
Anonymous Attribute Certificates based on Traceable

Signatures

Vicente Benjumea Javier Lopez Jose M. Troya

Computer Science Department

University of Malaga, Spain

{benjumea,jlm,troya}@lcc.uma.es

Abstract

In Benjumea et. al (Benjumea, 2004) we introduced the concept of anonymous
attribute certificates in order to integrate anonymity capabilities in the standardized
X.509 attribute certificates. That solution was based on the use of fair-blind signatures
(Stadler, 1995), but did not explore further possibilities of constructing similar data
structures based on more advanced signature schemes. In this new work, we propose a
new type of anonymous attribute certificates that is based on the more recently proposed
traceable signature scheme (Kiayias, 2004a), providing a new anonymous authorization
solution with interesting features that were not covered in the aforementioned scheme.
Thus, this new solution allows users to make use of their attribute certificates in an
anonymous way, but under certain circumstances it allows to disclose the users’ identi-
ties, trace the transactions carried out by any specific user, or revoke any anonymous
attribute certificate. An additional contribution of this work is that it pays special at-
tention to the preservation of the unlinkability property between transactions, making
impossible the creation of anonymous user profiles.

Keywords: authorization, PMI, anonymity, credential, X.509 attribute certificates, trace-
able signatures

1 Introduction

The number of remote transactions that takes place through the Internet is growing everyday.
One of the problems of this situation is that malicious entities can record and process those
transactions and, in a later stage, cross reference them. Such a behavior allows to obtain
valuable information about many of the users’ activities. Therefore, the more the number
of remote transactions grows, the more convenient is that these transactions are done in an
anonymous way.

However, when dealing with anonymity services we find that, in many cases, there are
some requirements convenient to fulfill. Firstly, users should be able to make use of all
the privileges assigned to them, without lack of anonymity. Secondly, most of times users’
anonymity should not be perfect since this would provide a perfect framework for fraud and
dishonest behavior (von Solms, 1992). In this sense, it should be possible to disclose the
identities of anonymous users if an authority requests it, and only under certain conditions.
Finally, it should be impossible to link anonymous transactions since this facilitates the
creation of anonymous user profiles, what eventually can disclose users’ identities.

1

V. Benjumea, J. Lopez, and J. M. Troya, “Anonymous Attribute Certificates based on Traceable Signatures”, Internet Research, vol. 16, pp.
120-139, 2006.
NICS Lab. Publications: https://www.nics.uma.es/publications

Many anonymity schemes and cryptographic tools have been designed and developed
throughout the years to provide anonymity services in many different ways. Chaum in-
troduced the concept of blind signature in (Chaum, 1983; Chaum, 1985), and since then
many signature schemes focusing on anonymity and its conditional revocation have been
proposed (Chaum, 1991; Stadler, 1995; Kilian, 1998; Ateniense, 2000; Rivest, 2001; Kiayias,
2004a). In many cases, these theoretical schemes have not evolved towards practical solu-
tions for a wide deployment. Our previous work (Benjumea, 2004) introduced a first approach
to provide anonymity in standard (so, potentially widely deployed) X.509 attribute certifi-
cates (ITU-T Recommendation X.509, 2000), transferring a fair blind signature scheme to
those certificates. The main outcome of that work was the definition of a new data ob-
ject, the Anonymous Attribute Certificate, in which the holder’s identity can be conditionally
traceable depending on certain conditions.

In this paper, we explore the suitability of more recent signature schemes to provide
anonymity in those ITU-T attribute certificates. More precisely, we elaborate on the use of
the traceable signature scheme (Kiayias, 2004a), that provides a powerful tool-set to support
anonymity in many different scenarios. It is a provably secure group signature scheme that
provides efficient tools to support groups of anonymous users, though keeping the possibility
to revoke a user’s identity. We make use of this type of scheme in order to produce a
new solution of anonymous attribute certificates that avoids the creation of anonymous user
profiles, a problem that was not solved in (Benjumea, 2004).

The structure of this paper is as follows. In section 2, the underlying primitives used in our
system will be briefly introduced. We also describe the standard X.509 attribute certificates
proposed by ITU-T and how the framework that this type of attributes defines can be linked
to other structures. Section 3 defines the data structure that supports anonymity when using
a traceable signature scheme and that is used in the later sections. Section 4 shows a general
overview of the system proposed, while section 5 describes the protocols to create and use
those anonymous certificates. Section 6 discusses about the implementation of the system in
real world applications. Finally, section 7 concludes the paper.

2 Background

2.1 Traceable signature primitives

Traceable signatures were proposed by Kiayias et al. (Kiayias, 2004a) as a group signature
scheme with the capability of opening a signature. Additionally, it provides tracing capabili-
ties, what makes it very suitable for real-world applications where such features are required
for a broad acceptance of the model.

Group signatures (Ateniense, 2000) main features include the creation of virtual groups
where users can join, with the particularity that any member of the group can prove that
she belongs to it. The proof can be verified, but is indistiguishable from any other proof
performed by the same or any other member. That is, given a proof, it can be verified
whether it was performed by a member, but it can not be linked with any particular one nor
with any other proof performed by any member or even by the same one. However, there is a
special entity, the Group Manager (GM), who is able to identify the member who performed
a given proof, allowing in this manner to revoke the anonymity that the group offers.

Traceable signatures offer, in addition to the aforementioned properties of group sig-
natures, a tracing facility: the ability to identify, within a set of proofs, which ones were
performed by a given member of the group. Moreover, a user can claim that a given proof
was performed by herself.

2

In the following, we will briefly review the traceable signature primitives.

• The Setup algorithm is executed by the GM. It gets a security level and produces a
key pair (public and private) to be used in the next primitives.

• 〈GM publ ,GM priv 〉 := TS Setup(security level)

• The Join protocol is run between a new user and the Group Manager when the user
wants to join to the group managed by that GM. This primitive produces at the user’s
side of the protocol a private membership key that allows her to prove that belongs to
such a group. At the GM’s side produces some info related with the new member, that
allows the GM to open or trace member activities. However, such information does not
allow the GM to forge the member’s proof.

• member ref priv := TS JoinGM (GM publ , GM priv)
• member keypriv := TS JoinU (GM publ)

• The Identify protocol is run when a user wants to prove to an entity her membership
to the specified group. It is an efficient zero knowledge proof that reveals nothing about
the user. Nobody, except the GM, is able to relate the proof with the member that
performed it, nor even with another proof performed by any member of the group.

• TS IdentifyU (GM publ , member keypriv)
• 〈ok ,member proof 〉 := TS IdentifyE (GM publ)

• The Open primitive is executed by the GM with the aim of knowing which member
of the group issued a given membership proof. The result can be compared with the
result of the Join protocol to identify the member of the group.

• member ref ′priv := TS OpenGM (GM publ , GM priv , member proof)

• The Reveal primitive is executed by the GM too. Its goal is to get, for a given member
of the group, her tracing trapdoor that allows to certain entities (tracers) to execute
the Trace algorithm and identify which proofs were issued by the given member.

• member trapdoorpriv := TS RevealGM (GM publ , GM priv , member ref priv)

• The Trace primitive is executed by tracers with the aim of knowing if a given proof
was issued by a designated member whose trapdoor is given.

• ok := TS TraceT (member trapdoorpriv , member proof)

• The Claim protocol is run when a user wants to prove to any entity that a given
membership proof was performed by herself.

• TS ClaimU (GM publ ,member keypriv)
• ok := TS ClaimE (GM publ , member proof)

2.2 X.509 Attribute Certificates

Public Key Certificates, as defined in ITU-T X.509v3 (ITU-T Recommendation X.509, 1997),
can convey authorization information about its owner. The information can be encoded in one
of the extension fields. However, most often that type of certificate is not the best vehicle
to carry authorization information. This is the reason why the U.S. American National
Standards Institute (ANSI) X9 committee developed the concept of Attribute Certificate. An
attribute certificate is a data structure that binds some attribute values with identification
information about its holder.

3

Attribute certificates have been incorporated into the most recent ITU-T X.509 Rec-
ommendation (ITU-T Recommendation X.509, 2000). Additionally, the Recommendation
defines a framework that provides the basis upon which a Privilege Management Infrastruc-
ture (PMI) can be built. Precisely, the foundation of the PMI is the Public Key Infrastructure
(PKI) framework previously defined in (ITU-T Recommendation X.509, 1997) by the same
standardization body. In fact, a PKI and a PMI can be bound by the information contained
in the identity and attribute certificates of any user, by assigning to the field holder (in
the attribute one) the issuer and serial number contained in the fields of the user’s identity
certificate, as shown (and marked) in the corresponding ASN.1 specifications.

�� ���� ��
Certificate ::= SIGNED { SEQUENCE {

version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,
extensions [3] Extensions OPTIONAL

} }

�� ��AttributeCertificateInfo ::= SIGNED { SEQUENCE {
version AttCertVersion,
holder Holder,
issuer AttCertIssuer,
signature AlgorithmIdentifier,
serialNumber CertificateSerialNumber,
attrCertValidityPeriod AttCertValidityPeriod,
attributes SEQUENCE OF Attribute,
issuerUniqueID UniqueIdentifier OPTIONAL,
extensions Extensions OPTIONAL

} }�� ��Holder ::= SEQUENCE {
baseCertificateID [0] IssuerSerial OPTIONAL,

-- the issuer and serial number of the holder’s Public Key Certificate
entityName [1] GeneralNames OPTIONAL,
objectDigestInfo [2] ObjectDigestInfo OPTIONAL

}

All the possibilities for the binding can be concluded from the specification of the field
holder in the attribute certificate. Because of its relevance for the solution that we provide
in subsequent sections, it is important to specially consider the third of the possibilities, that
is, to bind the attribute certificate to any object by using the hash value of that object. For
instance, the hash value of the public key, or the hash value of the identity certificate itself,
can be used.

Additionally, the last Recommendation introduces a new type of authority for the assign-
ment of privileges, the Attribute Authority (AA), while a special type of authority, the Source
of Authority (SOA), is settled as the root of delegation chains. The Recommendation defines
a framework that provides a foundation upon which a PMI is built to contain a multiplicity
of AAs and final users. That framework will be of help for our contribution, as we will show
later.

3 Structuring an Anonymous Attribute Certificate

In this section we define the structure of a new type of anonymous attribute certificate, in
this case based on traceable signatures. This data structure will allow the user to show to

4

FUNCTION
HASH

Version Number

Serial Number

Signature Algorithm

Issuer

Validity Period

Holder

AA Signature

Attributes

Issuer Unique Identifier

Extensions

Group Structure Label

Group Policy

Group Public Key

Group Public Key Algorithm

Figure 1: Anonymous Attribute Certificate

others that she holds certain attribute or privilege, but at the same time will not need to
reveal her identity. However, whenever the user misuses that certificate and breaks the rules
of a pre-specified policy of use, her real identity will become public.

We define the new type of anonymous attribute certificate (figure 1) as the composition of
two certificates: a group certificate and a X.509 attribute certificate. Both are linked through
the holder of the latter. Note, as pointed out in section 2.2, that the holder of the attribute
certificate can contain the digest of any object, making possible to link both structures.

The group certificate structure contains all the information needed to check if a user
belongs to the group of members owning a specific attribute for a period of time.

• Group Structure Label: A static field that allows to interpret the object as a proper
group structure.

• Group Public Key Algorithm: Identifies the algorithm that will be used to check the
membership to a group (by using the public key from the following field). In this work,
we use the traceable signature scheme, previously introduced in 2.1.

• Group Public Key: The group manager public key created in the TS Setup algorithm
during the execution of the Group Manager Setup (sec. 5.3). It allows to any entity to
check if a user belongs to the specified group.

• Group Policy: A reference to the policy that rules the requirements for joining the
group, the disclosure of the user’s identity and the revocation of certificates.

The AA creates and manages a group for each kind of anonymous attribute certificate
that issues. Such group and certificate are valid for a specified period of time. If a user fulfills
the requirements to enjoy the privileges associated with an anonymous attribute certificate,
she joins to the corresponding group and gets the certificate and a unique private key that
enables her to prove her membership to the group.

On the other side, the AA gets enough information to identify which member issued a
given membership proof, or to trace all the membership proofs issued by a given member.
However, the AA is considered a trusted party in the system and will only disclose restricted
information if the policy governing the group is broken.

Note that the anonymous attribute certificate is the same for all members of the group,
and that the membership proof is unlinkable with the member that issued it and with any
other membership proof. These facts guarantee that any user that makes use of any anony-
mous attribute certificate to enforce her privileges remains anonymous, and furthermore,
each anonymous use remains unlinkable with any other one. Therefore, it becomes impos-
sible to create anonymous user profiles, something that could be done with our previous
approach (Benjumea, 2004).

5

AA2

SOA

AA4AA1 AA3

User1

User2

SP1

SP2

JA 2

Judge

JA 1

Figure 2: System Overview

4 Using the Anonymous Attribute Certificates: Overview
of the System

Our scheme coexists with a standard PMI. The AA issues certificates about attributes that
the users hold. Additionally, we suppose that some organizations (SP) provide services
to users based on users’ attributes. A number of AAs will have the special capacity to
issue anonymous attribute certificates, which state that their anonymous owners hold such
attribute. These AAs will be considered as trusted parties with respect to the anonymity of
the attribute certificates that they issue (see figure 2).

The role that the different actors play in our solution can be roughly seen as follows. For
each anonymous attribute certificate that a user wants to get, she collects all proofs needed
to apply for a specific attribute certificate and sends the proofs, together with her identity,
to the AA responsible of issuing that attribute certificate. If the set of proofs is complete,
the anonymous attribute certificate is sent together with a unique private membership key
that allows the user to anonymously prove that owns the certificate. As result, the user is
joined to the group stated in the anonymous attribute certificate.

As the certificate is anonymous, it is not linked to any PKI. However, it contains a group
specification (group public key and policy), and the users that can prove that belong to that
group are considered to own such attribute. If the proof can be verified with the group
public key then the user is considered to be a member of the group and, therefore, to own
the anonymous attribute certificate.

The user anonymously makes use of the attribute certificate in order to enforce her priv-
ileges. Therefore, she presents her attribute certificate to a SP and anonymously proves that
she is the owner (belongs to the group stated in the certificate), being granted for the service.
The SP keeps a record with each presented proof linked with the service request.

Note again that the only information that can be extracted from the proof is that the user
who issued it is a member of the group, but can not be linked with the originating member.
Moreover, the proof can not be linked with any other proof, regardless they are performed
by the same member or by different ones.

However, the AA, which is considered a trusted party, knows restricted information, and
is able to identify which member of the group issued a particular proof, or is even able to
identify, from a set of proofs, which ones were issued by a given member, with no need to
disclose any other kind of information. These features can be used to disclose the identity of
an anonymous user that breaks the group policy, to trace all the anonymous activities that
a suspicion user has performed, or even to revoke an anonymous attribute certificate for a
given user.

6

Nomenclature Meaning
A : act A′s action act
A → B : m m is sent from A to B
m := (m1, m2) m is composed by m1 and m2

〈a, b, · · ·〉 a tuple of objects
c := Ez (m) m is encrypted with the symmetric key z
m := Dz (c) c is decrypted with the symmetric key z
Apubl ,Apriv A′s asymmetric public and private keys
c := EA (m) m is encrypted with A′s asymmetric public key
m := DA (c) c is decrypted with A′s asymmetric private key
h := H (m) m′s one way hash function
sm := SA (m) m′s message signature with A′s asymmetric private key

[SA (m) ⇔ EApriv
(H (m))]

ms := SA (m) Signed message composed by the message m and
its signature with A′s asymmetric private key

[SA (m) ⇔ (m, SA (m))]
b := V ?

A (ms) Verify the signed message ms with A′s asymmetric public key

[V ?
A (ms) ⇔

(
H (m′)

?
= DApubl

(SA (m))
)
] / [ms ≡ (m′, SA (m))]

z := NSK () Create new symmetric key z
A := NAK () Create new asymmetric key pair for A

Table 1: Cryptographic protocol nomenclature

5 Specification of Protocols for the use of Anonymous
Attribute Certificates

This section explains the protocol to obtain an anonymous attribute certificate, how it can
be used, and how the user’s identity can be disclosed, traced or revoked. This protocol
uses as fundamental construction block: the traceable signature scheme presented earlier in
section 2.1.

In addition to the aforementioned notation for traceable signatures, the nomenclature
used for the protocols is listed in Table 1.

5.1 Actors

SOA is the Source of Authority. Its public key (SOApubl) is known by every actor in the
system. It enables the AA to issue attribute certificates.

AA is the attribute authority that issues anonymous attribute certificates. It is considered
as a trusted party regarding the identity of anonymous users of the system, although
it has the capacity of disclosing such identity under certain circumstances.

U is the user of the system. She owns attribute certificates and anonymous attribute cer-
tificates, and uses them in order to enforce her privileges. Every user that owns an
anonymous attribute certificate belongs to a group managed by the AA in charge of
issuing such certificates. She makes use of such attribute by proving anonymously her
membership to the group.

SP is a Service Provider that offers services to those anonymous users that have the appro-
priate attribute certificate(s).

J is the Judge, who can request the AA to disclose the identity of any user involved in
any particular transaction. Moreover, he can ask the involved parties (AA and SP) to

7

provide the information needed to trace all the activities performed by any given user
in the whole system. He can order the AA to revoke the anonymity of a given user.

JAj represents any of the Judge Agents (j ∈ {1, 2, 3, · · · }), in charge of tracing the activities
of any given user when the Judge orders it.

AACRL is the entity that manages the Anonymous Attribute Certificate Revocation List
database (AACRL DB), and holds the information needed to know if any anonymous
attribute certificate has been revoked.

Group Member DB is a database where the AA stores information about the groups asso-
ciated with the anonymous attribute certificates and their members. This information
enables the AA to disclose the identity of any member that breaks the policy. Moreover,
it provides the necessary information to trace tha activities of any member.

Member Proof DB is a database where the SP stores the membership proofs that anony-
mous users have provided to access the resources offered. It enables any entity with
enough information to trace the anonymous activities performed by users under suspi-
cion.

msg refers, throughout the protocols, to the last message received.

Attributei represents a specific attribute within the whole set of attributes in the system
(i ∈ {1, 2, 3, · · · }). Throughout the protocol, any object with an “i′′ superscripted
represents an instance of the object for the specific attribute “i′′.

5.2 Attribute Authority General Setup

The AA presents the necessary proofs and requests the SOA the privileges to issue attribute
certificates for a certain attribute (Attributei). The SOA, if the requirements are met, issues
a certificate that enables the AA to do it. The policy that the AA will follow to issue
certificates and to disclose/revoke identities is also published in this phase. See section 2.2
for an explanation of the fields in the Attr Cert structure.

1. AA : AA := NAK ()

2. AA : STORE (AApriv)

3. AA → SOA : ESOA

(
SAA

(
aa request , proofs,Attributei ,AApubl ,Policy

))
4. SOA : IF

(
¬V ?

AA (msg) ∨ ¬fulfill req (msg)
)
THEN Abort

5. SOA : Attr Cert := SSOA

(
Vers,Serial ,Sig Alg,SOA,Val Period ,AA,Attribute Authorityi & Policy

)
6. SOA → AA : EAA (Attr Cert)

7. AA : IF ¬V ?
SOA (Attr Cert) THEN Abort

8. AA : AAcert := Attr Cert

9. AA : PUBLISH (AAcert)

8

5.3 Group Manager Setup

The AA acts as a group manager for each type of anonymous attribute certificate that
issues for each period of time. All users that own an anonymous attribute certificate will
be members of the related group. The AA creates a new group and the related attribute
certificate by running the following algorithm. The TS Setup algorithm produces the group
public key and the group private key. The public key is stored in the created anonymous
attribute certificate, while the private key is stored to be used by the AA whenever needed.
See sections 2.2 and 3 for a detailed explanation of structures Group Struct and Attr Cert.

1. AA : 〈GM publ ,GM priv 〉 := TS SETUP (security level)

2. AA : Group Struct i :=
(
GS Label ,GPK Alg,GM publ ,Policy

)
3. AA : Attr Cert i := SAA

(
Vers,Serial ,Sig Alg,AA,Val Period , H

(
Group Structi

)
,Attributei

)
4. AA : Anon Attr Cert i :=

(
Group Struct i ,Attr Cert i

)
5. AA : STORE

(
〈Anon Attr Cert i ,GM priv 〉

)
5.4 Obtaining the Certificate

Whenever a user wants to get an anonymous attribute certificate, she presents the necessary
proofs (attr proofsi

U) together with her identity to AA. If the requirements are fulfilled,
the certificate issued in the “group manager setup” phase (section 5.3) is sent to the user
and the TS Join protocol is run. As a result, the user gets a unique private membership key
(member keypriv) and the AA gets some information useful for revoking and tracing purposes
(member ref priv). A rough scheme is depicted in figure 3.

The AA stores, for each user, the revoking information together with her identity. The
private membership key enables the user to anonymously prove that she belongs to the group.

Note: In the TS Join protocol run, all messages interchanged will be encrypted with the
recipient’s public key.

1. U → AA : EAA

(
SU

(
attr req i , user identity, attr proofsi

U

))
2. AA : IF

(
¬V ?

U (msg) ∨ ¬fulfill req
(
attr proofsi

U

))
THEN Abort

3. AA → U : EU

(
Anon Attr Cert i

)
4. U : IF

(
¬V ?

AA

(
Attr Cert i

)
∨ H

(
Group Struct i

) ?
6=Holder Field

(
Attr Cert i

))
THEN Abort

5. U & AA : TS JOIN ()

• U : member keypriv := TS JOINU

(
GM publ

)
& STORE

(
〈Anon Attr Cert i ,member keypriv 〉

)
• AA : member ref priv := TS JOINGM

(
GM publ ,GM priv

)
& STORE IN

(
group member db, 〈user identity,Anon Attr Cert i ,member ref priv 〉

)

9

Join (user_identity , proofs)

mpk := f(mk’)

User AA

Join_Prtcl[GPK]

[mk’]

Anon_Attr_Cert(GPK)

Figure 3: Obtaining a certificate

Service_Req (Anon_Attr_Cert(GPK))

Service_Granted

Anonymous_User SP

Identify_Prtcl[mpk]

[GPK]

Revoked (AAC, mbr_proof)

Figure 4: Using the certificate

5.5 Using the Certificate

The user makes use of her anonymous attribute certificate by showing it and, additionally,
running the TS Identify protocol to anonymously prove (by using member keypriv) that be-
longs to the group of users owning that attribute. It is very important to note that it is
impossible to link several membership proofs, even if executed by the same user. They are
efficient zero knowledge proofs. A rough scheme is depicted in figure 4.

Before granting the access to service, in step 5 of the protocol SP asks the AACRL (see
sec. 5.9) if the membership proof corresponds with any member whose anonymous attribute
certificate has been revoked (see sec. 5.8). The SP stores a transcript of the membership
proof, thus the Judge will be able to disclose the identity of the anonymous user (see sec. 5.6)
or even to trace all transactions achieved by users under suspicion (see sec. 5.7). The AA is
able to provide information that allows to link every membership proof with the user that
performed it, or to identity if a given membership proof has been performed by a specific
member, thus providing the system with fair anonymity or conditionally traceable anonymity.

Note: In the TS Identify protocol run, all messages interchanged will be encrypted with
a symmetric session key (ssk).

1. U : ssk := NSK ()

2. U → SP : ESP

(
serv req,Anon Attr Cert i , ssk

)
3. SP : IF

(
¬V ?

AA

(
Attr Cert i

)
∨ H

(
Group Struct i

) ?
6=Holder Field

(
Attr Cert i

)
∨ ¬fulfill req

(
Anon Attr Cert i

))
THEN Abort

4. U & SP : TS IDENTIFY (ssk)

• U : TS IDENTIFYU

(
GM publ ,member keypriv

)
• SP : 〈ok ,member proof 〉 := TS IDENTIFYSP

(
GM publ

)
& STORE IN

(
member proof db, 〈Anon Attr Cert i ,member proof , timestamp, trans id〉

)
5. SP : IF

(
¬ ok ∨ revoked

(
Anon Attr Cert i ,member proof

))
THEN Abort

6. SP → U : Essk (SSP (Service Granted , timestamp, trans id))

7. U : IF ¬V ?
SP (msg) THEN Abort

5.6 Disclosing the Identity of the User

If the service provider considers that the anonymous user has broken the policy, can re-
quest the Judge to disclose the user’s identity to be prosecuted. If the proofs presented

10

Judge

Open_Req (AAC , mbr_proof)

user_identity

open & search

AASP

Open_Req (AAC, mbr_proof, open_proofs)

Figure 5: Disclosing user’s identity

(opening proofs) are enough, the Judge requests the AA to provide the identity of the mem-
ber that issued the given membership proof (member proof). The AA uses the TS Open to
get reference to the member involved (member ref). This reference is used to search the
database and get the user’s identity. A rough scheme is depicted in figure 5.

Note: opening proofs can be whatever is stated in the AA policy.

1. SP → J : EJ

(
SSP

(
open req,Anon Attr Cert i ,member proof , opening proofs

))
2. J : IF

(
¬V ?

SP (msg) ∨ ¬fulfill req (opening proofs)
)
THEN Abort

3. J → AA : EAA

(
SJ

(
open req,Anon Attr Cert i ,member proof , opening proofs

))
4. AA : IF

(
¬V ?

J (msg) ∨ ¬fulfill req (opening proofs)
)
THEN Abort

5. AA : member ref := TS OPENGM

(
GM publ ,GM priv ,member proof

)
6. AA : user id := SEARCH IN

(
group member db,Anon Attr Cert i ,member ref

)
7. AA → J : EJ

(
SAA

(
Anon Attr Cert i ,member proof , user id

))
8. J : IF ¬V ?

AA (msg) THEN Abort

5.7 Tracing the Anonymous Transactions of a Specific User

If a user is suspicious, the Judge can decide to trace all her anonymous activities, and
requests to the AA to provide the member trapdoor (by means of the TS Reveal primitive)
that allows the Judge agents to identify (by means of the TS Trace) which membership proofs
were performed by the user under suspicion. Note that it is not necessary to disclose the
identities of the members that performed the transactions (that would violate their rights,
since they are not under suspicion). Only the transactions performed by the suspicious user
are identified and the rest remain anonymous. A rough scheme is depicted in figure 6.

Note that tracing proofs can be a Judge resolution, a collection of facts achieved by the
user, or whatever thing that is stated in the AA policy.

It is important to note that even the Judge agents do not guess anything about the
identity of the subject under study; they only collect her transactions.

1. J → AA : EAA

(
SJ

(
trace req, user identity,Anon Attr Cert i , tracing proofs

))
2. AA : IF

(
¬V ?

J (msg) ∨ ¬fulfill req (tracing proofs)
)
THEN Abort

3. AA : member ref := SEARCH IN
(
group member db,Anon Attr Cert i , user identity

)
4. AA : member trapdoorpriv := TS REVEALGM

(
GM publ ,GM priv ,member ref

)
5. AA → J : EJ

(
SAA

(
user identity,Anon Attr Cert i ,member trapdoorpriv

))
11

Judge

Trace_Req (AAC , user_identity)

search & reveal

mbr_trapdoor

Judge_Agent AASP

Trace_Req(AAC, mbr_trapdoor, sites)
Trace_Req (AAC , mbr_trapdoor)

search & trace
transaction_list

transaction_list

Figure 6: Tracing anonymous transactions

6. J : IF ¬V ?
AA (msg) THEN Abort

7. J → JAj : EJAj

(
SJ

(
trace req, sites,Anon Attr Cert i ,member trapdoorpriv

))
8. JAj : IF ¬V ?

J (msg) THEN Abort

9. JAj : FOREACH site IN sites DO

FOREACH proof ∈ Anon Attr Certi IN member proof db DO

ok := TS TRACE
(
member trapdoorpriv , proof

)
IF ok THEN

APPEND TO(trans list , 〈proof , timestamp, trans id〉)
ENDIF

ENDFOR

ENDFOR

10. JAj → J : EJ (SJAj (trans list))

5.8 Revoking a Certificate

It is possible to revoke an anonymous attribute certificate for a given user in such a way
that when the user uses such anonymous certificate, this will be detected (see section 5.9 and
step 5 in section 5.5). A rough scheme is depicted in figure 7.

1. J → AA : EAA

(
SJ

(
revoke req, revoking proofs, user identity,Anon Attr Cert i

))
2. AA : IF

(
¬V ?

J (msg) ∨ ¬fulfill req (revoking proofs)
)
THEN Abort

3. AA : member ref := SEARCH IN (group member db, user identity)

4. AA : member trapdoorpriv := TS REVEALGM

(
GM publ ,GM priv ,member ref

)
5. AA → J : EJ

(
SAA

(
user identity,member trapdoorpriv

))
6. J : IF ¬V ?

AA (msg) THEN Abort

7. J → AACRL : EAACRL

(
SJ

(
revoke req,Anon Attr Cert i ,member trapdoorpriv

))
8. AACRL : IF ¬V ?

J (msg) THEN Abort

9. AACRL : STORE IN
(
AACRL DB , 〈timestamp,Anon Attr Cert i ,member trapdoorpriv 〉

)

12

Judge

Rvk_Req (AAC , user_identity)

search & reveal

mbr_trapdoor
Revoke (AAC , mbr_trapdoor)

AACRL AA

Figure 7: Revoking a certificate

revoked_or_fail

search & trace

Chk_Revoked (AAC , mbr_proof)

AACRLSP

Figure 8: Checking revocation status

5.9 Checking of Revocation Status

Whenever an anonymous user presents an anonymous attribute certificate (sec. 5.5), SP
checks if such certificate has been revoked for the actual anonymous user (see step 5 in
section 5.5). A rough scheme is depicted in figure 8. The following protocol is played
between SP and AACRL to do the checking.

1. SP → AACRL : EAACRL

(
SSP

(
check revoke req,Anon Attr Cert i ,member proof

))
2. AACRL : IF

(
¬V ?

SP (msg) ∨ ¬fulfill req (msg)
)
THEN Abort

3. AACRL : revoked = null
FOREACH member trapdoor ∈ Anon Attr Certi IN AACRL DB DO

ok := TS TRACE
(
member trapdoorpriv , member proof

)
IF ok THEN

revoked = timestamp
ENDIF

ENDFOR

4. AACRL → SP : ESP (SAACRL (revoked))

5. SP : IF ¬V ?
AACRL (msg) THEN Abort

6. SP : IF revoked THEN UPDATE IN
(
member proof db, 〈Anon Attr Cert i ,member proof , revoked〉

)
5.10 Claiming Authorship of Use

It is possible for a user to claim that she used a specific anonymous attribute certificate to
access to certain service. So, she identifies the transaction performed (timestamp, trans id)
and then both play the TS Claim protocol to prove if such transaction was peformed by the
claiming user.

1. U → SP : ESP (SU (claim req, user identity, SSP (Service Granted , timestamp, trans id)))

2. SP : 〈member proof ,Anon Attr Cert i 〉 := SEARCH IN (member proof db, timestamp, trans id)

3. SP : IF member proof is revoked THEN Abort

4. U & SP : TS CLAIM ()

• U : TS CLAIMU

(
GM publ ,member keypriv

)
• SP : ok := TS CLAIMSP

(
GM publ ,member proof

)
5. SP : IF (¬ ok) THEN Abort

6. SP → U : EU (SSP (Claim OK , timestamp, trans id , user identity))

7. U : IF ¬V ?
SP (msg) THEN Abort

13

search

Claim_Req (timestamp, trans_id)

SPUser

Claim_Prtcl[mpk]

[GPK, mbr_proof]

claim_ok

Figure 9: Claiming authorship

6 Considerations Regarding Real World Applications

6.1 Splitting the Functions of the Attribute Authority

As we have seen in previous sections, in our system the AAs are responsible for issuing
the anonymous attribute certificates, and they are able to disclose the users’ identities un-
der certain circumstances. They are considered trusted parties. In the real world, private
companies, such as banks, trade centers, etc., can have the role of AAs. However, they
are in a business world where users’ identities can result a very profitable information for
cross-reference profiles. Hence, their fairness may become suspicious.

In these cases, the Attribute Authority could be divided into two entities. One of them
responsible for checking if the user fulfills the requirements and the issuing of anonymous
attribute certificates. The other entity should keep private information that makes compul-
sory its involvement in the disclosing, tracing or revoking operations aforementioned, in such
a way that if such entity does not collaborate, then those operations can not be performed.
This entity acts as a light weight trusted third party that can be managed by the Justice
department. Only very light involvement is required because these infrequent operations.

As result of this division, a private business company can still issue anonymous attribute
certificates, but the power to revoke the anonymity resides in a trusted third party man-
aged by the Justice department. This division can be incorporated to the proposed system
following several ways. One of them could be adding a threshold scheme to the underlying
traceable signature primitives, as in (Nguyen, 2004), where the private key of a trusted third
party is required for the open primitive (however, surprisingly, it is not required for the trace
primitive).

Another approach could be to use a “fair blind signature” scheme (Stadler, 1995) as
in (Benjumea, 2004) where the trusted third party manages pseudonyms, which are composed
of two parts: one public part that is related with the identity of a user, and a private part that
is related with the member of the group. Only the trusted third party knows the relationship
between the two parts.

Then the acquisition of an anonymous attribute certificate by a user roughly involves the
following steps (see also figure 10):

6.1.1 Phase I

1. U → TTP : ETTP (pseud req, ssk)

2. TTP : 〈Pseudonympriv ,Pseudonympubl 〉 := Create Pseudonym()

3. TTP : STORE IN
(
Pseudonym DB, 〈Pseudonympriv ,Pseudonympubl 〉

)
4. TTP → U : Essk

(
STTP

(
Pseudonympriv ,Pseudonympubl

))

14

AATTP User
Pseudonym_Req

Join (user_id, Publ_Pseud, proofs)

check & fbs_sign

proof_publ_pseud

transform(proof_publ_pseud)

Priv_Pseudonym, Publ_Pseudonym

(a) Phase I

Join (Priv_Pseudonym , proof)

mpk := f(mk’)

User AA

Join_Prtcl[GPK]

[mk’]

Anon_Attr_Cert(GPK)

(b) Phase II

Figure 10: Obtaining a certificate

5. U : N := NAK ()

6. U → AA : EAA

(
SU

(
attr req i , user identity, attr proofsi

U , FBS Blind
(
Pseudonympubl ,Npubl

)))
7. AA : IF

(
¬V ?

U (msg) ∨ ¬fulfill req
(
attr proofsi

U

))
THEN Abort

8. AA : fair blind signature := FBS Sign
(
AApriv , FBS Blind

(
Pseudonympubl ,Npubl

))
9. AA : STORE IN

(
Identity DB, 〈user identity,Pseudonympubl 〉

)
10. AA → U : EU (SAA (fair blind signature))

11. U : SAA

(
Pseudonympriv ,Npubl

)
:= FBS Transform (fair blind signature)

12. U : · · · · · · · · ·Sleep for decoupling both phases· · · · · · · · ·

6.1.2 Phase II

1. U → AA : EAA

(
SN

(
attr req i , SAA

(
Pseudonympriv ,Npubl

)))
2. AA : IF

(
¬V ?

N (msg) ∨ ¬V ?
AA

(
SAA

(
Pseudonympriv ,Npubl

)))
THEN Abort

3. AA → U : EU

(
Anon Attr Cert i

)
4. U : IF

(
¬V ?

AA

(
Attr Cert i

)
∨ H

(
Group Struct i

) ?
6=Holder Field

(
Attr Cert i

))
THEN Abort

5. U & AA : TS JOIN ()

• U : member keypriv := TS JOINU

(
GM publ

)
& STORE

(
〈Anon Attr Cert i ,member keypriv 〉

)
• AA : member ref priv := TS JOINGM

(
GM publ ,GM priv

)
& STORE IN

(
group member db, 〈Pseudonympriv ,Anon Attr Cert i ,member ref priv 〉

)
Note that AA is unable to link Npubl with the user identity, since in the first phase Npubl

is blinded, and in the second phase neither the user identity nor Pseudonympubl appear. The
FBS Transform primitive in step 11 of the first phase converts a signature on the public part of
the pseudonym of a blind Npubl in a signature on the private part of the pseudonym of a clear
Npubl . Please, also note that in step 2 of the second phase, if SAA

(
Pseudonympriv ,Npubl

)
can be verified against AApubl , it means that the anonymous user who knows Npriv fulfills the
requirements to get the certificate, since such proofs were verified in step 7 of the first phase.
Also, if the message received can be verified against Npubl in step 2 of the second phase, that
means that the peer anonymous user is really one of those that fulfill the requirements.

15

As consequence of this new protocol, the member of the group is linked with the private
part of a pseudonym, the public part is linked with the user’s identity, and no one, except
the TTP is able to relate both parts of the pseudonym. Therefore, the TTP will always be
required for the disclosing, tracing or revoking operations, and with very little involvement
guarantees that such operations are performed under the law requirements.

6.2 Constraining the Use of Certificates

Public key identity systems define the identity of a user and link such identity with the
knowledge of a private key that enables her to prove that is really the person that is stated
in the identity being checked. The security of the above scheme is based on the fact that the
private key is only known by the person that owns the defined identity. Normally, in these
systems, an identity brings about some privileges that the user may enjoy.

A sometimes underestimate problem in public key based systems is the fact that a user
can share her knowledge of private keys with someone else, thus making possible to forge the
identity of another user and enjoy in this case the privileges of the forged user.

In anonymous systems based on public key cryptography, the aforementioned problem is
magnified since, in addition to the privilege forgery mentioned above, a collusion of anony-
mous users may cooperate. They may share the knowledge of private keys and create a
“virtual super user” that is able to enjoy the privileges that no one, by herself, is able to
enjoy.

How to avoid this problem in a general and feasible way still remains open.

7 Conclusions

We have presented an new approach to extend X.509 attribute certificates with anonymity
capabilities, as well as a set of protocols to obtain and use certificates preserving user’s
identity by using a group signature scheme. We have made use of traceable signatures, that
provide our system with a very suitable and powerful toolset for conditionally removing the
user’s anonymity in many ways, such as disclosure of the user’s identity that made use of a
certificate, and tracing of all certificate uses carried out by any given user without disclosing
any other information about the system. A given user can claim her authorship in the use of
an anonymous attribute certificate. It is also possible to revoke attribute certificates based
on Anonymous Attribute Certificate Revocation Lists.

A very important feature of our solution is that any use of an anonymous certificate is
completely unlinkable with any other use, even if performed by the same user under the same
circumstances, what makes completely impossible the creation of anonymous user profiles by
the entities after transaction cross-reference.

We have also presented some considerations regarding the deployment of the system in
real world applications and pointed out some future work, like how to avoid that a user can
make use of a certificate that does not belong to her.

References

Ateniense, G., Camenish, J., Joye, M. and Tsudik, G. (2000). A practical and provably secure
coalition-resistant group signature scheme, CRYPTO 2000: Advances in Cryptology,
Vol. 1880 of Lecture Notes in Computer Science, Springer-Verlag, pp. 255–270.

16

Benjumea, V., López, J., Montenegro, J. A. and Troya, J. M. (2004). A first approach
to provide anonymity in attribute certificates, in F. Bao, R. H. Deng and J. Zhou
(eds), PKC 2004, 2004 International Workshop on Practice and Theory in Public Key
Cryptography, Vol. 2947 of Lecture Notes in Computer Science, Springer-Verlag, pp. 402–
415.

Chaum, D. (1983). Blind signatures for untraceable payments, in D. Chaum, R. Rivest and
A. Sherman (eds), Advances in Cryptology–Crypto’82, Plenum Press, Santa Barbara,
CA USA, pp. 199–203.

Chaum, D. (1985). Security without identification: Transaction systems to make big brother
obsolete, Communications of the ACM 28(10): 1030–1044.

Chaum, D. and Heyst, E. v. (1991). Group signatures, in D. W. Davies (ed.), Advances
in Cryptology - EuroCrypt ’91, Springer-Verlag, Berlin, pp. 257–265. Lecture Notes in
Computer Science Volume 547.

ITU-T Recommendation X.509 (1997). Information Technology - Open systems interconnec-
tion - The Directory: Authentication Framework.

ITU-T Recommendation X.509 (2000). Information Technology - Open systems interconnec-
tion - The Directory: Public-key and attribute certificate frameworks.

Kiayias, A., Tsiounis, Y. and Yung, M. (2004a). Traceable signatures, EUROCRYPT 2004:
Advances in Cryptology, Vol. 3027 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 571–589.

Kiayias, A., Tsiounis, Y. and Yung, M. (2004b). Traceable signatures, IACR E-Print Cryp-
tology Archive, Report 2004/007, http://eprint.iacr.org/.

Kilian, J. and Petrank, E. (1998). Identity escrow, CRYPTO 1998: Advances in Cryptology,
Vol. 1462 of Lecture Notes in Computer Science, Springer-Verlag, pp. 169–185.

Nguyen, L. and Safavi-Naini, R. (2004). Efficient and provably secure trapdoor-free group
signature schemes from bilinear pairings, ASIACRYPT 2004: Advances in Cryptology,
Vol. 3329 of Lecture Notes in Computer Science, Springer-Verlag, pp. 372–386.

Rivest, R., Shamir, A. and Tauman, Y. (2001). How to leak a secret, ASIACRYPT 2001:
Advances in Cryptology, Vol. 2248 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 552–565.

Stadler, M. A., Piveteau, J. M. and Camenisch, J. L. (1995). Fair blind signatures, in L. C.
Guillou and J. J. Quisquater (eds), Advances in Cryptology–Eurocrypt’95, Vol. 921 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 209–219.

von Solms, S. and Naccache, D. (1992). On blind signatures and perfect crimes, Computers
& Security 11: 581–583.

17

