
sued by the same anonymous user with no detriment of user’s anonymity. This
allows limited local linkability most useful in many cases (linking are user con-
trolled).

– It includes a mechanism to dissuade the group members from sharing their private
membership keys. This is very useful in increasing the incentive for better “access
control” to anonymous credentials.

– It further splits the duties of the group manager into several authorities, allowing
better control over opening and tracing operations. Now the group manager man-
ages only joining. Newly introduced parties, whom we call fairness authorities, by
cooperating with each other, manage opening signatures and revealing tracing trap-
doors. A single fairness authority alone cannot do the opening or revealing. In this
way, a user’s sensitive information can be guaranteed only to be disclosed when
there exist enough reasons.

Let us next further elaborate on some of the above characteristics of the primitive.
With respect to multi-group features, as opposed to the scheme introduced in [3], group
management is separate and groups are formed where group managers are not neces-
sarily aware of each other. There is no coordination and group keys are solely under the
control of its group manager (based on some accepted security parameters). At the user
level, however, management of identity is up to herself; linking signatures and claiming
identity are executed according to her desire. This latter approach is in concordance
with the identity 2.0 [20] effort.

234 V. Benjumea et al.

General scenario for this new primitive. The group manager creates a group with the
collaboration of designated fairness authorities1. A user, that has been authorized by
some external procedure, is able to join the group by engaging in an interactive protocol
with the group manager. The external user’s authentication can be based on her identity2

or even an anonymous authentication supported by this new primitive. At the end of the
procedure, the group manager gets some sensitive data regarding the new member (i.e.
join transcript with authentication information), and the user gets a membership private
key that enables her to issue signatures on behalf of the group.

When a user wants to carry out a transaction with a server, she sometimes has to
generate a proof to show she has the required privilege. This proof usually implies that
she belongs to several groups. In this case, she issues suitable signatures for the involved
groups, and establishes a link among them to guarantee that they have been issued by
the same single anonymous user.

Under critical circumstances, fairness authorities and the judge open a signature to
identify a malicious user. If necessary, they may also reveal her tracing trapdoor so that
tracing agents, using the trapdoor, trace all the transactions she issued.

2 A Model for Fair Traceable Multi-Group Signatures

In this section, we present our model for fair traceable multi-group signatures. We de-
scribe the types of entities and operations in the system. See Figure 1 for the notations
used in the model.

Participating Entities. There are five types of participating entities: users, group man-
agers, fairness authorities, tracing agents, and the judge.

– Users join groups and generate signatures, claims, link-claims, etc. Usually, users
join groups if the group manager authorizes it.

– Each group has one group manager, which manages joining and the corresponding
database.

– Each group has multiple fairness authorities. They cooperate together, under the
judge’s supervision, to either open a signature or to reveal a tracing key of a user
under suspicion.

– Each group has multiple tracing agents. They trace the transaction databases and
find out signatures related to the revealed tracing key.

– The judge manages opening and tracing operations with the help of the group man-
ager, fairness authorities and tracing agents.

– It is assumed that an external PKI provides legal binding between users and public
keys, such that users do not want to lend their corresponding private keys to any
other user, since actions performed under these public keys entail legal responsibil-
ities.

1 Roughly Speaking, in order to split the roles, the group manager creates a part of group key
related to joining procedure, and the fairness authorities create the other part related to opening
and tracing procedures.

2 A certified public key via PKI based on discrete logarithm (e.g., DSA, El-Gamal signatures,
Schnorr signatures).

Fair Traceable Multi-Group Signatures 235

1. parameters
ν: security parameter ζ: the number of fairness authorities

2. Gv: the group (i.e., service provider) with index v
3. participating entities

GMv: group manager of the group Gv Ui: user i J: judge
FAj

v: j-th fairness authority of Gv TAj
v: j-th tracing agent of Gv

4. various keys and data
gpkv: group public key of Gv gskv: private key of GMv

fgskv : fairness private key of Gv fgskj
v: FAj

v’s share for fgskv

umki: master secret key of Ui. uskv
i : signing key of Ui w.r.t. Gv

jlogv
i : join transcript generated while Ui joins the group Gv

σ: signature authi: authentication string issued by Ui

τi
v: tracing key for Ui in Gv

ωσ: member reference (locator used to search for the corresponding join transcript)
5. predicates w.r.t jlogv

i , uskv
i and authi

mkey(uskv
i or authi): master secret key of uskv

i or authi

mref(jlogv
i or uskv

i): member reference of jlogv
i or uskv

i

tkey(jlogv
i or uskv

i): tracing key of jlogv
i or uskv

i

6. etc
acc: accept ⊥: error m: message γ: challenge string

Fig. 1. Legends of our model for fair traceable multi-group signatures

Operations. A fair traceable multi-group signature scheme consists of the following
operations. Two operations are newly added compared with original traceable signa-
tures: CLAIMLINK and VERIFYLINK. The rest of the operations are slightly changed
so that fairness authorities may be involved.

1. SETUP(1ν , ζ). This interactive procedure generates the group public key gpkv, the
secret key gskv for the group manager and the secret keys {fgskj

v}ζ
j=1 for the

fairness authorities.
2. JOIN(gpkv, [gskv], [umki]). This interactive procedure is used when a user joins a

group, where the group public key gpkv is common input, and the group secret key
gskv and user master key umki are private inputs of the group manager and the user
respectively. As result, the group manager gets a join transcript jlogv

i and the user
gets a membership private key uskv

i .
3. JOINONAUTH(gpkv, authi, [gskv], [umki]). This interactive procedure is used

when an authenticated user joins a group, where the group public key gpkv and
user authentication string authi are common input, and the group secret key gskv

and user master key umki are private inputs of the group manager and the user
respectively. Depending on the situation, the authentication string authi can be a
public key, a digital signature, a traceable signature of another group or combina-
tion of them. We require that the key used to generate authi should have umki as
its part. As result, the group manager gets a join transcript jlogv

i and the user gets a
membership private key uskv

i .

236 V. Benjumea et al.

4. SIGN(gpkv, uskv
i , m). With this algorithm, a member generates a group signature

σ on message m.
5. VERIFY(gpkv, m, σ). Any entity can verify a signature σ on a message m.
6. OPEN(gpkv, σ, [{fgskj

v}ζ
j=1]). This interactive procedure opens a signature σ, gen-

erating a reference ωσ to the member that issued it. It requires the private inputs of
the fairness authorities’ secret keys {fgskj

v}ζ
j=1.

7. REVEAL(gpkv, jlogv
i , [{fgskj

v}ζ
j=1]). This interactive procedure reveals the mem-

ber tracing key τi
v from the join transcript jlogv

i . It requires the private inputs of
the fairness authorities’ secret keys {fgskj

v}ζ
j=1.

8. TRACE(gpkv, σ, τi
v). This tracing algorithm allows the tracing agents to check if

the signature σ is associated with the tracing key τi
v.

9. CLAIM(gpkv, uskv
i , σ, γ). This algorithm generates an authorship proof π for a sig-

nature σ on the challenge γ.
10. VERIFYCLAIM(gpkv, σ, γ, π). Any entity can verify an authorship proof π of a

signature σ on a challenge γ.
11. CLAIMLINK(gpkv1 , uskv1

i , σ1, gpkv2 , uskv2
i , σ2, γ). This algorithm generates a link

proof λ between two signatures σ1, σ2 on the challenge γ, if the two signatures have
been issued with the same master key.

12. VERIFYLINK(gpkv1 , σ1, gpkv2 , σ2, γ, λ). Any entity can verify a link proof λ be-
tween two signatures σ1, σ2 on a challenge γ.

3 Preliminaries

Notation. We denote {0, . . . , 	−1} by []. Throughout the paper we work mostly in the
group of quadratic residues modulo n, denoted by QR(n), with n = pq, for safe primes
p and q (p = 2p′ + 1 and q = 2q′ + 1). Let the security parameter ν := �log p′q′�. We
define the following sets:

Λ = {1, . . . , 2ν/4 − 1}, M = {1, . . . , 2ν/2 − 1},

Γ = {23ν/4−1 + 1, . . . , 23ν/4−1 + 2ν/2 − 1},
Λk

ε ={1 + Δν/4, . . . , 2ν/4− 1− Δν/4}, Mk
ε = {1 + Δν/2, . . . , 2ν/2 − 1 − Δν/2},

Γ k
ε = {23ν/4−1 + 1 + Δν/2, . . . , 23ν/4−1 + 2ν/2 − 1 − Δν/2},

where Δμ = 2μ−1 − 2
μ−2

ε −k for ε > 1 and k > 128. Sometimes we will call the sets
Λ, M, Γ spheres, and Λk

ε , Mk
ε , Γ k

ε inner spheres.

Assumptions. Below are listed the assumptions we use in the paper.

Definition 1. (Strong-RSA [4]). Given n = pq, where p and q are both safe primes,
and z ∈ QR(n), it is hard to find u ∈ Zn and e > 1 such that ue = z (mod n).

Definition 2. (Decision Composite Residuosity [27]) n is as above. Consider the group
Zn2 and the subgroup P of Z

∗
n2 consisting of all n-th powers of elements in Z

∗
n2 , it is

hard to distinguish random elements of Z
∗
n2 from random elements of P.

Definition 3. (Discrete-Logarithm) Given two values a, b of a multiplicative group Z∗
n

or Z
∗
n2 it is hard to find x such that ax = b even if the factorization of n is known.

Fair Traceable Multi-Group Signatures 237

Definition 4. (Decisional Diffie-Hellman [23]) Given a generator g of a cyclic group
QR(n) where n is as above, define D := {(g, gx, gy, gxy) : x ∈ B1, y ∈ B2} and
R := {(g, gx, gy, gz) : x ∈ B1, y ∈ B2, z ∈ B3}, where Bi (1 ≤ i ≤ 3) is Λ, M, Γ , or
[p′q′]. Define the DDH advantage of A as

AdvDDH
A (ν) =

∣
∣
∣ Prv∈D[A(1ν , v) = 1] − Prv∈R[A(1ν , v) = 1]

∣
∣
∣.

Then for any PPT algorithm A, we have AdvDDH
A (ν) = neg(ν).

Kiayias et al. [24] showed that DDH over QR(n) does not depend on the hardness
of factoring, that is, if AdvDDH

A (ν) = neg(ν) for a cyclic group modulo a safe prime,
then AdvDDH-KF

A (ν) = neg(ν) for the cyclic group of quadratic residues modulo a safe
composite with known factorization.

Definition 5. (Cross Group DDH [21]) Given generators g1, g2 of QR(n1) and QR(n2)
where n1 and n2 are as above, n1 �= n2, and ν1 = ν2, we define D := {(g1, g

x
1 , g2, g

x
2) :

x ∈ B1 ∩ B2} and R := {(g1, g
x
1 , g2, g

y
2) : x, y ∈ B1 ∩ B2}, where Bi (1 ≤ i ≤ 2) is

Λi, Mi, Γi, or [p′iq
′
i]. Define the advantage of A as

AdvCG-DDH
A (ν1) =

∣
∣
∣ Prv∈D[A(1ν1 , v) = 1] − Prv∈R[A(1ν1 , v) = 1]

∣
∣
∣.

Then for any PPT algorithm A, we have AdvCG-DDH
A (ν1) = neg(ν1).

We also assume that AdvCG-DDH-KF
A (ν1) = neg(ν1) for the cyclic group of quadratic

residues modulo a safe composite with known factorization.

In other words, the CG-DDH assumption states that it is infeasible to test equality of
discrete logs across groups.

4 Building Blocks

Signature of Knowledge of Discrete Logarithm. We use the notation due to Ca-
menisch and Stadler [10] for signatures of knowledge of discrete logarithms. For exam-
ple, SK{(a, b) : y = ga; z = haf b}(m) denotes a signature of knowledge of integers
a and b on m such that y = ga and z = haf b holds.

Kiayias et al. [23] presented a scheme for signatures of knowledge in discrete-log re-
lation sets and proved its security. Here we only briefly describe how it works by taking
an example3. Consider the following signature of knowledge of a discrete logarithm:
SK{ (x) : y = gx (mod n) ; γ = βx (mod ρ) }(m). It can be represented as the
following triangular discrete-log relation set:

⎡

⎣

Objects : y g γ β
y = gx : −1 x 0 0 (mod n)
γ = βx : 0 0 −1 x (mod ρ)

⎤

⎦ .

The signature of knowledge for this relation is 〈c, sx〉, where B1 = gtx (mod n) (tx
is chosen randomly), B2 = βtx (mod ρ), c = Hash(B1, B2, g, n, y, β, ρ, γ, env–data, m)
and sx = tx − cx. Verification is done by computing B′

1 = gsxyc (mod n), B′
2 =

βsxγc (mod ρ) and checking if c
?= Hash(B′

1, B
′
2, g, n, y, β, ρ, γ, env–data, m).

3 For simplicity, we ignored details on range checking of discrete log variable. See [23] for more
technical detail.

238 V. Benjumea et al.

DL-Representations. In the exposition below we use some fixed values a0, a, b ∈
QR(n).

Definition 6. (DL-Representation [23]) A discrete-log representation is a tuple 〈A, e,
x, x′〉 such that Ae = axbx′

a0 holds where x ∈ M, x′ ∈ Λ and e ∈ Γ .

Note that we changed the range of x to M (originally the range was Λ) in order to
ensure the hardness of the following problem in the adaptive setting.

Definition 7. (Adaptive One-More Representation Problem) Let Qrep be an oracle that,
on input x′

i ∈ Λ, ouputs Ai, ei, xi such that Aei

i = axibx′
ia0 holds with xi ∈ M, ei is

a prime number in Γ (i.e., 〈Ai, ei, xi, x
′
i〉 is a DL-representation.) The “adaptive one-

more representation problem” is to find another DL- representation where it is allowed
to query to the Qrep oracle K times adaptively.

Lemma 1. Under the Strong RSA assumption, the adaptive one-more representation
problem is hard.

Non-adaptive Drawing of Random Powers. Kiayias et al. [23] showed an efficient
two-party protocol for the non-adaptive drawing of random powers, where n and a ∈
QR(n) are the common input parameters to the protocol. As result one party gets a
random secret x in a certain sphere, and the other party gets ax ∈ QR(n) with the
guarantee that the unknown x was non-adaptively selected at random. See [23] for more
details.

Threshold Cryptosystems. It is often dangerous for only one person to have the
power of decryption. By distributing the decryption ability, threshold cryptosystems
[29,11,16,1] avoid the risk. Following the notation due to [16], a (t, ζ)-threshold cryp-
tosystem consists of the following components:

– A key generation algorithm 〈pk, {skj}ζ
j=1, {vkj}ζ

j=1〉 ← K(1ν , t, ζ), where 1ν

is a security parameter, ζ is the number of decryption servers, t is the threshold
parameter, pk is the public key, and skj (resp. vkj) is the secret key share (resp. the
verification key) of the j-th decryption server.

– An encryption algorithm c ← E(pk, m), where m is cleartext, and c is ciphertext.
– Partial decryption algorithms σj ← Dj(skj , c), for j ∈ [1, ζ]. Here, σj is called a

decryption share, and it may include a verification part to achieve robustness.
– A recovery algorithm m ← R(c, {σj}ζ

j=1, {vkj}ζ
j=1), which recovers the plaintext

m from the ciphertext c.

The security of threshold cryptography must satisfy two properties: security of the
underlying encryption (IND-CPA or IND-CCA2) and robustness. Robustness means
that corrupted players should not be able to prevent uncorrupted servers from decrypt-
ing ciphertexts. In our scheme, we use two simplified (ζ − 1, ζ) threshold IND-CPA
cryptosystems by assuming all decryption servers do not abort.

Fair Traceable Multi-Group Signatures 239

ElGamal Cryptosystem. Consider the following ElGamal encryption scheme [14]:

Let g ∈ QR(n) be a generator. Let y = gx be the public key for the secret key x.
The encryption of a message m is (gr, m · yr) for r ∈R [1, p′q′]. The decryption of
a ciphertext (α, β) is β/αx.

The threshold version is as follows [28,17,18,7]:

Let g ∈ QR(n) be a generator. Let yj = gxj and xj be the verification key and
the secret key respectively for the j-th decryption server. Let y =

∏ζ
j=1 yj be the

encryption public key. Encryption of a message m is as ElGamal above. To decrypt
a ciphertext (α, β), each decryption server computes a decryption share αj = αxj ,
and proves that logg yj = logα αj . The combiner gets the shares and computes

απ =
∏ζ

j=1 αj . Finally, the combiner recovers the message by computing β/απ.

Under the DDH assumption, this threshold ElGamal cryptosystem is semantically se-
cure and robust.

Simplified Camenisch-Shoup (sCS) Cryptosystem. The Camenisch-Shoup encryption
scheme [9] can be simplified into a semantically secure encryption scheme by removing
the CCA checking tag.4

Let n be as above: n = pq, where p, q are safe primes. In this encryption scheme,
multiplications and exponentiations are done in Zn2 . Let g = g′2n where g′ ∈R

Zn2 . Denote h = 1+n. Then public key is y = gx and secret key is x ∈R [1, n2/4].
The encryption of a message m ∈ Zn is (gr, hmyr) for r ∈R [1, n/4]. To decrypt
a ciphertext (α, β), compute m̂ = (β/αx)2t for t = 2−1 (mod n); if m = m̂−1

n is
an integer in Zn, then output m, otherwise output ⊥.

The threshold version can be constructed by using the similar technique for the ElGamal
encryption, but generating the modulus n, with unknown factorization is done by means
of a suitable distributed key generation protocol [15] to guarantee that QR(n) is cyclic
and has large prime factors. Under the Decision Composite Residuosity assumption,
this threshold sCS cryptosystem is semantically secure and robust.

5 Design of a FTMGS Scheme

Our scheme is based on the original traceable signature scheme from [23]5; the main
differences lie in the setup and join procedures. Here, in our scheme, the user owns a
single master key (i.e., x′

i), and this key is embedded in every membership private key
of hers. Because this master key is actually the private key corresponding to her public
key (e.g., published via the PKI), she is dissuaded from sharing her membership private
keys. Moreover, this binding also guarantees that different users have different master
keys.

4 Jarecki and Shmatikov [22] showed that this holds even when the length of the secret key is
shortened. However, in the paper, we use a version with only the CCA checking tag removed.

5 Which is in turn based on the state of the art in group signatures [2].

240 V. Benjumea et al.

This master key provides a common nexus among all membership private keys that
belong to each user, so that she can link any two signatures of hers by proving that the
signatures have been issued by membership private keys into which the same master key
is embedded. This capability of linking helps our scheme to enjoy multi-group features.
Note that even when the user joins the group by means of an anonymous authentication,
the join procedure forces her to use the same master key, so that the relationship between
her master key and public key still holds.

The group is created by the collaboration among the group manager and the fairness
authorities. The GM knows the factorization of n, and therefore is able to join new
members. Fairness authorities are also involved in the setup process, in such a way
that the keys related opening (oj) and revealing (ôj) are distributed among the fairness
authorities. Therefore, opening a signature or revealing a member tracing key requires
the participation of fariness authorities.

Opening a signature is a matter of the distributed decryption, by the fairness author-
ities (without GM), of part of the signature (i.e., encrypted Ai). Likewise, revealing a
member tracing key is also a matter of the distributed decryption, by the fairness author-
ities (without GM), of the encrypted member tracing key (xi). This key, however, has
to be generated when a user joins the group and cannot be generated randomly without
GM. Therefore, we employ a little more complicated mechanism: verifiable encryption.
The user encrypts the member tracing key using the public key (ŷ ∈ QR(n̂)) of verifi-
able encryption scheme, where the corresponding private key is shared among fairness
authorities (ôj). Still, GM can verify the validity of the encryption without decryption.
Later, if the user becomes under suspicion, then the fairness authorities collaborate to
decrypt the encrypted form of her member’s tracing key.

Finally, the join transcript (jlogi) also holds some non-repudiable proofs that allow
to verify the integrity of the record, making the scheme robust against some kind of
database manipulation.

• System Parameters. ε ∈ R such that ε > 1, k ∈ N, three spheres Λ, M, Γ as
specified in Section 3, the inner spheres Λk

ε , Mk
ε , Γ k

ε and the security parameter ν.
• FA0–Setup. Played by the fairness authorities to seed the computation of the public
key. It generates a public modulus n̂ with unknown factorization by using a suitable
distributed key generation protocol [15] that guarantees that QR(n̂) is cyclic and its
order has no small prime factors. It also selects ĝ′ ∈R Zn̂2 and sets ĝ = ĝ′2n̂. Denote
the output of this procedure by fpk0 = 〈n̂, ĝ〉.
• FAj–Setup. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to compute the private
and public key pair to manage membership tracing keys. Given fpk0 = 〈n̂, ĝ〉, the j-th
authority selects a random prime ôj ∈ Zn̂2/4 and computes ŷj = ĝôj (mod n̂2). Denote
the private and public output by fskj = 〈ôj〉 and fpkj = 〈ŷj〉 respectively.
• Group–Setup. It is an interactive procedure composed of the following procedures:
GM–Init–Setup, FAj–Group–Setup, and GM–Group–Setup.
• GM–Init–Setup. Played by GM to seed the creation of the group. It generates the
prime numbers p, p′, q, q′ such that p = 2p′ + 1, q = 2q′ + 1, and sets n = pq. It also
selects a0, a, b, g ∈R QR(n). Let gsk = 〈p, q〉 and gdef = 〈n, a0, a, b, g〉 be the private
and public output respectively.

Fair Traceable Multi-Group Signatures 241

• FAj–Group–Setup. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to compute
the opening private and public key pair for the group. Given gdef = 〈n, a0, a, b, g〉, it se-
lects hj ∈R QR(n) and a random prime oj ∈ Zν/2, then computes yj = goj (mod n).
Let fgskj = 〈oj〉 and 〈hj , fgpkj〉 be the private and public output respectively, where
fgpkj = 〈yj〉.
• GM–Group–Setup. Played by GM to compute the group public key from previ-
ously computed public values. Given 〈gdef, fpk0, {hj, fgpkj , fpkj}

ζ
j=1〉, it computes

h =
∏ζ

j=1 hj (mod n), y =
∏ζ

j=1 yj (mod n) and ŷ =
∏ζ

j=1 ŷj (mod n̂2). Let
gpk = 〈n, a, a0, b, g, h, y, n̂, ĝ, ŷ〉 be the public output of the procedure.
• JoinOnAuth.6 Interactive procedure played between a user and the GM when the
user joins the group as a new member. Let 〈gpk, authu〉 be the common input of the
procedure, and let gsk and umku be the GM’s and the user’s private inputs respectively,
where authu may be 〈ρ, β, γ〉 (then γ = βumku (mod ρ)) or empty (then umku is
empty). First, the user sets x′

i = umku (if umku is empty then chooses a random x′
i ∈

Λk
ε). She computes Ci = bx′

i (mod n) and send it to the GM. Second, the user and the
GM engage in a protocol for non-adaptive drawing a random power, and as a result the
user gets xi ∈R Mk

ε and GM gets Xi = axi (mod n). The user encrypts xi using sCS
encryption scheme (see Section 4), i.e., Ei = 〈Ui = ĝr̂ , Vi = ŷr̂ · ĥxi〉 (mod n̂2),
where ĥ = 1 + n̂ and r̂ ∈R Zn̂/4. Now, the user computes the following signatures of
knowledge that guarantee that Ci and Ei are well formed7.

E℘
i = SK{(x′, r, x) : Ci = bx′

(mod n); γ = βx′
(mod ρ); Xi = ax (mod n);

Ui = ĝr (mod n̂2); Vi = ŷrĥx (mod n̂2)}(authu, Ci, Xi, Ui, Vi).
The GM, having received E℘

i from the user, verifies E℘
i . Then GM selects a random

prime ei ∈ Γ k
ε , computes Ai = (CiXia0)e−1

i (mod n), sends 〈Ai, ei〉 to the user. Let
jlogi = 〈Ai, ei, Ci, Xi, Ui, Vi, E

℘
i , authu〉 and uski = 〈Ai, ei, xi, x

′
i〉 be the GM’s and

User’s private outputs respectively.
• Sign. Played by a member of the group to issue signatures. Let 〈m, gpk, uski〉 be the
input of the procedure, then it computes

T1 = Aiy
r, T2 = gr, T3 = geihr, T4 = gxik, T5 = gk, T6 = gx′

ik
′
, T7 = gk′

.
where r, k, k′ ∈R M, and then computes the following signature of knowledge:

σ℘ = SK{(x, x′, e, r, h′) : T2 = gr ; T3 = gehr ; T e
2 = gh′

; T x
5 = T4 ;

T x′

7 = T6 ; a0a
xbx′

yh′
= T e

1 }(m) .
Let σ = 〈T1, · · · , T7, σ

℘〉 be the public output of the procedure.
• Verify. Played by any entity that wants to verify a signature. Let 〈m, gpk, σ〉 be the
input of the procedure, then it verifies if σ℘ specified in the Sign procedure holds.
• Open. It is an interactive procedure composed of the following procedures: Open-
SigDShare, OpenSignature, OpenRefCheck.
• OpenSigDShare. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to decrypt a
share of the member reference from the signature. Let 〈σ, gpk, fgpkj , fgskj〉 be the input
of the procedure, then computes ω̂jσ = T

oj

2 (mod n) and a signature of knowledge that
the share is correct:

6 The design of Join and JoinOnAuth have been merged due to space limitations.
7 If authu is empty, the part γ = βx′

(mod ρ) is ignored.

242 V. Benjumea et al.

ω̂℘
jσ = SK{(o) : yj = go (mod n) ; ω̂jσ = T o

2 (mod n)}(σ) .
Let 〈ω̂jσ , ω̂℘

jσ〉 be the public output of the procedure.
• OpenSignature. Played by Judge, combines the shares to compute a member refer-
ence. Let 〈σ, gpk, {fgpkj , ω̂jσ, ω̂℘

jσ}ζ
j=1〉 be the input of the procedure, then it verifies

if {ω̂℘
jσ}ζ

j=1 specified in the OpenSigDShare procedure holds. and computes ωσ =
T1/(

∏ζ
j=1 ω̂jσ) (mod n). Let ωσ be the public output of the procedure.

• OpenRefCheck. Played by Judge or the GM to check the matching of the member
reference with a given join transcript. Let 〈ωσ, jlogi〉 be the input of the procedure, then
it verifies the jlogi integrity, by means of the VerifyJoinLog procedure (described later),
and checks if ωσ equals Ai from jlogi.
• Reveal. It is an interactive procedure composed of the following procedures: Re-
vealDShare and RevealTKey.
• RevealDShare. Played by j-th fairness authority ∀ j ∈ {1, · · · , ζ} to decrypt a share
of the member tracing key from the join transcript. Let 〈jlogi, gpk, fpkj , fskj〉 be the
input of the procedure, then it verifies if E℘

i specified in the JoinOnAuth procedure

holds, and computes τ̂ji = U
ôj

i (mod n̂2) and a signature of knowledge that the share
is correct:

τ̂℘
ji = SK{(o) : ŷj = ĝo (mod n̂2) ; τ̂ji = Uo

i (mod n̂2)}(jlogi) .
Let 〈τ̂ji, τ̂

℘
ji〉 be the public output of the procedure.

• RevealTKey. Played by Judge, combines the shares to compute a member tracing
key. Let 〈jlogi, gpk, {fpkj , τ̂ji, τ̂

℘
ji}

ζ
j=1〉 be the input of the procedure, then it verifies

the jlogi integrity by means of the VerifyJoinLog procedure, and if {τ̂℘
ji}

ζ
j=1 specified

in the RevealDShare procedure hold, then computes x̂i = (Vi/(
∏ζ

j=1 τ̂ji))2t (mod n̂2)
with t = 2−1 (mod n̂), and τi = (x̂i − 1)/n̂. Let τi be the public output of the
procedure.
• Trace. Played by the Tracing Agents to identify if the member tracing key matches
a signature. Let 〈gpk, τi, σ〉 be the input of the procedure, then checks if T4 equals
T τi

5 (mod n).
• Claim. Played by a member of the group to prove that issued the signature. Let
〈gpk, σ, γ, usk〉 be the input of the procedure, where γ is a challenge string, then it
computes a signature of knowledge:

π℘ = SK{(x′) : T6 = T x′

7 (mod n)}(σ, γ) .
Let π℘ be the public output of the procedure.
• VerifyClaim. Played by any entity that wants to verify a claim. Let 〈gpk, σ, γ, π℘〉 be
the input of the procedure, then it verifies if π℘ specified in the Claim procedure holds.
• ClaimLink. Played by a member of both groups to create a link between two sig-
natures. Let 〈gpk1, σ1, gpk2, σ2, γ, usk1, usk2〉 be the input of the procedure, such that
mkey(usk1) = mkey(usk2) and γ is a challenge string, then it computes a signature of
knowledge:

λ℘ = SK{(x′) : T6σ1 = T x′

7σ1
(mod nσ1) ; T6σ2 = T x′

7σ2
(mod nσ2)}(σ1, σ2, γ) .

Let λ℘ be the public output of the procedure.

Fair Traceable Multi-Group Signatures 243

• VerifyLink. Played by any entity that wants to verify a link between two signatures.
Let 〈gpk1, σ1, gpk2, σ2, γ, λ℘〉 be the input of the procedure, then it verifies if λ℘ spec-
ified in the ClaimLink procedure holds.
• VerifyJoinLog. It checks that the integrity of the join transcript holds. Let 〈gpk, jlogi〉
be the input of the procedure then it verifies if Aei

i equals a0XiCi (mod n) and if E℘
i

holds. Note that E℘
i is a user’s non-repudiable proof that binds 〈authu, Ci, Xi, Ei〉.

Note 1. Note that the order of QR(n̂) must be unknown because the security of the
verifiable encryption scheme is based on the Decision Composite Residuosity assump-
tion, which does not hold if the factorization of n̂ is known.

Note also that h is computed by the fairness authorities because if dloggh is known
by any party, then such party would be able to open and trace the signatures for this
group.

Note 2. The JoinOnAuth procedure accepts both: (i) a string that identifies the user,
in this case authu relates the user’s public key, which in case of a DSA public key would
be 〈ρ, β, γ〉, such that γ = βα (mod ρ); and (ii) a string that anonymously authenticates
the user, such as a FTMG–signature, and then authu takes the values 〈n, T7, T6〉 from
the signature.

In any case, the user master key is the private key (α) that corresponds with the
user’s public key (α = dlogβγ and α = dlogT7

T6 respectively), and remains unaltered
even if a user joins a group, and then uses this group for being authenticated to join
another group, an so on successively. Note that if a signature is opened or traced, the
non-repudiable binding with the user holds even through multiple nested anonymous
joins.

If the authentication string in JoinOnAuth is used in the aforementioned way, then
different users have different master keys, and therefore it is not possible to link signa-
tures issued by different users.

Note 3. For security of our scheme, refer to the full version [6].

6 Performance Analysis

This section analyzes the performance of the proposed scheme and compares it with
related works, considering the features provided by each one.

Table 1 shows the performance for the proposed scheme (FTMGS) and compares it
with the state of the art in group signatures (ACJT00 [2]), and a anonymous credential
systems (CL01 [8]). In this analysis, joining to a group and sign/verify8 in both ACJT00
and FTMGS are compared with credential issuance and showing a credential under a
pseudonym with revocation in CL01 respectively.

In this table, the member-size row refers to the size9 of data (in bytes) the group
manager (organization) has to keep for each member of the group (credential issued).

8 In FTMGS, the overhead of linking signatures is included in the signature analysis.
9 In the measures, the elements of QR(n), the free variable witnesses, and the hashed challenges

are 1024, 512 and 128 bits long respectively.

244 V. Benjumea et al.

Table 1. Performance Analysis

ACJT00 CL01 FTMGS
Member-Size 1280 608 1488
Sign-Size 656 1728 1312
Sign-Exp 12 28 21
Vrfy-Exp 11 30 21

Table 2. Summary of Features

ACJT00 CL01 FTMGS
Anonymous + + +
Unlinkable + –(�) +
Reversible + + +
Traceable – – +
Revocable – –(‡) +
MultiGroup – +(�) +
DeterSharing – + +
Fairness – + +
Non-Repudiation +(†) + +

The sign-size row shows the length (in bytes) of a signature (credential show). More-
over, the sign-exp and vrfy-exp rows show the number of exponentiations required to
generate and verify a signature (credential show).

Additionally, Table 2 shows a summary of the main features that the proposed scheme
(FTMGS) exhibits, and compares it with the above schemes. In this case, ACJT00(†)

assumes that during the join phase, the user signs some binding term. Also, CL01(‡)

calls revocation to what we call reversibility, and by revocability we means the ability
to remove a member from the group, or in the CL01 case, the ability to make sure that
a given user can not succeed in showing a credential if the given credential has been
revoked (without breaking the anonymity of non-revoked users). Additionally, when a
user shows several credentials to an organization in CL01(�), she guarantees that the
credentials belong to the same person by exposing the pseudonym under which the or-
ganization knows that user. In this case the scheme exhibits multi-group features, but
then protocols showing credentials are linkable. Otherwise, if the pseudonym is not ex-
posed, then the protocols showing credentials are unlinkable, but then they do not enjoy
the multi-group feature.

Finally, both ACJT00 and FTMGS can be incorporated into standard frameworks [5]
to provide support, with very interesting features, for anonymous authentication and
authorization inside standard infrastructures.

References

1. Aditya, R., Peng, K., Boyd, C., Dawson, E., Lee, B.: Batch verification for equality of discrete
logarithms and threshold decryptions. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS
2004. LNCS, vol. 3089, pp. 494–508. Springer, Heidelberg (2004)

2. Ateniese, G., Camenish, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-
resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
255–270. Springer, Heidelberg (2000)

3. Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures. In: Fi-
nancial Cryptography, pp. 196–211 (1999)

4. Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without
trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer,
Heidelberg (1997)

Fair Traceable Multi-Group Signatures 245

5. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Anonymity 2.0: X.509 extensions supporting
privacy-friendly authentication. In: CANS 2007, pp. 265–281 (2007)

6. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group signatures. Cryp-
tology ePrint Archive, Report, 2008/047 (2008), http://eprint.iacr.org/

7. Brandt, F.: Efficient cryptographic protocol design based on distributed ElGamal encryption.
In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47. Springer, Heidelberg
(2006)

8. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

9. Camenish, J., Shoup, V.: Practical verifiable encryption and decryption of discrete loga-
rithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Hei-
delberg (2003)

10. Camenish, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr.,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

11. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 90–106. Springer, Heidelberg (1999)

12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

13. Dwork, C., Lotspiech, J.B., Naor, M.: Digital signets: Self-enforcing protection of digital
information (preliminary version). In: STOC, pp. 489–498 (1996)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
In: CRYPTO, pp. 10–18 (1985)

15. Fouque, P., Stern, J.: Fully distributed threshold RSA under standard assumptions. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248. Springer, Heidelberg (2001)

16. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext
attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 351–368. Springer,
Heidelberg (2001)

17. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for
discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 295–310. Springer, Heidelberg (1999)

18. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of pedersen’s dis-
tributed key generation protocol. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp.
373–390. Springer, Heidelberg (2003)

19. Goldreich, O., Pfitsmann, B., Rivest, R.L.: Self-delegation with controlled propagation - or -
what if you lose your laptop. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp.
153–168. Springer, Heidelberg (1998)

20. Identity 2.0, http://www.identity20.com/
21. Jakobsson, M., Juels, A., Nguyen, P.Q.: Proprietary certificates. In: Preneel, B. (ed.) CT-RSA

2002. LNCS, vol. 2271, pp. 164–181. Springer, Heidelberg (2002)
22. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. In:

Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg
(2007)

23. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004),
http://eprint.iacr.org/2004/007

24. Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions and
anonymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076 (2004),
http://eprint.iacr.org/

http://eprint.iacr.org/
http://www.identity20.com/
http://eprint.iacr.org/2004/007
http://eprint.iacr.org/

246 V. Benjumea et al.

25. Lysyanskaya, A., Rivest, R., Sahai, A., Wolf, S.: Pseudonym systems. In: Selected Areas in
Cryptography, pp. 184–199 (1999)

26. Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-free group signature
schemes from bilinear pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp.
372–386. Springer, Heidelberg (2004)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

29. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg
(1998)

	Fair Traceable Multi-Group Signatures
	Introduction
	A Model for Fair Traceable Multi-Group Signatures
	Preliminaries
	Building Blocks
	Design of a FTMGS Scheme
	Performance Analysis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

