V. Benjumea, J. Lopez, and J. M. Troya, “Specification of a Framework for the Anonymous Use of Privileges”, Telematics and Informatics, vol.
23, pp. 179-195, 2006.
NICS Lab. Publications: https://www.nics.uma.es/publications

Specification of a Framework for the Anonymous
Use of Privileges*

Vicente Benjumea Javier Lopez Jose M. Troya
Computer Science Department, University of Malaga, Spain

{benjumea,jlm,troya}@lcc.uma.es

Abstract

In this paper we have defined an open framework to support open dis-
tributed applications where anonymous transactions based on user priv-
ileges play an important role. The goal of the framework is to provide
a basis to the application level, and is presented from an open and gen-
eral perspective where many different implementation schemes can fit.
Moreover, we have presented a set of requirements that implementation
schemes must fulfill to conform a fully anonymous privilege system, which
guarantees to supported applications that anonymity will be preserved in
remote transactions. Finally, we present an application scenario using the
services provided by the framework in order to better show the possibili-
ties of what this type of systems offers.

Keywords: authorization, privilege, anonymity, credential, framework

1 Introduction

The increment in the number of remote transactions carried out through the
Internet has a drawback: a big amount of user information can be collected,
processed and cross referenced. This facilitates the creation of user profiles that
store their preferences and activities. For this reason, privacy and anonymity
are becoming emergent research topics in both the information security and
cryptography areas. More than ever before they are becoming challenging topics
with an important goal, the protection of users’ sensitive information without
restricting their capacity of performing remote transactions.

Beginning with Chaum’s seminal work [6], many studies have focused on
the support of privacy and anonymity services in many different ways [6, 7,
9, 8, 10, 18, 11, 14, 3, 1, 5, 4, 13, 12]. All proposals addressing anonymous
systems [14, 3, 5, 4, 12] focus essentially on defining protocols and algorithms
that try to solve the aforementioned problems. Additionally, many of those
proposals include the definition of what an anonymous system is. However, to
the best of our knowledge, there is no proposal trying to define a wide, open
and general anonymity framework, independent of any implementation/protocol
design, and based only on the requirements that such a system should fulfill

*Work partially supported by the Spanish Ministry of Science and Technology under the
Project PRIVILEGE (TIC2003-08184-C02-01)

and on the operation primitives that should offer to the application level. To
be more precise, the work presented in [14], and [5] seems to be the only work
that focuses and defines the problem from a general point of view, though very
influenced by the solution they propose.

Our paper tries to close this gap. That is, the present work collects a reason-
able set of requirements that such a wide, open and general anonymity frame-
work should fulfill. We also define the set of operation primitives that the
framework should offer to the applications. Additionally, by making use of an
application scenario, we show the possibilities that this kind of framework can
offer.

2 Requirements that an anonymous system must
fulfill

An anonymous system [6, 7, 9, 11, 14, 3, 5, 4, 12, 2] can be defined as a
distributed system where the identities of some of the parties involved in the
remote transaction remain unknown. Because these transactions are carried out
among untrusted parties, perfect anonymity can not be accepted [19] since, in
case of the abuse or misuse of the anonymous capability by any of the parties, the
real identity of the dishonest party must be disclosed for eventual prosecution. A
system must fulfill the following requirements to be considered fairly anonymous.

e No information can be revealed that can help any party to guess the
identity of users involved in the transaction.

e The anonymous user must be able to enforce his privileges in the system
without lack of anonymity. Thus, the set of anonymous transactions that
the user can perform is compelled by his set of privileges.

e The real identity of the anonymous user that performed a given transaction
can be disclosed under certain circumstances.

e No entity in the system can disclose by himself the real identity of a user
that took part in the transaction. Such eventual disclosure must be done
in collusion with several entities, where one of them is a trusted third party
(TTP) that guarantees that the disclosure is achieved only when certain
conditions are fulfilled.

e An anonymous user can not share his privileges with another anonymous
user. That is, the later can not benefit from the privileges of the first one.

e As in any cryptographic system, it must be impossible to forge any op-
eration in the system without the knowledge of the correspondent secret
information. No entity, even a TTP or any type of Authority, or a collusion
of them, can act on behalf of any other entity.

e No information will be revealed if this can help any entity to guess secret
information used by involved parties in performed transactions.

e No anonymous party involved in a transaction can deny such involvement.

Additionally, an anonymous system must fulfill the following requirements
to be broadly accepted.

e The anonymous transactions performed in the system must be unlinkable,
thus avoiding the creation of anonymous user profiles.

e No information about the system can be disclosed whenever the real iden-
tity of an anonymous user that took part in a transaction is disclosed.

e Under certain circumstances, it will be possible to trace all the anonymous
transactions that a specific user has performed. That is, it will be possible
to distinguish the transactions performed by a specific user among all the
anonymous transactions.

e When tracing the anonymous transactions in a system, no information
will be revealed except for identifying those ones performed by a specific
user.

e No entity in the system will be able to trace the anonymous transactions
performed by another user, except if several entities (a TTP among them)
collude.

e When conditions are met, it will be possible to revoke the privileges of a
given user without revealing anything about the system. A TTP should
be involved in the process.

The following requirements are also desirable in an anonymous system:

e A user will be able to show that he has performed a given anonymous
transaction.

e If the system supports a payment method, the user will be able to make
use of it without losing anonymity.

It should be noted that this set of requirements has been inspired by those
appeared in the literature [14, 3, 5, 4, 12, 13]. However, we have specially
adapted them in order to create a general and open anonymity framework since
the requirements presented in the aforementioned literature are normally biased,
to a greater or lesser extent, to fit in the corresponding proposal. To the best
of our knowledge, they have never been collected and presented from a broad
and general perspective and independently of any proposed scheme.

3 Anonymous identities versus anonymous priv-
ileges

An anonymous system can be defined in many different ways. However, focusing
on the functionality that they provide to the applications, it is important to
distinguish two different approaches.

In specific applications where all users involved have the same privileges
and it is not necessary to distinguish them to decide the kind of service to be
granted, it is sufficient to provide an anonymous system where the real identities
of the users are hidden. Only under certain circumstances identity of users will

be disclosed. The real identities of the users are not necessary to perform
anonymous transactions. Instead, the only requirement is to belong to the
system, what makes possible to disclose the user’s real identity under certain
circumstances. We refer to these systems as anonymous identity systems, and
can be supported by schemes that provide anonymity with respect to users’
identities, such as anonymous PKI [12], anonymous communication channels [6,
8, 15, 16, 17], and others.

However, there are applications where the parties involved have different
privileges and the kind of transactions that they perform depends on their indi-
vidual privileges. Also, there are scenarios where certain infrastructures provide
a framework where general applications can interact based on the privileges that
different users have. In these two cases, the anonymous identity systems do not
provide the necessary functionality. Contrarily, it is necessary a system that
provides anonymity with respect to the privileges that the users have. We refer
to these systems as anonymous privilege systems [14, 3, 5, 4, 2].

In this paper, we focus on the anonymous privilege systems, as they provide
a more flexible and broader range of possibilities. Note that an anonymous
identity system can be supported by an anonymous privilege system where only
one privilege exists and it is available to all users.

4 A framework to use anonymous privileges: A
functional perspective

This section introduces a framework focussing on the support of an anonymous
privilege system. The framework will be studied from a functional perspective,
that is, we will discuss the entities that compose the system, the primitives
offered to the application level, and the operations that an entity in the appli-
cation layer has to provide to the framework in order to behave coherently.

The framework is presented as an open and general scheme where different
implementation schemes can fit. It does not impose any restriction, and provides
the basis where many different application schemes based on anonymous priv-
ileges can be developed independently of a real implementation scheme. More
precisely, in the framework, independent anonymous based applications and
anonymous scheme implementations can work together to form a fully functional
system. More restricted implementation schemes can also fit in the framework
as a particularization with reduced functionality.

It is important to note that there is no guarantee that a scheme fitting into
the framework necessarily fulfills the requirements aforementioned (see 2). It
is up to the implementation scheme to guarantee such fulfillment, and should
specify in which degree the requirements are met.

4.1 Overview of the framework

The framework is composed of two main sets of entities (figure 1). External
entities make use of the services provided by the framework to perform anony-
mous transactions based on privileges. These external entities also manage the
assignment of privileges, and provide a legal support for some actions needed
by the framework.

ANONYMOUS PRIVILEGE FRAMEWORK

=r—

Service, /

T
Eoo) e
e

SN —~ ~

Figure 1: Anonymous privilege framework

On the other hand, internal entities provide the mechanisms to support the
anonymous transactions, based on privileges, performed by the external entities.
Moreover, they provide the mechanisms that make possible the revocation of
the anonymity in the transactions.

Internal entities belong to the framework, and their main goal is precisely to
support it. External entities have their own behavior and interest. Any external
entity needs to contain a module that will provide the framework functionality,
enabling that entity to make use of the services provided by the framework.
Every module will provide, on the entity side, the cryptographic protocols that
are part of the services provided by the framework. Eventually, a module will
request the host to perform some actions and provide some information that
will allow the module to complete its job.

A general overview of the anonymous privilege framework is as follows. The
user requests from the framework the services and resources that this one and
the external entities provide. Then, the user collects from the attribute is-
suer entities a set of credentials that contain information stating that he has
certain privileges (implying that he fulfills certain conditions). Afterwards, he
accesses the service provider entity anonymously and enforces his privileges by
presenting the corresponding credentials. If a transaction requires a previous
payment, the bank entity will support such anonymous payment. These are
the normal operations in the system. However, under certain circumstances,
such as anonymity abuse or misuse, the judge entity will order the disclosure
of the the user’s identity that performed the “suspicious” anonymous transac-
tions. Finally, the framework must be able to connect and route anonymous
transactions with other frameworks, thus allowing the creation of networks of
anonymous privilege systems.

4.2 Actors

As stated before, the framework is composed of two kinds of entities: internal
and external. There can be as many actors of each kind as defined by the
implementation scheme. However, there should be at least one of each type in
order to have full functionality. As a special case, if the system does not support
anonymous payment, then the bank entity is not necessary.

Although the proposed framework is open and general enough to fit different

implementation schemes, any of them, from a functional perspective, should
provide at least the following internal actors.

The Authority, among other things, enrolls into the system the external
entities that request it.

The Directory keeps information about the system, the entities that com-
pose it, the services offered, resources available, public key certificates,
entities’ policies, etc. It allows the entities to access to the public infor-
mation that they need.

The Trusted Third Party (TTP) is a lightweight entity in charge of as-
suring that disclosures, traces and revocations are achieved with fairness.
Therefore, its active involvement in such operations is mandatory.

The Revocation List holds information about the attributes that have been
revoked in the system. Entities are allowed to request that information.

The Private Anonymous Channel (PAC) guarantees that the physical
communication endpoints remain unknown in anonymous transactions.
All the anonymous transactions performed in the system are to be carried
out through private anonymous channels [6, 8, 15, 16, 17], thus guaran-
teeing that the communication physical endpoints remain unknown. As a
special case, and only when the user requests it, the framework can pro-
vide a private channel which allows direct, fast and private communication
with no anonymity at the communication physical endpoints.

The external entities make use of the services provided by the framework,
and use them to provide other services to other entities of the system.

The User collects attributes that enable him to enforce his privileges when
performing anonymous transactions through the framework; that is, when
anonymously accessing the services and resources offered by the system
providers.

The Service Provider (SP) offers its services and resources to anonymous
users that prove to hold the necessary privileges. The policy of the service
or resource will specify which are the attributes necessary for a user to
hold.

The Attribute Issuer (Al) entity issues attributes to users that prove ful-
fillment of certain conditions.

The Bank provides payment support to the anonymous transactions that
require it. Additionally, a bank can act as a service provider entity to offer
its services to other entities.

The Judge acts as a law enforcement entity that authorizes or denies the
disclosure, trace and revocation actions performed in the system when the
conditions required are met.

It is possible to interconnect Anonymous Privilege Frameworks (APF)
together to form hierarchies of APF's or even more complicated topologies.
In these cases, the interconnected APFs will act as routers with respect
to the anonymous transactions.

It is possible that different entities in the framework are represented by the
same entity in the real world (or in a virtual world). For instance, an “internet
online bank” can act as a Bank entity in the framework, but also can act as an
Attribute Issuer, issuing attributes for workers of the bank. In fact, it also can
act as a service provider which offers some resources to anonymous users.

4.3 Primitives provided

The primitives that the framework provides will be discussed in this subsection
from a functional perspective again, and the different implementation schemes
should provide them, guaranteeing the fulfillment of the requirements mentioned
in section 2. Also, we will show in this section the operations that the external
entities have to provide to enable their interaction with the framework primi-
tives.

The set of primitives are inspired by those appeared in the literature [14,
5, 13, 2]. However, here again, we have adapted them to fit in a general and
open anonymous privilege system. As for the requirements, the reason is that
the primitives presented in the literature are normally biased to fit in the cor-
responding schemes.

In the following explanation, an underlined operation means a primitive
provided by an external entity that will be invoked by the framework module to
provide the necessary information to run the implementation protocol. From the
primitive perspective, input information is denoted as a parameter marked with
a down-arrow ({}) and output information is denoted as a parameter marked
with an up-arrow ({}). However, from the invoker perspective the meaning is
the opposite.

4.3.1 Management primitives

Management primitives are related to the framework setup and the way entities
join and leave it. The directory databases will be updated to contain these
transactions, as well as all the information needed for the entities to cooperate
in the framework.

e The general setup of the framework and internal entities is provided by the
following primitive. It will create a key pair. The private key will be used
by the framework manager. The public key will be kept in the directory
databases, together with the framework and internal entities information.

APF_Framework_Setup ({}Apf_Id, |/Setup_Info,
10k, ftApf_SK, {Setup_Report)

e The following primitive allows the external entities (User, Attribute Issuer,
Service Provider, Judge, Bank, external APF) to join the framework. It
creates a key pair that enables the entity to identify itself. The public
key certificate and the entity information will be stored in the directory
databases.

APF_Join({}Entity_Id, |Join_Info,
M0k, fEntity_SK, {tJoin_Report)

e An entity leaves the framework by using the following primitive. This
event will be recorded in the directory databases too.

APF_Resign({Entity_Id, |Entity_SK,
10k, ffResignation_Report)

e The following primitive allows the entities to access the directory databases,
that will hold information about external APFs, system entities, offered
services, available resources, public key certificates, entities’ policies, etc.

APF_Get_Directory_Info({Info_Request, ffDirectory_Info)

4.3.2 User oriented primitives

User oriented primitives provide a means for the user to access the services
provided by the framework and external entities.

e This primitive allows the user to obtain an information credential guar-
anteeing his attributes. He will use the credential in order to enforce the
related privileges. The user requests the credential to an Attribute Is-
suer entity, which will check if the user fulfills the requirements needed to
posses it, and in such case, it will issue the credential. A TTP should be
involved in the process in order to fulfill the anonymity requirements. No
entity alone will be able to relate the credentials issued with the identity
of the users that own them.

1. The following primitive will start the process. The user will iden-
tify himself and will provide the proofs that enable him to acquire
the credential guaranteeing the attributes. The user will obtain the
credential as well as the secret key that enables him to prove anony-
mously his ownership.

APF_Attribute_Request ({{User_Id, ||User_SK, |JPAC_Id, |TTP_Id,
JAttr_Issuer_Id, |Attr_Id, |JAttr_Proof_List,
JAttr_Proof_SK_List,
0k, ‘Attribute, ffAttr_SK)

2. As a consequence of the primitive action, the framework will request
the specified Attribute Issuer (by invoking the next primitive pro-
vided by the attribute issuer entity) to verify if the user fulfills the
requirements to own such attribute. If so, the framework will be
enabled to verify the ownership of the presented proof list.

AT _Verify_Attr_Req({User_Id, |Attr_Id, |Attr_Proof_List,
0k, ftAttr_Req_Id, ffAttr_Issuer_SK)

3. If the user fulfills the requirements to own such attribute, and once
the the proof list ownership have been checked, the framework will
request the Attribute Issuer to provide the information needed to
issue the attribute credential through the following action.

AI_Provide_Attribute({}Attr_Req_Id, |JAttr_Req_Report,
10k, ftAttribute_Info, {tAttr_Issuer_SK)

e The main aim of the framework is to allow the users to perform anonymous
transactions with service providers. This is the goal of the next primitive.

1. The user will request a service offered by a service provider through
the following primitive. He will identify the entity that provides the
service and the anonymous channel that will route the communica-
tion. Then, he will provide the attribute list that enables him to

access the offered service. If the set of presented attributes is enough
and the ownership is proved, the user will get a transaction identifi-
cation and the requested service.
APF_Service_Request ({|User_Id, |JUser_SK, |/Service_Provider_Id, |JPAC_Id,
||Service_Id, |JAttribute_List, |JAttr_SK_List,
M0k, fTransaction_Id, {}Service)

2. As a consequence of the primitive action, the framework will request
the Service Provider entity to verify if the anonymous user owns
enough attributes to access the requested service. If so, the ser-
vice provider will enable the framework to check if the presented at-
tributes are valid (they have not been revoked and the validity period
is right) and to anonymously verify the ownership of the attributes
presented.

SP_Verify_Service({}Service_Id, |JAttribute_List,
0k, {)Transaction_Id, f}Service_Provider_SK)

3. Once the attribute ownership has been proved, the framework will
request the service provider to provide the requested service through
the following action.

SP_Provide_Service ({{Service_Id, |/Transaction_Report,
0k, f}Service, {}Service_Provider_SK)

e Many services offered in the system require, in addition to owning some
attributes, a payment before accessing the service. The following primitive
support the access to services that require a previous payment. Here again,
the framework will ensure that the attributes involved are valid and not
revoked.

1. The user will access the service as before, but now he has to provide
a payment information and a secret key to enable such payment. At
last, the user accesses the service and gets an evidence of the payment
done.

APF_Payment_Service_Request ({{User_Id, ||User_SK, ||Payment_Info,
|Payment_SK, ||Service_Provider_Id,
|PAC_Id, l|}Service_Id, |Attribute_List,
JAttr_SK_List,
0k, N‘\Transaction_Id, f}Service,
ftPayment_Evidence)

2. As before, the service provider will be requested to verify if the user
owns enough attributes to access the service and, if so, it will provide
information about the way the charge can be done.
SP_Verify_Payment_Service({/Service_Id, |JAttribute_List,

N0k, ftTransaction_Id, {}Charge_Info,
ftService_Provider_SK)

3. The Bank entity will be requested to do the following action in order
to support the payment transaction, which will be achieved anony-
mously. It will provide a payment evidence that will be communi-
cated to involved parties.

BK_Charge_Payment_Service ({}Charge_Req, ||Payment_Req,
M0k, {tPayment_Evidence, {}Bank_SK)

4. Once the service provider gets the payment evidence, it provides the
requested service.

SP_Provide_Payment_Service({Service_Id, ||Transaction_Report,
|Payment_Evidence,
10k, f}Service, {}Service_Provider_SK)

e Sometimes the user needs to justify that he performed a certain transac-
tion. The following primitive supports such action.

1. The user has to identify the transaction for which he is claiming the
authorship. Moreover, he needs to provide the secret keys used to
prove his ownership in the original transaction. Finally, he will get a
report stating that the user performed such anonymous transaction.
APF_Authorship_Claim({User_Id, |User_SK, | Service_Provider_Id,

{JPAC_Id, |/ Service_Id, |JTransaction_Id,
JAttr_SK_List,
N0k, ftAuthorship_Report)

2. The Service Provider entity will be requested to support such oper-

ation by providing the necessary information to the framework.

SP_Provide_Authorship({Service_Id, |}Transaction_Id,
10k, f\Transaction_Info, {}Service_Provider_SK)

e The framework could offer simply anonymous transactions through the
Private Anonymous Channel entities to allow the external entities to com-
municate anonymously. This is a low level primitive to support anonymous
transactions where privileges are not involved.

1. The origin entity will perform the desired anonymous transaction by
using the following primitive
APF_Anonymous_Transaction({|0rigin_Id, ||Origin_SK, |/Destination_Id,
|JPAC_Id, |Transaction_Id, ||Transaction_Info,
M0k, fTransaction_Result)
2. The destination entity will be requested to perform the following
action in order to process the anonymous transaction.
XX_Process_Anonymous_Transaction({Transaction_Id, ||Transaction_Info,

10k, f\Transaction_Result,
ftDestination_SK)

4.3.3 Special case primitives

Special case primitives include all primitives related with the revocation, in
different flavors, of anonymity. Additionally, they include a primitive oriented
to persuade the user for not sharing the ownership of his attributes with other
users.

e The following primitive allows, if the requirements are met, to disclose the
identity of the user that performed a given anonymous transaction. This
primitive is offered to any entity in the system. However, a judge must
authorize such action.

1. Any entity in the system can request the disclosure of the real identity
of the user that performed a given transaction. Such operation will
be achieved if the conditions are met. The requester must provide
the proofs necessary to check if the disclosure requirements are met
and, if so, the user identity will be disclosed.

10

APF_Disclosure_Req({Requester_Id, ||Requester_SK, || Transaction_Id,
|Disclosure_Proof_List,
0k, ffUser_Identity)
2. The Judge entity will be requested to evaluate the presented proofs
and to agree (or disagree) on the requested action.
JG_Verify_Disclosure_Req({{Requester_Id, | Transaction_Id,

||Disclosure_Proof_List,
0k, ftJudge_Resolution, ffJudge_SK)

3. If the Judge agrees on the disclosure, the framework will request
the involved entities (Service Provider, Attribute Issuer, TTP, Bank,
etc.) to provide the necessary information to disclose the real identity
of the user.

XX_Process_Judge_Resolution({{Info_Request, | Judge_Resolution,
0k, ffRequested_Info, {lEntity_SK)

e The following primitive allows, if the requirements are met, to trace all the
anonymous transactions that a given user has performed in the system.
This primitive is offered to any entity in the system, however, a Judge
must authorize such action.

1. Any entity in the system can request to trace the transactions per-
formed by certain user. Such operation will be achieved if some
conditions are met. The requester must provide the proofs necessary
to check if the tracing requirements are met and, in that case, a list
with the identification of the anonymous transactions performed by
the addressed user will be generated.

APF_Tracing_Req({{Requester_Id, ||Requester_SK, |JUser_Id,
| Tracing_Proof_List,
10k, f\Transaction_Id_List)

2. The Judge entity will be requested to evaluate the proofs presented

and to agree (or disagree) on the requested action.

JG_Verify_Tracing_Req({Requester_Id, |User_Id, |Tracing Proof_List,
0k, ffJudge_Resolution, ffJudge_SK)

3. If the Judge agrees on tracing the anonymous transactions, the frame-
work will request the involved entities (Service Provider, Attribute
Issuer, TTP, Bank, etc.) to provide the necessary information to
trace the transactions performed by the addressed user.

XX_Process_Judge_Resolution({{Info_Request, | Judge_Resolution,
0k, ffRequested_Info, {lEntity_SK)

e The framework allows to revoke an attribute owned by certain user if
certain conditions are met. In this case, the user will not be able to
further use that attribute in any following anonymous transactions. A
Judge must authorize that action.

1. Any entity in the system can request the revocation of an attribute
of certain user when some conditions are met. The requester must
provide the proofs necessary to check that the revocation has to be
done.

APF_Revoke_UAttr_Req({Requester_Id, ||Requester_SK, |JUser_Id, |Attr_Id,

JRevoking_Proof_List,
M0k, ftRevoking_Report)

11

2. The Judge entity will be requested to evaluate the proofs presented
and to agree (or disagree) on the requested action.

JG_Verify_UAttr_Revoking_Req({|Requester_Id, |User_Id, |Attr_Id,
| Revoking_Proof_List,
M0k, ftJudge_Resolution, fyJudge_SK)

3. If the judge agrees on revoking such attribute, the framework will re-
quest the involved entities (Service Provider, Attribute Issuer, TTP,
Bank, etc.) to provide the necessary information to revoke that at-
tribute. The internal databases must reflect such event, and provide
mechanisms to make it public to interested parties.

XX_Process_Judge_Resolution({{Info_Request, | Judge_Resolution,
0k, ftRequested_Info, {tEntity_SK)

e The framework allows to revoke an attribute used in an anonymous trans-
action if certain conditions are met. In this case, the owner will not be
able to further use such attribute in any latter anonymous transaction. A
judge must authorize such action.

1. Any entity in the system can request the revocation of an attribute
used in an anonymous transaction. The requester must provide the
proofs necessary to check if the revoking requirements are met.
APF_Revoke_TAttr_Req({|Requester_Id, ||Requester_SK, |JTransaction_Id,

JAttr_Id, ||Revoking_Proof_List,
10k, ffRevoking_Report)

2. The Judge entity will be requested to evaluate the presented proofs
and to agree (or disagree) on the requested action.

JG_Verify_TAttr_Revoking_Req({}Requester_Id, ||Transaction_Id, |JAttr_Id,
{Revoking_Proof_List,
10k, frJudge_Resolution, {}Judge_SK)

3. If the judge agree on revoking such attribute, the framework will re-
quest the involved entities (Service Provider, Attribute Issuer, TTP,
Bank, etc.) to provide the necessary information to revoke such
attribute. The internal databases must reflect such fact, and provide
mechanisms to make it public to interested parties.

XX_Process_Judge_Resolution({{Info_Request, | Judge_Resolution,
0k, ffRequested_Info, {lEntity_SK)

e The following primitive is oriented to persuade users for not sharing the
ownership of their attributes with other users. It follows the approach
proposed by [14] of linking sensitive information that the user does not
want to share, with the capability of using certain attribute. In our case,
we link the capability of using an attribute with the capability to per-
form an action that, thought profitable for the user of the attribute, it is
unprofitable for the owner of the attribute.

1. The dissuading primitive is as follows.

APF_Dissuading_Primitive ({{User_Id, |JUser_SK, |[Charge_Info, |PAC_Id,
JAttribute, |JAttr_SK,
M0k, ftPayment_Evidence)

2. The Bank entity will be requested to perform the following action in
order to support the primitive action.

BK_Charge_Dissuading_Payment ({}Charge_Info, ||Payment_Info,
N0k, ftPayment_Evidence, {}Bank_SK)

12

ANONYMOUS PRIVILEGE FRAMEWORK

Figure 2: An anonymous privilege scenario

5 Towards an anonymous “cyberworld”

This section describes a scenario where the potential of this technology can be
put into perspective. It tries to resemble what an anonymous world could be'.

In our world (figure 2) there are several entities: a University, an insurance
company, a bank, a hospital, a pharmacy and a cinema, in addition to the
judge and the interconnected APFs. The different functionalities will be divided
among the entities. Thus, for example, the university will act as an attribute
issuer entity, issuing credentials guaranteeing the relationship between the users
and the university, and will act as a service provider offering documents (books,
journals, papers, etc). Additionally, it will act as a service provider managing
the payment of salaries. The bank itself also will have several functionalities.
It will act as a bank entity supporting payment in transactions. Additionally,
it will act as an attribute issuer entity to issue credentials guaranteeing the
information related to users’ bank accounts. Finally, it will act as a service
provider entity offering the capability of anonymous bank transfers.

In our world there also exists two users that will use the framework to
perform anonymous transactions in their daily life. Alice is a professor and Bob
is a student at the university. Moreover, more different entities and applications
can join the system to become part of an anonymous “cyberworld” as complete
as the real one.

Note that this anonymous world can represent a virtual world interconnected
through the Internet mixed with a real world where the users personally access
the resources. The access control is achieved between the user’s mobile computer
(PDA, mobile cell phone, etc) and the service provider computer through a
wireless connection.

When the entities join the framework, the directory databases are updated

IThe scenario health part has been inspired by [14]

13

entity_class entity resource policy pkey_cert info
directory default system_info access_enabled dir_pkc dir_info
authority default system_mgnt system_policy auth_pkc auth_info

ttp default system_ttp ttp_policy ttp_pkc ttp_info

pac default system_pac pac_policy pac_pkc pac_info

pac direct system_pac pac_policy pac_pkc pac_info
rev_list default system_rvl rvl_policy rvl_pkc rvl_info
judge judge law&fairplay judge_policy judge_pkc judge_info
bank bank trans_payment bank_policy bank_pkc bank_info
ext_apf eapf_1 ext_apf eapf_policy eapf_pkc eapf_info
attr_issuer university status_mgnt univ_policy univ_pkc univ_info
attr_issuer university job_mgnt univ_policy univ_pkc univ_info
serv_provider university salary_mgnt univ_policy univ_pkc univ_info
serv_provider library book_repository univ_policy univ_pkc univ_info
attr_issuer bank account_mgnt bank_policy bank_pkc bank_info
serv_provider bank transfer_mgnt bank_policy bank_pkc bank_info
attr_issuer hospital health_trnt hospital_policy hospital_pkc hospital_info
serv_provider hospital health_trnt hospital_policy hospital_pkc hospital_info
attr_issuer insurance insurance_mgnt ins_policy ins_pkc ins_info
serv_provider pharmacy medicine_repository pharmacy_policy pharmacy_pkc pharmacy_info
serv_provider cinema film_repository cinema_policy cinema_pkc cinema_info
user alice user_policy alice_pkc alice_info
user bob user_policy bob_pkc bob_info

Figure 3: Directory

with information related to them, like resources and services offered, public keys
certificates, policies, etc. Thus, for example, the directory databases can hold
information like that shown in figure 3. In that figure, system_policy states the
rules that define the fair behavior in the system, how entities are enrolled and
resigned in the system, and under what circumstances the real identities will be
disclosed, anonymous transactions will be traced and privileges revoked.

Alice joins the framework and provides a bank account certificate and a state-

ment saying that accepts any charge performed by using the APF_Dissuading_Primitive

with any of her anonymous attributes (which means that she has shared her se-
cret information with other user).

Because Alice is professor at the university, she will request an attribute
stating such relationship to the University attribute issuer. This entity will
verify the set of proofs presented by Alice, consulting if necessary its internal
databases, and will issue the corresponding credential to Alice. As a result,
Alice gets a credential guaranteeing that its anonymous owner is a professor at
the university. She will use it anonymously to enforce her privileges anywhere
that accepts such credential. Additionally, she will also request an anonymous
credential where her duties are specified.

As a worker of the University, Alice owns a medical insurance, therefore
she will request a credential stating such relationship, allowing her to enforce
her medical privileges with no need of identification. Thus, nobody, even the
doctors, will be able to relate herself with any of the actions that she performs.

During Alice’s daily life, she anonymously presents her professor credential

14

to access the restricted area in the library to get any paper she is interested in.
Bob is a student at the university, and therefore is only allowed to access the
student area in the library.

When Alice feels ill, she goes to the hospital, and accesses the services pro-
vided by a doctor there. She does not have to pay for such service, since she has
anonymously presented her insurance credential. After examination, the doctor
issues an anonymous attribute stating that its owner suffers the specified illness.
Additionally, he also issues an anonymous credential stating the prescriptions
for such illness. If this does not allow Alice to work, the doctor also issues an
anonymous credential stating the period of sick leave for its owner.

Alice will anonymously present her sick leave and duty attributes to inform
the university management department that she will not be able to work for
the specified period of time. She will anonymously use the medical prescription
credential to get the specified medicines from the pharmacy by means of the
APF_Payment_Service_Request. Also, she will anonymously present her insurance
and professor credentials if they provide any discount in the price. Once the
prescription credentials have been used, they will be revoked. If she goes again
to the hospital, she can anonymously present the attribute stating her illness to
require a second diagnostic.

Whenever Alice goes back to work, she anonymously presents her professor
credential and gets a credential stating that its anonymous owner performed
that work. Alice will get her salary after presenting her professor and duty
credentials together with her work receipt and sick leave attributes. The salary
will be calculated accordingly, and payed through the payment service. The
work receipt and sick leave attributes will be revoked after this. If the anony-
mous user does not fulfill her duties, her real identity can be disclosed and her
attributes revoked.

Alice can anonymously buy tickets for the cinema at the university. If she
gets any discount for being a professor, she will anonymously present her pro-
fessor credential when paying for the tickets. The ticket will be revoked after
its use.

If Alice shares with Bob any of her anonymous attributes, she will allow Bob
enjoying privileges that does not correspond to him. However, she will also allow
him to use the APF_Dissuading_Primitive on her behalf, which is a tempting action
since Bob will legally get the money that he wants from Alice bank account.
Most of cases, this fact will prevent Alice from sharing her secret information
with other users.

Having a broader look at this anonymous cyberworld, we can envision a world
where citizens that pay their taxes get anonymous credentials that enables them
to use the resources that the Government provides. Citizens that have a driving
license and have a car insurance will hold anonymous credentials that the car
could check to allow them to drive or not. A policeman can ask the driver
to prove the ownership of the anonymous driving license attribute, and if the
driver infringes the law, the penalty can be paid with no need of disclosing his
identity. However, if the penalty requires the disclosure of the identity or the
revocation of the license, this action can be performed.

It can be seen that this cyberworld can resembles all the complexities of the
real world with the added value that all the transactions can be done anony-
mously, and under certain circumstances the identity can be disclosed, the at-
tributes can be revoked, and the anonymous actions traced.

15

6 Conclusions

We have defined an open framework to support open distributed applications
where anonymous transactions based on user privileges play an important role.
The framework is presented from an open and general basis where many different
implementation schemes can fit.

Moreover, we have presented a set of requirements that implementation
schemes must fulfill to conform a fully anonymous privilege system, which guar-
antees to supported applications that anonymity will be preserved in remote
transactions.

The presented framework is the connection point between open applica-
tions and different implementation schemes supporting anonymous privileges
by defining the playing rules and the requirements that both sides should fulfill.

Finally, we have described a scenario where the potential of this kind of
systems can be seen. The scenario is presented as an application example, and
it is far from being exhaustive.

To the best of our knowledge, it is the first time that this kind of systems is
approached from the point of view shown in this paper.

References

[1] G. Ateniense, J. Camenish, M. Joye, and G. Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In CRYPTO
2000: Advances in Cryptology, volume 1880 of Lecture Notes in Computer
Science, pages 255—270. Springer-Verlag, 2000.

[2] V.Benjumea, J. Lépez, J. A. Montenegro, and J. M. Troya. A first approach
to provide anonymity in attribute certificates. In F. Bao, R. H. Deng,
and J. Zhou, editors, PKC 2004, 200/ International Workshop on Practice
and Theory in Public Key Cryptography, volume 2947 of Lecture Notes in
Computer Science, pages 402—415. Springer-Verlag, Mar. 2004.

[3] S. A. Brands. Rethinking Public Key Infrastructures and Digital Certificates
Building in Privacy. The MIT Press, Aug. 2000.

[4] J. Camenisch and E. V. Herreweghen. Design and implementation of the
idemix anonymous credential system. In Proc. of 9th ACM Conference on
Computer and Communications Security (CCS), Washington D.C., Nov.
2002. ACM, Academic Press.

[6] J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous
multi-show credential system with optional anonymity revocation. In Fu-
rocrypt 2001, volume 2045 of Lecture Notes in Computer Science, pages
93-118. Springer-Verlag, 2001.

[6) D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-88, Feb. 1981.

[7] D. Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030-1044, Oct.
1985.

16

8]

[11]

[12]

[15]

[16]

[17]

[19]

D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptography, 1(1):65-75, 1988.

D. Chaum and J. H. Evertse. A secure and privacy-protecting protocol
for transmitting personal information between organizations. In A. M.
Odlyzko, editor, Advances in Cryptology - Crypto 86, volume 263 of Lecture
Notes in Computer Science, pages 118-170, Berlin, 1986. Springer-Verlag.

D. Chaum and E. v. Heyst. Group signatures. In D. W. Davies, edi-
tor, Advances in Cryptology - EuroCrypt '91, pages 257265, Berlin, 1991.
Springer-Verlag. Lecture Notes in Computer Science Volume 547.

L. Chen. Access with pseudonyms. In E. Dawson and J. Golic, editors,
Cryptography: Policy and Algorithms, volume 1029 of Lecture Notes in
Computer Science, pages 232-243. Springer-Verlag, 1995.

D. Critchlow and N. Zhang. Security enhanced accountable anonymous PKI
certificates for mobile e-commerce. Computer Networks: The International
Journal of Computer and Telecommunications Networking, 45(4):483-503,
July 2004.

A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In FURO-
CRYPT 2004: Advances in Cryptology, volume 3027 of Lecture Notes in
Computer Science, pages 571-589. Springer-Verlag, 2004.

A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In
H. Heys and C. Adams, editors, Selected Areas in Cryptography, volume
1758 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

P. S. M. Reed and D.Goldschlag. Anonymous connections and onion rout-
ing. IEEE Journal on Selected Areas in Communication Special Issue on
Copyright and Privacy Protection, 1988.

M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1):66-92, nov 1988.

C. Shields and B. Levine. A protocol for anonymous communication over
the internet. In Proc. 7th ACM Conference on Computer and Communi-
cation Security, nov 2000.

M. A. Stadler, J. M. Piveteau, and J. L. Camenisch. Fair blind signatures.
In L. C. Guillou and J. J. Quisquater, editors, Advances in Cryptology—
Eurocrypt’95, volume 921 of Lecture Notes in Computer Science, pages
209-219. Springer-Verlag, 1995.

S. von Solms and D. Naccache. On blind signatures and perfect crimes.
Computers € Security, 11:581-583, 1992.

17

