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Abstract

Smart Grids (SG) draw the attention of cyber attackers due to their vulnerabili-
ties, which are caused by the usage of heterogeneous communication technologies
and their distributed nature. While preventing or detecting cyber attacks is a well-
studied field of research, making SG more resilient against such threats is a chal-
lenging task. This paper provides a classification of the proposed cyber resilience
methods against cyber attacks for SG. This classification includes a set of studies
that propose cyber resilient approaches to protect SG and related Cyber-Physical
Systems (CPS) against unforeseen anomalies or deliberate attacks. Each study is
briefly analyzed and is associated with the proper cyber resilience technique which
is given by the National Institute of Standards and Technology (NIST) in the Spe-
cial Publication 800-160. These techniques are also linked to the different states
of the typical resilience curve. Consequently, this paper highlights the most crit-
ical challenges for achieving cyber resilience, reveals significant cyber resilience
aspects that have not been sufficiently considered yet and finally, it proposes scien-
tific areas that should be further researched in order to enhance the cyber resilience
of SG. Keywords: Smart Grids Cyber-Physical Systems Resilience Cyber Threats.

1 Introduction
The growing concerns about climate change and the ever-increasing needs for electri-
cal energy, dictate changes in the conventional power system, in order to make it more
reliable, efficient and eco-friendly. For this purpose, both research and industry com-
munities in several parts of the world (e.g. U.S., E.U., China, Australia, etc.) [1, 2],
focus their efforts on “smartening” the grid, in order to effectively accommodate the
needs of all users, i.e., producers, consumers and prosumers. One of the key features
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of Smart Grids (SG) is the wide integration of Information and Communication Tech-
nologies (ICT) in electrical energy functionalities.

ICT brings numerous benefits, but also critical security challenges that emerge by
the digital transformation of the power grid [3, 4]. The wide variety of ICT applica-
tions in the SG exposes many vulnerable spots which pave the way for different types
of cyber attacks. For instance, SG uses a group of heterogeneous communication tech-
nologies, such as ZigBee, wireless mesh networks, cellular network communication
and powerline communication [63]. Their complex interconnections along with the
possible protocol incompatibilities can result in serious security gaps. In addition, the
operation of power systems is still heavily dependent on proprietary and legacy tech-
nologies, such as conventional Supervisory Control and Data Acquisition (SCADA)
systems whose design did not originally account for security measures. As a conse-
quence, they expose the system to many risks [62]. Moreover, unlike ordinary ICT
infrastructures, securing modern power systems is more challenging due their strict
operational requirements and their criticality level [21].

Successful cyber attacks against Cyber-Physical Systems (CPS) have been already
recorded, like the well-known case in Ukraine’s power system in December 2015. This
large-scale incident is extensively reported by SANS - institute and Electricity Infor-
mation Sharing and Analysis Center (E-ISAC) and power companies [36]. The coordi-
nated attack consisted of malware installation via spear phishing emails, unauthorized
access and SCADA system hijacking, which opened several circuit breakers remotely
to interrupt the electricity supply to consumers. It also involved Denial of Service
(DoS) attacks on telephone systems to prevent customers from emergency reporting to
the operators. The outcome of this attack affected approximately 225,000 customers.
Another notorious software, called Stuxnet, was uncovered in 2010 [49]. Stuxnet worm
targeted the hosts of specific Siemens industrial control systems that were running on
Windows environment and it mainly affected Iranian nuclear facilities [74]. For this
reason, protecting SG systems from such malicious actions is currently an active re-
search area [95], relevant for governments [3], international organisations such as the
European Union Agency for Cybersecurity (ENISA) [4], the National Institute of Stan-
dards and Technology (NIST) [95, 99] and the academic community.

So far, several defense mechanisms have been proposed in the literature by the
ICT community and power system research communities. Most of this related work
is presented in this paper and is classified according to the resilience techniques given
by the NIST in [110] and the resilient states described in [97]. More specifically, the
methodology of the paper is as follows: in Section 3, a collection of several methods
that increase the cyber resilience of SG and CPS in general is presented. Each method
is briefly analyzed to identify the key points of its approach. In this way, it is clarified
which resilience technique of the NIST is applied at each method in order to group
them accordingly, based on these techniques. This type of classification forms the dif-
ferent subsections of Section 3, which are dedicated to the aforementioned resilience
techniques. Finally, these techniques are mapped to the different resilience states pre-
sented in [97]. This mapping can be found at the introduction of each subsection of
Section 3.

The challenges of cyber resilience emerge in different parts of the SG, including
communication, software and end systems security and the stability of control algo-
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rithms. This paper focuses on communication security. This is due to the fact that
the resilience techniques described by the NIST, which form the basis of the proposed
classification, focus on communication security challenges. In a more general context,
some research works dealing with the other aspects of SG cyber resilience are also
included.

In the literature, there are different research works that present methods for cyber
resilience enhancement of CPS and draw interesting conclusions from them. For exam-
ple, the goal of [40] is to identify trends and recent results on the proposed responses
of CPS to cyber attacks and to highlight limitations and open problems. In [91], the ex-
isting methods for cyber resilience enhancement of CPS (redundancy, fault tolerance,
security) are presented based on an extensive literature study. However, to the authors’
view, none of them is making a practical classification for the cyber resilience of SG
in order to propose a research guide, as the present work does. Particularly, the main
contributions of this paper can be summarized as:

• This work contains a state-of-the-art collection of scientific works related to the
cyber resilience of SG and CPS in general.

• These scientific works are classified according to the formal resilience techniques
defined by the NIST.

• These resilience techniques and the related scientific works in turn, are mapped
to the typical resilient states. This type of mapping offers a new perspective to
the researchers regarding the cyber resilience of SG.

• Finally, the main challenges towards the cyber resilience of SG are highlighted
and directions for future research are drawn, based on the study of the presented
methods.

The remainder of this paper is structured as follows: Section 2 defines the terms
of SG, CPS and resilience in power systems, analyzes the typical resilience curve and
introduces the cyber resilience techniques identified by the NIST. In Section 3, related
work is briefly analyzed and classified based on the cyber resilience techniques of the
NIST and the main phases of the standard resilience curve. Section 4 presents the
current open issues and research challenges within the resilience field. It also adds the
current trends to address future research. Finally, Section 5 provides the conclusions
and outlines the future work.

2 Preliminary terminologies and background

2.1 Definitions of Smart Grids and Cyber-Physical Systems
There have been several definitions for SG by international organizations, such as
ENISA. Moreover, CPS is a broad term that refers to a wide variety of ICT systems
connected to the physical world. Therefore, at this point it is important to clearly define
these terms in order to clarify our view about them to the reader.
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International organizations have provided the following definitions for the SG:
ENISA considers the SG as an upgraded electricity network to which two-way digital
communication between supplier and consumer, intelligent metering and monitoring
systems have been added [5]. The NIST defines the SG as the addition and integra-
tion of various digital computing and communication technologies and services with
the power-delivery infrastructure [58]. Our view of the SG is aligned with these def-
initions, i.e. it is a power grid that serves the supply driven infrastructure created by
renewable energy supplies and this is enabled by smart components with more com-
munications links added.

According to [81], CPS are an integration of computational and physical processes.
In CPS, embedded computers and networks monitor and control the physical processes,
usually with feedback loops. The physical processes in these systems affect the com-
putations and vice versa. Authors are aligned with this definition and perceive SG as a
subset of CPS. Therefore, while this work is mainly focused on the cyber resilience of
SG, it also includes few cyber resilience methods that may be applicable to other CPS,
e.g. automobile cruise control, water treatment processes, etc.

2.2 Resilience relevance in the power sector
Cybersecurity can be regarded as one of the main aspects of the general concept of
resilience. In [97], resilience is defined as “the ability of a system to withstand, ab-
sorb, and rapidly recover from an external, high-impact, low-probability devastating
event, like an extreme weather event or a cyber attack”. Figure 1 presents the typical
resilience curve [97] of a power system. This curve illustrates how the performance of
the system evolves over time in an event that degrades its state. This is useful in order to
understand the different resilience states along with their main defense characteristics,
such as: robustness/resistance, resourcefulness/redundancy, adaptive self-organization,
etc.

The different resilience states are characterized in [97] by a certain resilience met-
ric, which expresses quantitatively the system reliability or power quality, e.g. the
number of customers affected or the number of residents in a population impacted. For
the sake of clarity and observing the curve of Figure 1, these metrics are described as
follows:

• Resilient state: at this state, a well-designed power system could neutralize the
impact of a launched cyber attack. Configuring a secure and intrusion tolerant
grid at this stage provides a high resilience level which is capable of preventing
unauthorized access and successful attacks.

• Post-event degraded state: in case of an unplanned event, e.g. a cyber at-
tack or a power outage, the performance of the power system might degrade;
the percentage of this degradation depends on the impact of the attack and the
preventive measures that have been applied. Key resilience techniques help re-
duce the impact of the attack and facilitate the progress to restoration state. For
example, redundancy provides operational flexibility to the power system by of-
fering additional resources. It should be noted that the duration of this state can

4



Figure 1: Resilience curve [97].

be very short, thus transforming the trapezoidal shape of the resilience curve to
triangular.

• Restorative state: at this state, the compromised power system has managed
to mitigate the cyber attack and it gradually returns to its normal condition. Its
recovery is almost fully completed. For example, after an accomplished attack,
the power grid should modify its functionality, allocate alternative resources and
optimally restore affected components or applications.

• Post-restoration state: this is the state where the recovery process has been
completed and the power system is again operational. Nevertheless, its resilience
level Rpr might be lower than its initial value Ro. Operational recovery refers to
bringing back the system into a state that is operational, while infrastructure re-
covery refers to the restoration of the resilience level of the system to its initial
value. For example, if all replicas of a SCADA master are compromised, restor-
ing at least one of them will make the system operational again. However, all
the replicas of the SCADA master have to be restored in order to reach the initial
resilience level of the system.

At this point, it is important to explain the meaning of the different variables de-
picted in Figure 1:

• Ro: initial resilience value,

• Rpe: resilience value after a successfully completed cyber attack,

• Rpr: resilience value after attack mitigation,

• te: starting time of the cyber attack,

• tpe: end of the cyber attack,
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• tr: starting time of the attack mitigation,

• tpr: end time of attack mitigation and

• tir: starting time of infrastructure recovery.

In the following section, a brief overview of the NIST reference techniques for
cyber resilience [110] is presented.

2.3 Resilience techniques according to the NIST
The NIST recently published a Special Publication (SP-800-160), titled as “Develop-
ing Cyber Resilient Systems: A Systems Security Engineering Approach” [110], which
identifies a set of fourteen cyber resilience techniques. Each technique includes a set
of standard methodologies and practices which aim to design attack-resilient systems.
In this work, recently published approaches are classified according to the NIST tech-
niques shown in Figure 2. These techniques are described in the remainder of this
section:

• Adaptive response: this technique involves timely and appropriate response to
an attack by reconfiguring some of the system components to alter their func-
tionalities or modify the allocation of the resources. These changes have to be
made without interrupting the operation of the system.

• Segmentation: it prioritizes operations and resources according to their critical-
ity and trustworthiness in order to separate the most vulnerable or attractive ones
and secure them accordingly. Segmentation can take place before the system is
activated or dynamically, while the system operates.

• Redundancy: it embraces the presence of multiple, protected instances of crit-
ical units (called “replicas”), including hardware, information and functions,
eliminates single points of failure and allows the system to survive even after
a successful cyber attack. Redundancy also refers to the preservation of addi-
tional, alternative communication resources. The constant synchronization of
replicas is essential at this point.

• Diversity: this technique refers to heterogeneity in terms of design, architec-
ture or technology so as to make it difficult for adversaries to exploit common
vulnerabilities.

• Deception: it is implemented by hiding important assets, intentionally providing
misleading information or misdirecting adversaries to imitations of the actual
elements of the system. Deceiving adversaries may prevent them from causing
substantial damage to the system, even when they have managed to invade.
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3 Resilience methods and classification
This section addresses the different research works proposed in the literature to increase
the resilience of SG against cyber attacks. Each of these works is explained to some
extent and is associated to: (i) the cyber resilience technique mentioned in Section 2.3
and (ii) the appropriate state of the resilience curve. These relevant works are selected
to demonstrate the feasibility of the proposed classification.

3.1 Adaptive response
Adaptive response is a widely adopted cyber resilience technique for the protection
of the applications of the SG. It is considered as an active way of defense, since the
system is modified in real time, and in such a way that the impact of the attack is
mitigated. This process involves the capability of the system to automatically adjust its
functionality or resource allocation when a cyber attack is identified in order to avoid
operational disruptions. More specifically, adaptive response involves:

• Dynamic reconfiguration: alter the behavior of system components without
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interrupting services; e.g. dynamically change the controller functionality or
traffic routes.

• Dynamic resource allocation: change the allocation of the resources without
terminating critical processes.

Studies that use the adaptive response technique are generally applied at the re-
silient state, post-event degraded state and restorative state. This measure is used after
the detection of an attack or the identification of compromised resources, and aims at
bringing the system to a resilient state. Figure 3 shows the methods that utilize adap-
tive response to achieve resilience against cyber attacks in power grids. Some related
studies are also presented bellow.

3.1.1 Attack-resilient control

Various intelligent control mechanisms have been developed as an adaptive response
to adversaries. They ensure stable operation for the power system in the event of an
attack and provide security at the application layer [124].

In [140], an extra module to the physical control model is added, which is called
Commensurate Response (CR). This technique tackles setpoint attacks, which affect
the input signal of the controller of the plant, and actuation attacks, which directly
affect the output signal of the controller of the plant; it does not consider attacks on
sensors [40]. With the CR module, the rise time of the model (the amount of time the
system needs to reach its steady-state) can be controlled on-demand. As a result, data
integrity attacks can be delayed and possibly prevented, due to the intentional slow
down of the response of the system. The proposed solution is evaluated by using a case
study on automobile cruise control. The system is exposed to data integrity attacks and
it is demonstrated that the CR module improves the cyber resilience of the system.

An attack-resilient control scheme for Distributed Energy Resources (DER) is pre-
sented in [57]. The traditional DER unit and its feedback control is integrated with a
Sliding Mode Observer (SMO), which is a non-linear control method, in order to de-
crease the impact of a cyber attack. The SMO module is inserted between the output
and the control input of the DER plant and is capable of estimating the attack signal
that is generated by adversaries. The original and correct output data can be retrieved
by removing the attack signal estimation from the corrupted measurements of the DER
plant. For evaluation, a detailed non-linear, switch model of a three-phase converter-
base DER is used, considering the following attack scenarios: DoS, replay attack and
bias injection.

In [98], an attack-resilient framework for Energy Management System (EMS) is
presented. This framework is composed of a data-driven, attack detection module and a
resilient control policy which focuses on preserving the stability of the physical system
during and after an attack. The resilient control policy depends on a virtual sensor,
implemented in the supervisory controller using a Kalman filter, which eliminates the
impact of the corrupted measurements on the system. The performance of the proposed
framework is evaluated using a reduced order model of a real EMS site and simulated
attacks.
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There are several studies that utilize attack-resilient control in CPS in general, in
order to provide a resilient system against attacks. These approaches could be poten-
tially introduced in power system applications in the future. For instance, in [51] com-
pressed sensing techniques are applied to estimate the state of the plant during attacks.
Numerical simulations have been conducted using the IEEE 14-bus power network in
MATLAB. In [96], an attack-resilient state estimator is proposed that is applied on the
cruise control of an electric, unmanned vehicle. It is demonstrated that the attacker
cannot destabilize the system by exploiting the difference between the model used for
state estimation and the real physical dynamics of the system. In [30], a control method
based on a recursive filtering algorithm is implemented against specific sensor attacks.
This technique estimates the states of the system by leveraging the redundant informa-
tion in the controller. Both [96] and [30] methods are evaluated using the LandShark,
an electric unmanned ground vehicle [6].

3.1.2 Model-based response

To mitigate cyber attacks, a common practice in CPS is the replacement of affected
measurements with approximated ones. Approximated measurements usually derive
from a representative model that captures the behavior of the physical system for a
given control signal as input. This approach is considered a model-based response,
since it takes advantage of such a model and uses its output as a response against cyber
attacks. A typical control diagram of a simplified CPS that uses model-based response
is shown in Figure 4. The “Model” module, which is a representative model of the
physical system, operates in parallel with the “Plant” module, which is the physical
system, and they simultaneously receive the control signal u. Afterwards, “Sensors”
communicate with “Plant” to collect its y measurements while the “Model” produces
an estimation ŷ of these measurements. Both y and ŷ signals are sent to the “Detector”
in order to decide if the actual measurements have been affected and pass the proper ỹ
to the controller. Finally, the “Controller” receives a reliable ỹ signal and along with the
“Actuator”, they compute the right u signal. The aforementioned steps are constantly
repeated to keep controlling and protecting the “Plant”.

An approach that considers model-based response is presented in [34]. In this
work, a representative linear model is developed that can emulate the actual behavior
of the physical system under investigation. This model is obtained by linearizing the
Tennessee-Eastman process control system model [108] (which is also used for eval-
uation purposes) about the steady-state operating conditions. The detection method
derives from the comparison of the expected output signal, which is produced by the
aforementioned linear model, with the measured output signal. Any deviation from a
predefined threshold raises an alarm, which, in turn, activates the response mechanism.
The proposed response mechanism replaces the measurements from the compromised
sensor with a measurement sequence that the linear model generates. Similarly, in
[92], a SCADA system with Software Defined Network (SDN) assistance is presented,
which replaces compromised measurements with estimated ones. For evaluation, an
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Figure 4: Typical model-based response

extension of the MiniCPS [23] is developed in order to provide SDN functionalities for
both supervisory and field networks.

In [123], data integrity attacks are mitigated by using the mean value of the Area
Control Error (ACE) forecast instead of the standard ACE equation of the Automatic
Generation Control (AGC), when an intrusion is identified. The method is validated
using a three area power system model, where its parameters are provided but its sim-
ulation software is missing. In the same vein, an algorithm is proposed in [127] that
estimates which sensor data links have been affected to identify the attack. If the attack
is identified, then the power export deviation is accounted for the ACE computation;
otherwise, an attack-mitigating state estimation program is launched. This algorithm is
validated by experiments on a physical 16-bus power system testbed and PowerWorld
[7] simulations based on a 37-bus power system model.

In [135], a data clearing method based on Conditional Deep Belief Networks
(CDBN) is investigated as a real time response. Observations indicate a high corre-
lation among the measurements of Phasor Measurement Units (PMU) that belong to
the same cluster of a hierarchical, cyber-physical, multi-agent control environment.
The agent with the highest inertia generator in a cluster is termed the lead agent while
the others are referred to as secondary. By feeding historical data into two identical
CDBNs, one for the measurements of the leader agent and one for the measurements
of the secondaries, the actual behavior of the system can be predicted. Thus, if the
outputs of the two CDBNs agree there is no report of an attack, alternatively, mea-
surements are replaced by the ones deriving from the secondary agent with the highest
reputation metric. This method is evaluated by modelling the 39-bus New England test
system in MATLAB/Simulink. The authors expand their work in [64] which is focused
on the detection of False Data Injection (FDI) attacks.

Another study that considers deep learning algorithms in order to predict the mea-
surements of a Load Frequency Control (LFC) system under a DoS attack is presented
in [84]. In this work, a real time data prediction algorithm is provided, which is a com-
bination of a deep autoencoder and an Extreme Learning Machine (ELM) algorithm.
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This prediction algorithm estimates the data that are lost due to the DoS attack so as
to keep the LFC system in a normal and operational state. This method is evaluated in
MATLAB/Simulink by using the single, two and three area LFC models provided in
[29].

3.1.3 Incident-response scheme

There are techniques that propose an attack-response policy as a defensive strategy
when an attack on the system has been identified. This response policy may involve
individual steps, such as discarding traffic, component isolation, etc., or a general pro-
cess with multiple steps, such as system reconfiguration, protection of vulnerable tar-
gets and system shutdown, among others. There are also schemes that generate this
policy on-demand, either before the activation of the system or in real time.

In [38], an autonomously self-protecting SCADA system with three layers of se-
curity measures is suggested. The first line of defense uses historical observations of
the controlled variables and selected security features of the SCADA system in or-
der to predict if the next state of the system is dangerous. The future performance of
the system is predicted by the ARIMA (Autoregressive Integrated Moving-Average)
forecasting model [141]. Furthermore, there is a hybrid Intrusion Detection System
(IDS) based on anomaly and signature detection techniques, such as Naive Bayes clas-
sifier and a set predefined rules. Finally, if the system is compromised, a multi-criteria
analysis controller is implemented to propose an appropriate response. The proposed
defense scheme is evaluated by a water storage tank which is modeled in a laboratory-
scale control system in Mississippi State University SCADA Security Laboratory.

Game theory is another scientific field that can provide defensive strategies against
attackers. Game models can be run offline and reveal which are the optimal responses
depending on the adversary’s moves. For example, in [65, 66, 111] sequential game
between an adversary and a SCADA administrator is formulated in order to analyze
their interactions in case of cyber attack. Both the attacker’s and the defender’s moves
are predefined and the payoff matrix is constructed with the intention of representing
a real world scenario. By using the backward induction process to find the Subgame
Perfect Nash Equilibrium of the whole game, a decision-making analysis derives that
can be adopted by the operator as an attack-response scheme. The proposed approach is
analyzed using the case study of a SCADA system sensor network but it is not evaluated
with any simulation.

A typical study that uses a game theory method to apply active response against
cyber attacks is presented in [125]. In this work, the investigated attacks can cause
transient instability to synchronous generators by stealthily compromising DER actu-
ators. As a defensive strategy, a non-cooperative, differential game is modelled that
discovers the countermeasure vector. This vector describes which policy should be fol-
lowed at each state by unaffected DER control signals in order to suppress attacks on
actuators. This work can also serve as vulnerability assessment, since it reveals the in-
dividual security risk of the DER. For evaluation, an IEEE ten machine 39-bus system
is implemented in MATLAB/Simulink under various settings.

In [83], a zero-sum game is modelled that can represent the decision-making pro-
cess between a sensor node and an adversary who launches DoS attacks. This method-

11



ology can be applied both offline, for a scheduled strategy, and in real time, if the
necessary information about previous states is available. The method is not evaluated
in any platform.

3.1.4 Software defined networking

SDN is a flexible technology that differs from traditional networks in the context of
programmability. The core idea behind SDN is to transfer the network traffic decisions
from hardware, like network switches, to a programmable environment, like SDN con-
trollers [28]. The main benefit of this approach is that the controller can take optimal
decisions about the forwarding responsibilities of the network, due to its flexibility and
complete overview of the state of the system.

An integration of SDN with network virtualization is presented in [19]. This in-
tegration can monitor the data exchange and dynamically configure the data traffic
of a SG according to certain QoS policies. Programmability of SDN facilitates the
process of communication link restoration by discovering alternative, available topolo-
gies. For evaluation, a virtualized network is simulated within a single physical ma-
chine using OpenStack [8] to create multiple entities in Virtual Machines (VM) and
OpenvSwitch [9, 10] to provide the functionality of SDN. In [138], a centralized con-
troller dynamically manages data flows across the nodes by constantly monitoring the
components of the network. The controller is simulated and evaluated by using NOX
controller [60] and OpenvSwitch. In [107], a microgrid is integrated with SDN to
ensure real time route reconfiguration, considering the latency requirements and rate
limitation of the network. For evaluation, a hardware-in-the-loop environment is used
that includes OPAL-RT [11], OpenFlow switches and a Microgrid Central Controller
(MGCC), which is based on a campus microgrid at the University of Connecticut.

A defense scheme for a SDN-based SG environment is described in [106], which
is applied but not limited to substation components. The idea is that the system can
identify which communication links are more likely to be attacked by adversaries
with the Link Failure Learning (LFL) algorithm. Therefore, the traffic is dynamically
rerouted via the SDN controller, based on the most reliable communication links. LFL
is implemented with a Multi-Armed Bandit Approach (MAB) algorithm, a classic rein-
forcement learning example, where the SDN controller is constantly informed from the
switches about link failures and rewards the most resilient communication paths. For
evaluation, a substation environment that implements the IEC 61850 standard is con-
sidered using Mininet 2.3, RYU SDN controller 4.22 and OpenFlow 1.3 compatible
switches.

In [90], the problem of link flood attacks in a IEC 61850-based substation com-
munication network is considered. A security score model of an IEC 61850 network,
initially proposed in [102], is enhanced by taking into account the criticality of each
device in the SG network. The resilience of the substation against link flood attacks
is increased through the SDN architecture. Using the threat mitigatory module of the
OpenFlow controller and the security score, the system is able to respond with an ef-
fective mitigation scheme against attacks without affecting the functionality of the SG.
Also, the system can detect malicious behaviour via the threat detector module of the
SDN. The model is evaluated in an experimental Global Environment For Network
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Innovations (GENI) [12] testbed, characterized by wide-area network dynamics and
realistic traffic scenarios to address IEC 61850 network attacks.

3.2 Segmentation
The purpose of the segmentation technique is to segregate the components and func-
tions of the system (e.g. sensors in power grid) according to criticality or trustworthy
levels. In this way, the system operators can effectively spend their security resources,
follow a specific recovery sequence, isolate security functions from non-security func-
tions, etc. Therefore, segmentation may entail:

• Predefined segmentation: define resource sets based on their criticality so that
they can be protected separately before the system is activated.

• Dynamic segmentation: modify the configuration of protected segments while
the system is operating.

This resilience technique is mainly applied to the resilient state, but may also be
applied to the restorative state. When the segmentation technique is applied to assist
recovery processes, it is performed in offline mode, before the system is activated, to
ensure that critical components will be protected separately. In this way, the resilience
level of the system is increased. Figure 5 shows algorithms and technologies used for
segmentation against cyber attacks in power grids. Some related studies are presented
in the following subsections.

3.2.1 Optimization methods

In order to properly discover the critical parts in power systems it is important to define
a vulnerability metric for each element and sort them accordingly. This type of ranking
is used by the system operator to define critical and non-critical segments in the SG.
This is a typical optimization problem where the goal is to minimize or maximize a
value; e.g. vulnerability metric, subject to certain constraints, or security budget.

For example, in [50] the chances of a successful false data injection attack on smart
meters is investigated, under a limited budget. This method searches for all sets of
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meters that can bypass the bad data detection defense and classifies them as target
sets. With the target sets, the vulnerability index metric for every meter is constructed,
which measures the amount of attack vectors in which a protected meter appears and
the damage caused by a hijacked meter. Finally, meters are ranked based on their
vulnerability index and the top-k affordable ones are protected. The performance of
this method is evaluated by simulating false data injection attacks against IEEE 14-
bus, 30-bus, 57-bus, 118-bus and 300-bus systems.

3.2.2 Game theory

Game theory models have been also proposed for discovering the most critical parts
in a power system, similar to the optimization methods described in Section 3.2.1. By
developing an attacker/defender game, game theory models can conduct a vulnerability
analysis for the power system under investigation. In this way, the system operators can
discover which parts of the power system are more likely to be targeted and can secure
them accordingly. Vulnerability analysis can also contribute to the development of
security guidelines in case of successful cyber attacks, as a defensive response against
them.

In [45], a strictly competitive game is designed that approximates the interaction
between attacker and defender in case of FDI attacks against power system state es-
timation. In this way, the least-budget defense strategy is designed to make power
systems immune to FDI attacks. Then, an extension to the proposed problem is con-
sidered, where the number of protected meters is limited, making the proposed method
feasible for real-life applications. Simulations have been performed on several IEEE
test power systems (IEEE 9-bus, 14-bus, 30-bus, 118-bus, and 300-bus), using MAT-
POWER [142], to verify the scalability of the proposed approach.

3.2.3 Reinforcement learning

A common approach for optimally recovering different components of the power grid
is to develop reinforcement learning algorithms. Reinforcement learning is a process
that allows a software agent to adopt optimal behavior by interacting with a dynamic
environment via trial-and-error [73]. The majority of the proposed methods attempt to
find an optimal strategy to self-heal the system under specific restrictions, e.g. recovery
time or cost.

A Q-learning techniques is implemented in [71], that models the importance of the
communication links and finds the optimal set of links for recovery under a limited
budget. For evaluation, large-scale failures are simulated in MATLAB in order to com-
pare the proposed recovery strategy with other ones. In [139], Q-learning is applied to
discover an optimal link/node recovery sequence in feasible time. The simulation re-
sults are demonstrated on three benchmarks under the IEEE 300-bus system. In [132],
the optimal re-closing time of power transmission lines after a successful cyber attack
is investigated using a deep reinforcement learning method. For validation, the re-
covery strategy is compared with two alternative ones for different scenarios within a
simulated, modified 9-bus system, whose parameters are provided.
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Reinforcement learning can also be leveraged to keep the system at a resilient state.
In [94], cognitive radio network technology is considered for the SG, which is suitable
for wide area monitoring without additional cost. To make it difficult for an attacker to
accomplish a jamming attack, the transmitter and the receiver follow a MAB approach
to choose the most likely available and jamming-free channels to communicate. Suc-
cessful acknowledgment signals is a metric that determines whether a selected channel
combination in the strategies of the transmitter and the receiver will be rewarded or
not. In the long term, channels with the highest potential of being available are chosen
for communication. The performance of the proposed scheme is measured by the av-
erage throughput and the similarity of the secondary users’ knowledge on the channel
availability but the details of the experimental environment are not provided.

3.2.4 Software defined networking

The disconnection of compromised elements in a PMU network is suggested in [85]
in order to prevent a cyber attack from further expansion. This utility adopts a SDN
architecture since reconfiguration of switches is easier with such a technology. Isolat-
ing a set of interconnected units though, may cause data loss from functional PMU and
Phasor Data Concentrators (PDC) and affect critical functionalities such as state esti-
mation. Therefore, discovering new communication links to reconnect PMU and PDC
with the control center using the dynamic nature of a SDN, makes the system capable
of self-recovery. Furthermore, an integer linear program is formulated along with a
heuristic algorithm to boost self-healing procedure, taking system requirements into
consideration. The proposed defense scheme is evaluated by MATLAB simulations in
both IEEE 30-bus and 118-bus systems.

3.3 Redundancy
Redundancy, as a cyber resilience technique, uses additional resources of critical com-
ponents in order to reduce the possibility of information or services loss. Namely, the
main idea when redundant systems are deployed is to eliminate single points of fail-
ures, like a single SCADA master. Thus, it is more difficult for adversaries to launch
a successful cyber attack because they have to compromise several different parts of
the system, making it more resilient. It is important to mention that the redundancy
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technique replicates multiple systems of the same kind; whereas diversity, as we will
discuss later, uses multiple systems of a different kind but with similar functionality.
Different approaches and examples of redundancy mechanisms include the following:

• Backup: keep backups of important elements of the system to restore them when
an attack has been launched.

• Additional capacity: reserve extra capacity for information storage in terms
of space, processing in terms of MHz/GHz or communication, e.g. additional
bandwidth.

• Replication: duplicate hardware/software components while keeping their main
operational functions synchronized all the time. To achieve this, it is necessary to
maintain one or more alternate processing units, maintain a redundant secondary
system, etc.

This widely used resilience technique entails the inclusion of additional resources,
as backup support, before the system is activated in order to leverage them in case
of a successful cyber attack. As a result, it is mainly applied to the resilient state to
boost the resilience level of the system. There are also studies that are applied to the
restorative state but this research field is still at its infancy. In Figure 6, algorithms and
technologies that contemplate redundancy to achieve resilience against cyber attacks
in power grids are depicted. Various studies that comprise the aforementioned strategy
are presented below.

3.3.1 Intrusion tolerant systems

In [52], an extra layer to the conventional SCADA architecture is added to increase its
survivability against cyber attacks. This new layer consists of a Filtering Unit (FU)
which serves as a rule-based, malicious packet detector between the master and slave
units of a SCADA system to decide whether a command should be executed or not. In
this sense, the master device communicates with the slave device through the FU via an
encrypted Modbus protocol. In order to tackle the problem of a concurrent corruption
of the master and the FU, the single FU is replaced by a mesh of N filtering units.
This topology boosts the resilience of a SCADA system because adversaries have to
compromise at least K different filtering units (where K > N) to execute their attack.
This architecture is validated in a laboratory environment which replicates the process
network of a typical power plant [53].

In [76], a survivable architecture for the master unit of a SCADA system is pro-
posed by including an intrusion tolerant replication system which is implemented with
the Prime replication protocol [22, 77]. The main objective of this work is the elimina-
tion of the issues that emerge due to the architectural difference between the SCADA
system and the intrusion tolerant replication systems. For evaluation, the replication
engine is integrated with a real SCADA master product for electricity distribution and
a proxy is developed to integrate SCADA master with an RTU.

An intrusion tolerant SCADA system is proposed in [27]. This architecture (called
“Spire”) tackles the attacks against systems that use the Prime intrusion tolerant repli-
cation engine for the master unit of a SCADA system. Moreover, it provides proactive
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recovery with periodical replica reboot, operating system level diversity and network-
level intrusion tolerance by running the spines messaging framework which offers link
redundancy among control centers and substations. The different topologies that the
replicas of the SCADA master form are thoroughly investigated in order to discover the
most suitable ones based on the attack case, bearing in mind the Byzantine fault toler-
ance requirements. Spire is deployed in a real wide-area cloud environment to evaluate
its ability to support the timeliness requirements of the power grid and has participated
in a red-team exercise.

A system that also adds redundancy and diversity techniques to enhance its re-
silience against spoofing attacks is presented in [55]. In a standard Wide Area Mon-
itoring System (WAMS) that uses PMU, a single Global Positioning System (GPS)
receiver timestamps every metering unit. On the contrary, in the proposed architec-
ture each PMU (or cluster of PMU) operates under its own GPS receiver in order to
preserve the synchronization of WAMS in case of successful spoofing attacks against
synchrophasors. Time synchronization among GPS receivers is achieved with Network
Time Protocol (NTP) [67]. For the experiments, two PMU with a power grid that works
at 60 Hz are used but the type of the testbed (real or simulated) is not clarified.

In [80], a intrusion tolerant architecture for SDN-assisted critical infrastructures
with a redundant controller is presented. Although this approach chooses an election-
based consensus system that is well-known for its tolerance against Byzantine faults,
its drawback is that it cannot meet the strict functional requirements of the critical
infrastructures. The integration of the system with an intermediate broker addresses
this issue. The intermediate broker stores the necessary information about status and
request packets and communicates with every SDN controller operating in parallel.
Furthermore, it keeps all controller replicas informed about the status of the network
and thus, any delay caused by synchronization is eliminated. This architecture is not
evaluated with any simulation.

3.3.2 Mesh networks

There are several studies that recommend the design of multi-hop mesh networks to
tackle congestion and DoS attacks. In this sense, a distributed middleware architecture
is presented in [136] that leverages redundant gateway nodes to reroute congested traf-
fic caused by a cyber attack. Here, alternative paths are evaluated based on Quality of
Experience (QoE) criteria. The proposed architecture is validated in two cases using a
real time co-simulation test system of NS3 and MATLAB/Simulink. Similarly, in [133]
rules inspired by flocking theory are developed for effective network routing in case of
data traffic congestion. This work is improved in [134], which focuses on a multicast
route decision scheme capable of efficiently compensating the bandwidth consumption
with the end-to-end latency. Both of them are employing MATLAB/Simullink for their
simulations.

In [56], a middleware is proposed as a complementary communication channel
between the master and slave units of a SCADA system. Among others, a peer-to-
peer (P2P) middleware technology is used to meet the large-scale design requirements
of the SCADA system. The system is hardened via path redundancy, which provides
an abundance of communication links for the transferred data and data replication,
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which increases the data availability throughout the communication network. In case
of a node crash, sensor messages can be obtained from the P2P overlay network and
data corruption can be prevented by identifying a message with a replica stored in the
P2P network. A simulation-based evaluation is followed using the OMNet++ [100], a
discrete event simulator.

Another attack resilient architecture that leverages mesh networking is proposed in
[70]. This architecture includes a power distribution network composed of smart meters
that communicate with local controllers which, in turn, are supervised by substation
controllers. Local controllers are connected with each other in mesh topology in order
to maintain high data delivery rate in case of successful jamming attacks. When such
an attack is detected, local controllers send the channel hopping sequences to the smart
meters. Then, smart meters select which local controller to choose at each time step
in order to make it difficult for jammers to learn these sequences. Also, this work is
extended in [86] to further reduce the effects of a jamming attack. In this updated
version, a retransmission packet strategy between smart meters and local controllers
is utilized to record lost packets and resend them. This framework is evaluated by
simulating a smart grid communication subsystem in Matlab 2013b.

In [20], a redundancy-based restoration mechanism is designed for a network in-
frastructure. This infrastructure consists of three layers, where a fog-based architecture
provides the necessary redundancy in order to protect specific cyber-physical control
devices. The main idea is the link replication with the assistance of fog computing in
order to keep the control of the system active all the time. To achieve this in time, a
forecasting method that predicts a possible threat is proposed based on k-means and k-
nearest neighbor algorithms. Two case studies that consider different attack strategies
have been implemented in MATLAB for evaluation.

3.3.3 Multipath protocols

In [44], an extension of the Multipath-TCP (MPTCP) transportation protocol is em-
ployed for WAMS to mitigate the impact of DoS/DDoS attacks. Particularly, MPTCP
establishes multiple Transmission Control Protocol (TCP) connections between two
nodes via different network interfaces, called subflows. In this work, subflows between
PMU and PDC are randomly opened and closed over a certain amount of time. Thus, a
successful attack on network resources is inadequate because of the limited lifespan of
connections. Data is transmitted successfully with path redundancy and experiments
indicate that this mechanism respects the latency constraints of WAMS. A significantly
improved version of this work, in terms of performance and resilience, is outlined in
[43]. For evaluation, the NorNet testbed [47] is used which consists of a collection of
multihomed nodes distributed throughout Norway.

3.4 Diversity
Unlike redundancy, diversity deploys multiple, heterogeneous elements that serve the
same purpose but share unique features among them; e.g. multiple communication
links of different types. Diversity was introduced to tackle the fate sharing problem
of replicas [128] that is caused by the redundancy technique. If an attacker manages
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to compromise one replica, it is highly likely to affect all of them [20]. Furthermore,
an adversary might spend valuable resources on a diversified system or could apply
significant effort to inappropriate targets. This technique can be considered as comple-
mentary to redundancy since there are several studies where these techniques coexist
and support one another. Different approaches and examples of diversity are presented
below:

• Synthetic diversity: diverse software/hardware implementations to generate a
variety of instances.

• Design diversity: use alternative designs to provide equivalent functionality.

• Path diversity: offer multiple independent paths for control and communica-
tions.

Similar to redundancy, diversity is configured in offline mode to make it difficult
for adversaries to exploit redundant systems if some replicas are compromised. Hence,
this resilience technique can be applied at the resilient state. There are also studies that
are used at the restorative state, but this research field is still at its infancy. Figure 7
depicts the methods that use the diversity technique to achieve resilience against cyber
attacks in power grids. In the following subsections, studies apply the aforementioned
methods are presented.

3.4.1 Intrusion tolerant systems

Some of the intrusion tolerant systems described in Section 3.3 apply the diversity
technique alongside redundancy [20, 27, 52, 76]. For instance, in [52] design-level
diversity is used by deploying each filtering unit on a different operating system with
alternate configurations. Similarly, in [27], diversity is applied with different oper-
ating systems but is also extended to application level, where the compiler generates
different types of software with same functionality. In [76], diversity is achieved by
incorporating a single operating system with Address Space Layout Randomization
(ASLR) [118]. Morevoer, this defensive method offers support for automatic software
generation at compilation time [54] and for an individual private key as a requirement
to send sensitive information from each replica. A summary of these synthetic level
diversity methods is depicted in Table 1.
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Table 1: Synthetic diversity

Intrusion tolerant systems

Operating
system level

• Different types of OS

• ASLR

Application
level

• N-version
programming [24],
[78]

• Compiler-based
software
diversification

3.4.2 Software defined networking

The problem of compromised communication links can be tackled with path diver-
sity. If a communication link is compromised, then another backup path of a different
technology can be used. Path diversity is usually facilitated by a SDN-based system
due to its flexibility [82]. Thus, diversity along with adaptive response is a suitable
combination of cyber resilience techniques, widely adopted by research community.
For example, in [26] the SDN controller automatically alters flow tables when a wired
communication link has failed and the traffic is redirected through a backup wireless
interface. This approach is tested on a simulated environment which is an integration
of Mininet with NS-3 [13] network simulator.

In [25], the capabilities of SDN are used to improve the resilience of communi-
cation across different substations. By combining communication path diversity and
the functionalities of SDN, an additional wireless network interface is deployed that
acts as an auxiliary passage when wired connections suffer from disturbances. In this
work, NS-3 is integrated with the Mininet environment to emulate the interconnections
between substations. This is an interesting point for experimental purposes since real
substation facilities are not always available or practical. The method is evaluated by
measuring end-to-end packet and recovery delay for User Datagram Protocol (UDP)
and TCP connections for several topologies.

3.5 Deception
A common method to protect critical parts of an ICT infrastructure when unauthorized
access to the system has been granted, is to mislead the intruders. This technique is
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Table 2: Overview of Methods

Paper
Resilience

Method Technique State

[140], [57], [98] Attack-resilient control Adaptive response Restorative state

[51], [96], [30] Attack-resilient control Adaptive response Post-event degraded state

[34], [92], [123],
[127], [135], [84] Model-based response Adaptive response Post-event degraded state

[38], [66], [65],
[125], [83] Incident-response scheme Adaptive response Resilient state

[19], [90] SDN Adaptive response Resilient state

[138], [107], [106] SDN Adaptive response Restorative state

[50] Optimization Segmentation Resilient state

[45] Game theory Segmentation Resilient state

[94] Reinforcement Learning Segmentation Resilient state

[71], [139], [132] Reinforcement learning Segmentation Restorative state

[85] SDN Segmentation Resilient state

[52], [76], [27],
[55], [80] Intrusion tolerant systems Redundancy Resilient state

[136], [133], [134],
[56], [70] Mesh networks Redundancy Resilient state

[20] Mesh networks Redundancy Restorative state

[44], [43] Multipath protocols Redundancy Resilient state

[52], [76], [27] Intrusion tolerant systems Diversity Resilient state

[20] Intrusion tolerant systems Diversity Restorative state

[26], [25] SDN Diversity Resilient state

[101], [109], [72],
[119], [33], [69],

[79]
Honeypots Deception Resilient state

[89], [105], [115],
[117], [116] Honeynets Deception Resilient state

[114], [92] SDN/Honeypot Deception Resilient state
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called deception. With this technique, the system operator tries to misdirect or delay
the adversaries in order to keep a track of their behavior and their methods, hide critical
assets from them, waste their resources, and ultimately, force them to launch an attack
to the wrong target. Different approaches and examples of deception are presented
below:

• Misdirection: enable decoy units or environments, e.g. honeypots, to attract the
activities of the adversaries.

• Misinformation: intentionally provide misleading information to attackers.

Intentional exposure of resources which are similar to the critical ones is a preven-
tive technique to enhance the resilience level of SG. As a result, deception is associ-
ated with the resilient state. In Figure 8, the most representative deception methods
to achieve resilience against cyber attacks in power grids are shown. Moreover, recent
studies that apply deception technique are presented in the following subsections.

3.5.1 Honeypots

The concept of honeypot is to emulate the operation of a real computer system in order
to learn the behavior of the attackers and distract them from more valuable resources
[121]. Honeypots can be grouped into two general categories: production honeypots
that protect an organization and research honeypots that are used to gather informa-
tion [122]. Research honeypots are designed to gain information about the attackers.
They are mainly deployed by research organizations, such as universities and security
research companies. This work focuses on research honeypots.

In the literature, research honeypots have been proposed in order to gather infor-
mation about the motives and tactics of adversaries. For example, the Crysys PLC
(CryPLH) [33] is a high-interactive honeypot that emulates a commercial Siemens
Simatic S7-300 PLC. An enhanced version of CryPLH can be found in [69], where
many bugs of the initial environment have been eliminated. For evaluation, CryPLH
was implemented in a laboratory setup along with the real PLC device. Both of them
were publicly accessible to verify if they are indistinguishable from the perspective of
attackers. Moreover, a low-interaction honeypot (called SHaPe) is introduced in [79],
which is specialized in substation automation systems. The performance of SHaPe in
not evaluated by any simulation or experiment.
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Conpot [109] is another low-interactive SCADA honeypot that aims to collect intel-
ligence about the motives and methods of adversaries. To evaluate the SCADA honey-
pot Conpot, a virtualized image was created in [72] and used in multiple Amazon Web
Services’ (AWS) zones. For the purposes of the honeypot analysis, an in-depth review
of both the Guardian AST gas pump monitoring system and default Siemens S7-200
ICS was performed together with a brief analysis of the IPMI - 371 and Kamstrup –
382 smart meter SCADA devices.

3.5.2 Honeynets

In order to develop honeypot solutions that can adequately emulate a large-scale sys-
tem such as SG, honeynets have been proposed in the literature. Honeynet is a set of
interconnected honeypots where each honeypot individually delivers a particular task.

A honeynet system that is composed of different honeypot substations has been
implemented in [89]. These honeypot substations communicate with a virtual power
grid in order to give the attackers the sense of a realistic topology which can be used
as a decoy. A proof-of-concept implementation is presented along with its preliminary
evaluation. The implementation includes open-source tools, namely VirtualBox [14]
for host and device vitualization, Mininet [15] for network emulation and SoftGrid
[61] for integrated cyber-physical simulation.

Another honeynet is described in [105]. In this work, a single substation is emu-
lated which is composed of honeypots simulating the Human Machine Interface (HMI)
and Intelligent Electronic Devices (IEDs). This framework is evaluated by simulating
the power flow of an electric grid with GridLABD from Pacific Northwest National
Laboratory. GridLABD comprises multiple substations and emulates the IEC 61850
digital communications protocol by extending Conpot honeypot.

In [115, 117], an architecture with multiple honeypot instances is deployed. It
is designed to imitate industrial communication protocols, such as Modbus and IEC
60870-5-104, for tracking the processes of malicious activities. Moreover, this im-
plementation is expanded in [116] to cover more industrial communication protocols.
This framework and its implementation were evaluated through experiments that were
carried out using the Amazon EC2 cloud environment. The protocols exposed are
Modbus, DNP3, ICCP, IEC-104, SNMP (v1/2/3), TFTP and XMPP and the duration
of the experiments was 28 days.

3.5.3 Software defined networking

SDN is again another technology that can implement deception techniques, specifically
when it is used in conjunction with honeypots. For example, a honeypot network is in-
troduced in [114] which is identical to the field network under investigation. When the
IDS of the system identifies an adversary, it informs the SDN controller to properly
modify the flow tables in order to relocate the attacker and lead them to the honey-
pot. With this approach, the attacker can be isolated from the actual process without
affecting its performance. The proposed framework is evaluated within a network of
physically separated VM using Mininet, MiniCPS and ONOS [16].
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Table 3: Resilience techniques vs. states

States
Techniques

Adap-
tive
re-

sponse

Seg-
menta-

tion

Redun-
dancy

Diver-
sity

Decep-
tion

Resilient state X X X X X

Post-event degraded state X

Restorative state X X

Post-restoration state

Moreover, the incident-response system for the water treatment SCADA system,
previously presented in [92], can also use SDN for deception technique. According
to this work, another potential incident-response strategy to mitigate an attack is to
mislead an adversary to a honeypot when an attack has been detected. The traffic is
headed towards the honeypot when it is selected by the preconfigured incident-response
policy of the SDN controller.

4 Research challenges and open issues
The previous analysis of existing methods that enhance the cyber resilience of SG,
reveals the difficulties that are encountered during the design of such methods, the
relevant topics that are not covered in the literature and the algorithms or technologies
that could be potentially considered in the future. This section is dedicated to the cyber
resilience challenges of SG that have been identified from the analysis of Section 3.
Research gaps and directions about future research are also given in this section.

4.1 Research challenges
4.1.1 Operational requirements

From the analysis of Section 3, it is clearly illustrated that the SG differs from tradi-
tional energy systems (power grids that are not integrated with ICT technology) in that
their operational requirements [21] (e.g. response time, measurement accuracy, etc.)
are strict. Therefore, a proposed cyber resilience solution cannot be considered reliable
if it violates the operational requirements of the SG, regardless of its effectiveness. For
instance, if a defensive mechanism manages to redirect the important information in a
compromised system but fails to deliver it on time, then it is not useful for SG.

To address this challenge, any proposed defense should validate that the operational
limits are followed. This can be achieved via extensive experiments which demon-
strate that, when the defense mechanism is activated, the system remains still opera-
tional. Moreover, for better evaluation these experiments should be performed on a real
testbed.
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4.1.2 SDN limitations

The analysis in Section 3 shows that there are several methods that use SDN to increase
the cyber resilience of SG. Nevertheless, there are still aspects in SDN technology that
have not been sufficiently considered. For example, the SDN controller is the key part
of this technology since it is responsible for the network management. This means
that if it fails, the entire system will stop operating, and therefore, it is considered as
a Single Point of Failure (SPoF). Designing systems with SPoFs is a bad practice in
general and they should be heavily protected by system engineers or, ideally, elimi-
nated. Moreover, the computational cost of traffic rerouting SDN solutions often fails
to comply with a crucial requirement in automation scenarios of critical infrastructures
- to incur minimal overhead, as well as zero interference in case of failure.

Another critical aspect is the selection of the protocol that will enable the SDN
technology. Many of the methods described in Section 3 are utilizing SDN based on
OpenFlow protocol. OpenFlow is a protocol that enables SDN controllers to determine
the path of network packets across a network of switches. Until recently, the terms
OpenFlow and SDN were nearly interchangeable. However, OpenFlow has drawbacks
that prevent the smooth integration of SDN with the SG environment. For example,
Internet Service Providers cannot choose specific OpenFlow functions (although not
all of them are always needed) and thus, costs are high. Moreover, each new OpenFlow
version requires a network-switch vendor that supports the protocol, making it vendor-
dependent.

4.1.3 Collaborative resilience

As seen in Table 2, standard ICT technologies and software components such as intru-
sion tolerant systems, mesh networks, SDN, honeypots, etc., dominate the techniques
of redundancy, diversity and deception − some of them adding an important economic
burden. Their techniques are mainly deployed before the cyber attack takes place and
aim to make it difficult for the adversary to affect the system components or data. The
other family of mechanisms, which derives from the power system community, tends
to have a more active role in terms of resilience, once the system is compromised. This
is reasonable if we consider the fact that computer systems generally transit between
known, discrete states contrary to power systems, where their dynamic nature poses
stability issues.

Given this, a critical challenge at this point is how to harmonically combine com-
puter science and power system solutions to provide defense in depth with multiple
levels of cyber resilience. Methods that would integrate these different solutions into a
uniform one, could significantly enhance the cyber resilience of SG.

4.1.4 Distinction between cyber attack and plant failures

Cyber attacks and plant failures are two different types of unplanned events that both
have a negative impact on the SG. Identifying whether a degradation in the performance
of the SG is due to a cyber attack or plant failure is important in order to apply the
proper countermeasures. Moreover, proposed methods that tackle a cyber attack are
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not necessarily appropriate for plant failures and vice versa. For example, the typical
model-based response that is demonstrated in Fig. 4 has been widely adopted in the
academic literature to mitigate cyber attacks against the SG but it might fail when the
actual signal is affected by a plant failure.

However, this distinction is a very challenging task and has been rarely addressed
[137]. It is advisable for researchers to put their efforts towards the distinction between
cyber attacks and plant failures in order to apply the proper recovery methods. The
special features of each unplanned event have to be investigated in order to distinguish
the one from the other.

4.2 Open Issues
In Section 3, a variety of methods that aim to make SG more cyber resilient is briefly
analyzed. Nevertheless, there are still pending issues that have not been sufficiently
considered and thus, they become interesting open issues which are worth investiga-
tion. This section is dedicated to these open issues.

4.2.1 Standardization

It has been already discussed that SG is a highly complex infrastructure, where many
heterogeneous technologies constantly cooperate altogether. In this sense, achieving
high levels of cyber resilience in SG is a multifaceted issue. Cyber resilience of SG can
benefit from the development of a set of general standards that would settle common
cyber resilience definitions for SG, classify relevant problems and propose possible
solutions or recommendations. While such mature guidelines have been already pro-
posed in the ICT domain [110], the standardization efforts in CPS are still in progress.
For example, while DERs are increasingly used in SG, they often fail to meet the crit-
ical infrastructure protection security requirements [104], [35], [41] established by the
North American Electric Reliability Corporation (NERC) in [17].

The development of such a framework is not a trivial task. There are strict opera-
tional limits in SG which are critical obstacles towards the standardization of its cyber
resilience. Moreover, several industries, corporations, organizations, institutes, etc. are
involved with the SG and have different approaches towards its different aspects. This
lack of consensus further complicates the establishment of a unified guide about the
cyber resilience of SG.

4.2.2 SG restoration

As seen in Figures 3-8 and Tables 2-3, the majority of the included techniques mainly
aim to protect the system at the resilient state. On the other hand, the research efforts
towards the post-event degraded state and the restorative state of the resilience curve of
[97] are limited. It should also be noted that, to the knowledge of the authors, there are
no techniques in the literature that deal with the post-restoration state.

The few works that are involved with the latter stages of the resilience curve
(restorative and post-restoration states) create a significant research gap in the litera-
ture. This is reasonable if we consider their challenging nature. Developing algorithms
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or designing architectures that can automatically restore SG requires deep understand-
ing about the behavior of the adversaries and in some cases human intervention might
be necessary. Nevertheless, significant effort should be put on this subject in order to
provide the power sector with a holistic protection against cyber threats.

4.3 Future directions
This section presents and analyzes the scientific areas that should be further researched
in order to enhance the cyber resilience of SG. These areas arise naturally from the
in-depth analysis of Section 3.

4.3.1 Deep learning (DL)

In Section 3, several ML applications that have enhanced cyber resilience of SG are
presented, especially when adaptive response and segmentation techniques take place.
Nevertheless, authors believe that DL, which is a promising ML sub-field, has not been
sufficiently investigated for the cyber resilience of SG. For instance, Autoencoders
[93] and Deep Belief Networks [68] are two types of DL algorithms that can extract
high-level, complex features of the given input in order to learn the behavior of SG
controllers more accurately. Recurrent Neural Networks (RNN) and specifically, Long
Short-Term Memory (LSTM) [59] are DL models that perform well in classification
and prediction tasks based on time series data and thus, are suitable for IDS or mea-
surement estimation. Graph Convolutional Networks (GCN) [75] learn the features of
the given data, which is represented as a graph, by inspecting its neighboring nodes.
In the literature, there are significant efforts [37, 131] that consider system topology
to represent the power grid as a graph in order to apply a GCN architecture. More
specifically, DL models should be implemented in the future in order to:

1. Create more reliable and accurate IDS,

2. Construct more attack-resilient SG controllers,

3. Learn the behavior of the controllers of the SG to replace them in cases of emer-
gency for the majority of the expected cyber attacks and

4. Optimize decision-making processes, e.g. i) select appropriate attack response,
and ii) choose alternative, reliable communications paths, etc.

Despite their usefulness in several challenging tasks, ML/DL algorithms have sig-
nificant drawbacks that complicate their practical implementation. First of all, these
algorithms require a large amount of data for their training phase which makes them
computationally demanding models (either in terms of time or infrastructure cost). Fur-
thermore, adversarial machine learning is a critical threat against these algorithms.
Adversarial ML exploits the fact that ML/DL models usually draw their testing and
training data from the same underlying distribution. In this way, adversaries attempt
to cause malfunctions to ML/DL models by providing deceptive inputs to them. For
example, poisoning attack is a typical attack during the training phase that attempts to
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modify the statistical characteristics of the training dataset [31]. Regarding the test-
ing phase, in [126] it is observed that imperceptive perturbations to the images can
fool DL models into providing misclassifications and in [129], adversarial examples
are generated by appending noise to the original image along the gradient directions.
These limitations and threats have to be carefully considered when ML/DL models are
applied.

Finally, while ML-based controllers often demonstrate better performance com-
pared to conventional controllers, they might behave unpredictably in unforeseen
events that are not covered by the initial training dataset. This is a fundamental issue
and has to be carefully handled by ML/DL model designers. To tackle this challenge,
periodic re-training of the proposed ML/DL models is advisable with new data that
is collected over time in order to include more unplanned events and newly identified
threats.

4.3.2 OpenFlow alternatives

Though OpenFlow was one of the first widely used protocols for enabling SDN, it fails
to meet all the distinct requirements of SG for cyber resilience due to its limitations,
as illustrated in Section 4.1.2. Therefore, alternative approaches to OpenFlow have
recently received significant attention. For instance, in [32] P4 is proposed, which is a
data plane programming language. In contrast to OpenFlow, the data plane function-
alities described with P4 are not fixed by the hardware. Vendors provide an abstrac-
tion model of the networking devices, the P4 architecture model, and a target specific
P4 compiler. Since multiple targets can have the same architecture, programs can be
ported. Moreover, P4 is designed to be protocol-independent. The P4 programmer
specifies the header formats and field names of the required protocols in the program
which are in turn interpreted and processed by the compiled program and target device.
Consequently, these features of P4 can assist the communication of the SDN with the
heterogeneous technologies of SG.

NETCONF [48] is another management protocol used to configure network de-
vices. The abstraction level which offers can assist the management of the differ-
ent technologies within SG. Its operations are realized on top of a Remote Procedure
Call (RPC) paradigm. The NETCONF protocol uses an Extensible Markup Language
(XML)-based data encoding for the configuration data and the protocol messages. The
NETCONF protocol can be separated into four layers:

• Secure transport layer: provides the actual communication between client
(controller) and server (network device);

• Message layer: defines the encoding of the Remote Procedure Calls;

• Operations layer: defines a set of basic operations; and

• Content layer.

Clearly, the aforementioned approaches are not the only ones that can be utilized
as alternatives to OpenFlow but they can become an interesting pivotal point for inves-
tigation towards the enhancement of SDN functionalities.
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4.3.3 Parallel redundancy protocol and high-availability seamless redundancy

Since SG is considered a critical infrastructure, it requires the minimum recovery time
possible when a successful cyber attack has been achieved. The IEC 61850 (the default
standard for industrial automation networks) uses the Ethernet technology and intro-
duces its own challenges and requirements [88, 120]. Regarding the network infras-
tructure, the recently published IEC 61850-90-4 [39] has adopted parallel redundancy
protocol (PRP) and high-availability seamless redundancy (HSR), both defined in the
IEC 62439-3, as the preferred Ethernet-based protocols for station bus and process bus
in substations. They offer almost-zero recovery time and frame loss protection in the
presence of a cyber attack or grid failure in general.

The PRP is an IEC standard providing redundant Ethernet. Under PRP, each node
is connected to two separated, parallel, fail-independent Local Area Networks (LAN).
A transmitter sends two copies of the same packet over each LAN and when a receiver
acquires a packet, it accepts the first copy and discards the duplicate. Thus, if both
networks are operational, it is ensured that the information will reach its destination.
This provides zero recovery time in case of a single failure, so no data is lost.

High-availability Seamless Redundancy (HSR) is a standard which covers the need
for reliable Ethernet. The core of HSR functionality is its topology, which typically
is a ring. The source node duplicates all the frames it has to deliver and sends them
simultaneously to their destination, utilizing two independent paths (clockwise and
counterclockwise). If either one of the paths is broken, due to link or node failure
caused by a cyber attack, the frames are still capable of reaching their destination.

The drawback of PRP is its high network cost, compared with a single non-
redundant network. An HSR ring provides the same level of redundancy with a lower
cost. The advantage of PRP, when compared with HSR, is that normal non-PRP-aware
nodes can be connected to the network without special hardware, like RedBox in HSR.
However, these single attached nodes can communicate only with the nodes connected
into the same LAN and they cannot leverage the redundancy. Furthermore, there are
studies [130] that experimentally demonstrate the failure of these protocols to actually
achieve zero recovery time in realistic scenarios. If these protocols do not meet the
strict operational requirements of electric power substations (their order of magnitude
varies between 4-12 ms, [130], [18]), the electrical system will perform poorly, e.g.
delays in the exchange of teleprotection messages lead to damages by short circuits.
Therefore, it is apparent that there is still room for improvement regarding these pro-
tocols and their deployment in a substation environment. This integration will, in turn,
increase the resilience of SG against cyber threats.

4.3.4 Emerging technologies

Designing a cyber resilient system that follows the strict operational limits of SG can
be achieved with various advanced algorithms and technologies. Nevertheless, there is
always a bottleneck to the improvements that these approaches can offer. Therefore,
research effort should be also put on low level technological approaches like improving
the medium with which the information is transmitted. These approaches have a direct
impact on the performance of the system, without the need of any special algorithm or
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Table 4: Future directions for resilience techniques & states

States
Techniques Adaptive

response
Segmenta-

tion
Redun-
dancy Diversity Deception

Resilient state

• Deep
learn-
ing

•
Digital
twins

Deep
learning

• PRP

• HSR

•
5G(B5G)

• PRP

• HSR

•
5G(B5G)

Cloud,
Edge, Fog
computing

Post-event degraded state Deep
learning

Restorative state

• Deep
learn-
ing

•
Digital
twins

Deep
learning

•
5G(B5G)

•
Cloud,
Edge,
Fog
com-
put-
ing

•
5G(B5G)

•
Cloud,
Edge,
Fog
com-
put-
ing

Post-restoration state

• Deep
learn-
ing

•
Digital
twins

•
5G(B5G)

•
Cloud,
Edge,
Fog
com-
put-
ing

•
5G(B5G)

•
Cloud,
Edge,
Fog
com-
put-
ing
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methodology that will optimally manage the available resources.
A highly promising technology for the reinforcement of the cyber resilience of SG

is the fifth generation of mobile networks, known as 5G networks [112]. The key
features of 5G networks are the use of millimeter-wave signals and the high-frequency
operation, which allow them to support greater bandwidth, lower latency and a vast
number of devices (e.g. IoT and smart devices), turning 5G and Beyond 5G (B5G)
into an ideal solution towards a more cyber resilient SG [42]. The low latency and
increased bandwidth will enable the addition of security mechanisms without violating
operational requirements. Moreover, 5G networks can provide continuous availability
and security of the SG applications through cyber monitoring, grid self-healing and
data re-routing, facilitating the re-connection of nodes and the 24/7 control.

Apart from this, the current computing paradigms are also good approaches to del-
egate computational loads. Edge, fog and cloud computing services could assist in
resilience tasks [46, 103], such as maintaining and determining new routes in real time
and processing recovering states or data, without significantly impacting the opera-
tional performance of the underlying system. This impact could possibly vary, depend-
ing on the paradigm. Last but not least, digital twins correspond to a simulation tool
that could ideally identify security vulnerabilities and estimate possible threat states to
develop suitable response/restoration solutions in the application context [113]. This
kind of simulation tool can be combined with the aforementioned technologies (arti-
ficial intelligence, edge computing and B5G) to create resilient solutions that work in
real time [87], since digital twins can recompute values of the physical context.

Many of these technologies are in their infancy, posing different research issues
such as: the trustworthy degree in the delegation of services; the level of precision in
the estimations, predictions or simulations; the degree of reliability; and the degree
of QoS and security in the response or restoration processes. This also means that
these technologies can introduce new vulnerabilities and security risks that have to be
considered.

4.3.5 Lessons learned

Table 4 corresponds the resilience techniques and resilience states with the proposed
future directions. This subsection is dedicated to the conclusions that are drawn from
this table and can be used as a research guidance for future works. First of all, deep
learning algorithms can be implemented throughout the whole resilience curve and
mainly facilitate adaptive response and segmentation techniques. This is reasonable
due to the close relation of the power sector with these techniques and the wide appli-
cation of deep learning in power systems. On the other hand, redundancy, diversity and
deception techniques are mainly computer-oriented and can be facilitated by emerging
computing/communication technologies and specialized protocols.

Regarding the resilience states, it should be noted that the future directions pre-
sented in this section, can be also applied in post-restoration state. This is quite im-
portant, considering that very few works deal with this state, as depicted in Table 3.
Furthermore, these future directions can be applied to every resilience state. For in-
stance, cloud, fog and edge computing can provide additional infrastructures to the SG
in order to assist it in preserving its initial resilience level (resilient state), maximize its
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resilience level after an attack (post-event degraded state), recover it, e.g. using alter-
native nodes or links (restorative state) and finally, keep it almost at normal operating
point before it is fully recovered.

5 Conclusion and future work
Cyber threats against modern power control systems and their mitigation are crucial
tasks to consider. There are numerous studies that propose defensive methods in order
to prevent an attack or to detect malicious behavior. The latter is a widely studied field
of research, in contrast to studies that attempt to make the SG more resilient against
cyber attacks. This paper offers an overview of the current approaches that enhance the
cyber resilience of SG and provides an extended discussion about current challenges,
open issues and future directions. These approaches are grouped according to the cyber
resilience techniques defined in the NIST SP 800-160 [110]. These techniques in turn,
are associated to the different states of the typical power system resilience curve defined
in [97]. The result is a taxonomy that can assist researchers in investigating the cyber
resilience of SG. It can also help them identify some promising future research areas
and technologies in this field.

As future research, we intend to investigate methods that combine the capabilities
of the ICT technology along with dynamic functionalities of the power system con-
trol solutions. An example of such a technique is the application the SDN technology
to the power system controls for the cyber resilience enhancement of SG. We con-
sider it a potential intersection of ICT and power systems applications, suitable for the
restorative state of cyber resilience. Nonetheless, we will also leverage the benefits of
the emerging technologies described in Section 4.3.4, given that they deserve further
attention.
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[79] Kamil Kołtyś and Robert Gajewski. Shape: A honeypot for electric power sub-
station. Journal of Telecommunications and Information Technology, (4):37–43,
2015.

[80] F. Kurtz and C. Wietfeld. Advanced controller resiliency in software-defined
networking enabled critical infrastructure communications. In 2017 Interna-
tional Conference on Information and Communication Technology Convergence
(ICTC), pages 673–678, Oct 2017.

[81] Edward A. Lee. Cyber physical systems: Design challenges. In 2008 11th
IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 363–369, 2008.

[82] Y. Li and M. Chen. Software-Defined Network Function Virtualization: A Sur-
vey. IEEE Access, 3:2542–2553, 2015.

[83] Y. Li, L. Shi, P. Cheng, J. Chen, and D. E. Quevedo. Jamming Attacks on
Remote State Estimation in Cyber-Physical Systems: A Game-Theoretic Ap-
proach. IEEE Transactions on Automatic Control, 60(10):2831–2836, Oct 2015.

[84] Yuancheng Li, Pan Zhang, and Longqiang Ma. Denial of service attack and
defense method on load frequency control system. Journal of the Franklin In-
stitute, 356(15):8625–8645, 2019.

[85] H. Lin, C. Chen, J. Wang, J. Qi, D. Jin, Z. T. Kalbarczyk, and R. K. Iyer. Self-
Healing Attack-Resilient PMU Network for Power System Operation. IEEE
Transactions on Smart Grid, 9(3):1551–1565, May 2018.

[86] H. Liu, Y. Chen, M. C. Chuah, J. Yang, and H. V. Poor. Enabling Self-Healing
Smart Grid Through Jamming Resilient Local Controller Switching. IEEE
Transactions on Dependable and Secure Computing, 14(4):377–391, 2017.

[87] Javier Lopez, Juan E. Rubio, and Cristina Alcaraz. Digital Twins for Intelligent
Authorization in the B5G-enabled Smart Grid. IEEE Wireless Communications,
In Press.

[88] Perry S Marshall and John S Rinaldi. Industrial Ethernet. ISA, 2004.

[89] D. Mashima, B. Chen, P. Gunathilaka, and E. L. Tjiong. Towards a grid-wide,
high-fidelity electrical substation honeynet, year=2017. In 2017 IEEE Inter-
national Conference on Smart Grid Communications (SmartGridComm), pages
89–95, Oct.

[90] H. Maziku and S. Shetty. Software Defined Networking enabled resilience for
IEC 61850-based substation communication systems. In 2017 International
Conference on Computing, Networking and Communications (ICNC), pages
690–694, Jan 2017.

38



[91] Sanda Florentina Mihalache, Emil Pricop, and Jaouhar Fattahi. Resilience en-
hancement of cyber-physical systems: A review. Power Systems Resilience,
pages 269–287, 2019.

[92] A. F. Murillo Piedrahita, V. Gaur, J. Giraldo, A. A. Cárdenas, and S. J. Rueda.
Leveraging Software-Defined Networking for Incident Response in Industrial
Control Systems. IEEE Software, 35(1):44–50, January 2018.

[93] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19,
2011.

[94] Jianwei Niu, Zhong Ming, Meikang Qiu, Hai Su, Zonghua Gu, and Xiao
Qin. Defending jamming attack in wide-area monitoring system for smart grid.
Telecommunication Systems, 60(1):159–167, 2015.

[95] National Institute of Standards and Technology. Framework for improving crit-
ical infrastructure cybersecurity. Technical report, NIST, 2018.

[96] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and G. J. Pappas.
Robustness of attack-resilient state estimators. In 2014 ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), pages 163–174, April 2014.

[97] M. Panteli and P. Mancarella. The Grid: Stronger, Bigger, Smarter?: Presenting
a Conceptual Framework of Power System Resilience. IEEE Power and Energy
Magazine, 13(3):58–66, 2015.

[98] K. Paridari, N. O’Mahony, A. El-Din Mady, R. Chabukswar, M. Boubekeur,
and H. Sandberg. A Framework for Attack-Resilient Industrial Control Sys-
tems: Attack Detection and Controller Reconfiguration. Proceedings of the
IEEE, 106(1):113–128, 2018.

[99] Victoria Y Pillitteri and Tanya L Brewer. Guidelines for smart grid cybersecurity.
Technical report, 2014.

[100] György Pongor. OMNeT: Objective Modular Network Testbed. In MASCOTS:
Proceedings of the International Workshop on Modeling, Analysis, and Simula-
tion On Computer and Telecommunication Systems, page 323–326, 1993.

[101] V. Pothamsetty and M. Franz. SCADA HoneyNet Project: Building Honeypots
for Industrial Networks. 2005.

[102] U. Premaratne, J. Samarabandu, T. Sidhu, R. Beresh, and J. Tan. Security Anal-
ysis and Auditing of IEC61850-Based Automated Substations. IEEE Transac-
tions on Power Delivery, 25(4):2346–2355, Oct 2010.

[103] V. Prokhorenko and M. Ali Babar. Architectural resilience in cloud, fog and
edge systems: A survey. IEEE Access, 8:28078–28095, 2020.

[104] Junjian Qi, Adam Hahn, Xiaonan Lu, Jianhui Wang, and Chen-Ching Liu. Cy-
bersecurity for distributed energy resources and smart inverters. IET Cyber-
Physical Systems: Theory & Applications, 1(1):28–39, 2016.

39



[105] Owen Redwood, Joshua Lawrence, and Mike Burmester. A Symbolic Honeynet
Framework for SCADA System Threat Intelligence. In Critical Infrastructure
Protection IX, pages 103–118. Springer International Publishing, 2015.

[106] M. H. Rehmani, F. Akhtar, A. Davy, and B. Jennings. Achieving Resilience in
SDN-Based Smart Grid: A Multi-Armed Bandit Approach. In 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft), pages 366–
371, June 2018.

[107] L. Ren, Y. Qin, B. Wang, P. Zhang, P. B. Luh, and R. Jin. Enabling Resilient
Microgrid Through Programmable Network. IEEE Transactions on Smart Grid,
8(6):2826–2836, Nov 2017.

[108] N Lawrence Ricker. Model predictive control of a continuous, nonlinear, two-
phase reactor. Journal of Process Control, 3(2):109–123, 1993.

[109] L. Rist. Introducing Conpot. 2013.

[110] Ron Ross, Victoria Pillitteri, Richard D. Graubart, Deborah J. Bodeau, and Ros-
alie McQuaid. Developing Cyber Resilient Systems: A Systems Security Engi-
neering Approach. 2019.

[111] Juan E. Rubio, Cristina Alcaraz, and Javier Lopez. Game theory-based ap-
proach for defense against apts. In 18th International Conference on Applied
Cryptography and Network Security (ACNS’20), volume 12147, pages 297–320.
Springer, Springer, 10/2020 2020.
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