
International Journal of Information Security manuscript No.
(will be inserted by the editor)

Analysis of e-commerce protocols: Adapting a traditional technique

Sigrid Gürgens1 Javier Lopez2 René Peralta3

1 Fraunhofer - Institute for Secure Telecooperation SIT
Darmstadt, Germany
guergens@sit.fraunhofer.de

2 Computer Science Department
University of Malaga, Spain
jlm@lcc.uma.es

3 Department of Computer Science
Yale University, U.S.
peralta-rene@cs.yale.edu

The date of receipt and acceptance will be inserted by the editor

Abstract We present the adaptation of our model for
the validation of key distribution and authentication pro-
tocols to address some of the specific needs of protocols
for electronic commerce. The two models defer in both
the threat scenario and in the protocol formalization.
We demonstrate the suitability of our adaptation by an-
alyzing a specific version of the Internet Billing Server
protocol introduced by Carnegie Mellon University. Our
analysis shows that, while the security properties a key
distribution or authentication protocol shall provide are
well understood, it is often not clear which properties
an electronic commerce protocol can or shall provide.
We use the automatic theorem proving software “Otter”
developed at Argonne National Laboratories for state
space exploration.

Keywords: Security analysis, cryptographic proto-
col, automatic theorem proving, protocol validation, elec-
tronic commerce

1 Introduction

Experience shows that the correct design of communi-
cation protocols is hard because even the most carefully
developed protocol specifications contain subtle errors.
Design of cryptographic protocols, which play a key role
in most applications over Internet, is an even more diffi-
cult task because networks are insecure in the sense that
an adversary can monitor and alter messages exchanged
by application users.

A protocol must not allow an attack to be performed
unnoticed. However, it is not always clear what can be
considered an attack. A protocol may be secure (i.e.

achieve its goals) in one environment and insecure in
a different environment. However, the environments a
protocol is designed for are not always sufficiently spec-
ified (for example the question of type confusion - e.g.
can a random number be taken for a key - is often not
addressed). Moreover, protocols might be used in an en-
vironment they were not designed for (see [30] for the
importance of clearly specifying the environment).

Thus, many of the largely used cryptoprotocols have
been shown to fail under certain assumptions. In con-
sequence, the use of formal methods that allow for the
verification and validation of such protocols in a system-
atic and formal way has received increasing attention.
In the last twenty years, active areas of research have
developed around the problems of:

• developing design methodologies which yield crypto-
graphic protocols for which security properties can
be formally proven,

• formal specification and verification / validation of
cryptographic protocols.

An early paper which addresses the first of these is-
sues is [4]. Here, it is argued that protocols should not be
defined simply as communicating programs but rather as
sequences of messages with verifiable properties; i.e. se-
curity proofs can not be based on unverifiable assump-
tions about how an opponent constructs its messages.
As with much of the research work done in the area of
cryptography, this research does not adopt the frame-
work of formal language specifications. Some other work
along the lines of specifying provably secure protocols in-
cludes that of Bellare and Rogaway [3], Shoup and Rubin
[37] (which extends the model of Bellare and Rogaway
to smartcard protocols), Bellare, Canetti and Krawczyk

S. Gurgens, J. Lopez, and R. Peralta, “Analysis of E-commerce Protocols: Adapting a Traditional Technique”, International Journal of Infor-
mation Security, vol. 2, pp. 21-36, 2003.
NICS Lab. Publications: https://www.nics.uma.es/publications

2 Sigrid Gürgens Javier Lopez René Peralta

[2], and the work of Heintze and Tygar considering com-
positions of cryptoprotocols [17].

An approach based on the theory of formal languages
is introduced in [34]. Here agents are modelled by using
communicating automata and state components, and se-
curity mechanisms are formalized in terms of properties
of abstract communication channels. A system is repre-
sented by all possible sequences of state transitions, and
security properties of the system are defined in terms of
properties of the possible sequences.

The second issue, formal specification and automatic
verification or validation methods for cryptographic pro-
tocols, has developed into a field of its own. Partial
overviews of this area can be found in [24], [22] and [31].

Most of the work in this field can be categorized as
development of either logics for reasoning about secu-
rity (so-called authentication logics) or of model check-
ing tools or of theorem proving tools. These techniques
aim at verifying security properties of formally specified
protocols.

A seminal paper on logics of authentication is [7].
Work in this area has produced significant results in find-
ing protocol flaws, but also appears to have limitations
which will be hard to overcome within the paradigm.
Confidentiality, for example, can not be expressed in
terms of an authentication logic.

Model checking, on the other hand, involves the def-
inition of a state space (typically modelling the “knowl-
edge” of different participants in a protocol) and transi-
tion rules which define both the protocol being analyzed,
the network properties, and the capabilities of an enemy.
Initial work in this area can be traced to [12].

A prominent approach in the category theorem prov-
ing is [31,32,1]. Here protocols are specified as traces of
events (an event being the sending or storing of a mes-
sage) and an adversary is included by using operators
parts, analz and synth on the messages. By induction
over the possible traces it is then proven (under certain
assumptions) that a protocol provides certain security
properties.

Much has already been accomplished. A well-known
software tool is the NRL Protocol Analyzer [23], which
has been expanded to include some specification capa-
bilities, thus being able to specify the security require-
ments of the SET protocol [26]. Other notable work in-
cludes Lowe’s use of the Failures Divergences Refinement
Checker in CSP [21] and Schneider’s use of CSP [35].
Also to mention are the model checking algorithms of
Marrero, Clarke, and Jha [22]. To the best of our knowl-
edge, the model checking approach has been used almost
exclusively for verification of cryptographic protocols.

Verification can be achieved efficiently if simplifying
assumptions are made in order to obtain a sufficiently
small state space. Verification tools which can handle in-
finite state spaces must simplify the notions of security
and correctness to the point that proofs can be obtained
using either induction or other logical means to reason

about infinitely many states. Both methods have pro-
duced valuable insight into ways in which cryptographic
protocols can fail.

The problem, however, is not only complicated but
it is also evolving. The ”classical” work has centered
around proving security of entities authentication and
key-distribution protocols, focusing on message proper-
ties such as key freshness, message confidentiality, and
message origin authentication. Currently, with the ad-
vent of electronic commerce applications, cryptographic
protocols are being adapted to implementing commercial
transactions.

This new generation of protocols imposes higher re-
quirements on security issues. Secure electronic com-
merce functions such as transaction certification, nota-
rization, operational performance, commerce disposal,
anonymity, auditing, etc., are necessary for a successful
deployment of electronic commerce transactions. These
functions in turn produce requirements like authentica-
tion of sender and/or receiver of a message, non repu-
diation, certification of submission and delivery, times-
tamping, detection of tampering, electronic storage of
originality-guaranteed information, approval functions,
access control, etc.

In addition, electronic commerce transactions involve
an increasing number of agents that participate in the
same protocol: issuers, cardholders, merchants, acquir-
ers, payment gateways, Certification Authorities (CAs),
Attribute Authorities, etc. Consequently, protocols for
electronic commerce scenarios are becoming much more
complicated, and are more likely to contain errors. More-
over, traditionally cryptoprotocols were designed with
the assumption that the entities being involved in a pro-
tocol act honestly, thus only taking into account an out-
side attacker that tries to impersonate honest agents.
In the scope of electronic commerce, this assumption is
no longer realistic, as protocol participants, while ac-
knowledging their proper names, may gain advantage
from acting dishonestly. Thus the complexity of security
analysis of electronic commerce protocols is increasing
exponentially.

After Kailar’s first analysis of an e-commerce pro-
tocol [19], there have been more attempts to model e-
commerce protocols, some of which are being used in real
applications, such as Kerberos [1], TLS/SSL [32] and Cy-
bercash coin-exchange [6]. New analysis techniques were
developed and existing ones were extended.

An example for the latter is the extension of the
CSP model to cover non-repudiation [36], a security re-
quirement of electronic commerce protocols. The outside
intruder was removed from the model and the proto-
col participants were given the ability to fake messages.
However, it is not clear whether this model can be ex-
tended to malicious agents additionally intercepting all
messages.

We believe that already existing analysis techniques
can be successfully adapted, and hence applied to elec-

Analysis of e-commerce protocols: Adapting a traditional technique 3

tronic commerce protocols. In this paper we show how
the method we developed for the analysis of classical key
distribution and authentication protocols can be adapted
to cover specific needs of e-commerce protocols. As an
example protocol we chose the IBS protocol the vari-
ous versions of which were first introduced in [29]. Here,
quite a number of security requirements are explained
which were useful for our work. On the other hand, any
e-commerce protocol would have served as example to
explain the extension of our methods.

The structure of the paper is as follows. Section 2
reviews some of the flaws of classical cryptographic pro-
tocols. Section 3 describes the respective communication
and attack model. Section 4 explains how the formal-
ization of protocol instantiations is performed. Section
5 shows the analysis of an standardized authentication
protocol for smartcards with a digital signature applica-
tion. Section 6 explains how our model is extended when
considering new features that are typical in e-commerce
scenarios. Sections 7 reviews the IBS protocol and de-
scribes our formalization, which is used for the analysis
of the protocol in section 8. Finally, section 9 concludes
the paper.

2 Classical Cryptographic protocols

In this section we explain what we call classical cryp-
tographic protocols such as key distribution protocols
and give an example. The participants of such a pro-
tocol will be called ”agents”. Agents are not necessar-
ily people. They can be, for example, computers acting
autonomously or processes in an operating system. Se-
crecy of cryptographic keys cannot be assumed to last
forever; hence, pairs of agents must periodically replace
their keys with new ones. That is the aim of a key-
distribution protocol, which produces and securely dis-
tributes ”session” keys. This is often achieved with the
aid of a trusted key distribution server S (this is the
mechanism of the widely used Kerberos System [20]).

The general format of these protocols is the following:

– Agent A wants to obtain a session key for com-
municating with agent B.

– It then initiates a protocol which involves S,
A, and B.

– The protocol involves a sequence of messages
which, in theory, culminate in A and B shar-
ing a key KAB .

– The secrecy of KAB is supposed to be guaran-
teed despite the fact that all communication
occurs over insecure channels.

To illustrate how easily such a protocol can fail we
describe the first attack [9] on the well-known Needham-
Schroeder protocol introduced in [27]. In what follows,
a message is an ordered tuple (m1,m2, . . . ,mr) of con-
catenated messages mi, viewed as an abstract object at

an abstraction level where the agents can distinguish be-
tween different message parts. {m}K denotes the encryp-
tion and digital signature, respectively, of the message m
using key K. Messages that are neither a concatenation
of messages nor a ciphertext are called atomic messages.
Commonly a protocol step s in which A sends to B mes-
sage m is denoted by s. A −→ B : m. We call one
execution of a protocol a protocol run. The symmetric
Needham-Schroeder protocol uses symmetric encryption
and decryption functions (where encryption and decryp-
tion are performed with the same key). The protocol
steps are as follows:

1. A −→ S : A,B,RA

2. S −→ A : {RA, B, KAB , {KAB , A}KBS
}KAS

3. A −→ B : {KAB , A}KBS

4. B −→ A : {RB}KAB

5. A −→ B : {RB − 1}KAB

In the first message agent A sends to S its name A,
the name B of the desired communication partner and a
random number RA which it generates for this protocol
run1. S then generates a ciphertext for A, using the key
KAS that it shares with A. This ciphertext includes A’s
random number, B’s name, the new key KAB , and a
ciphertext intended for B. The usage of the key KAS

shall prove to agent A that the message was generated
by S. The inclusion of RA ensures A that this ciphertext
and in particular the key KAB is generated after the
generation of RA, i.e. during the current protocol run.
Agent A also checks that the ciphertext includes B’s
name, making sure that S sends the new key to B and
not to someone else, and then forwards {KAB , A}KBS

to
B.

For B the situation is slightly different, as it learns
from A’s name who it is going to share the new key with,
but nothing in this ciphertext can prove to B that this
key is indeed new. According to the protocol description
in [27] this shall be achieved with the last two messages.
The fact that B’s random number RB − 1 is enciphered
using the key KAB shall convince B that this is a newly
generated key. However, the protocol attack introduced
by Denning and Sacco makes it clear that this conclusion
can not be drawn. In fact, all that B can deduce from
message 5 is that the key KAB is used by someone other
than B in the current protocol run.

The attack assumes that an eavesdropper E monitors
one run of the protocol and stores {KAB , A}KBS

. Since
we assume the secrecy of agents’ session keys holds only
for a limited time period (after all, it takes only hours
to break a simple 64 bit DES key which still serves well
in many applications if used only for a short period of

1 In this paper, ”random numbers” are abstract objects
with the property that they cannot be generated twice and
cannot be predicted. It is not trivial to implement these ob-
jects, and protocol implementations may very well fail be-
cause the properties are not met. However, tackling this prob-
lem is beyond the scope of this paper.

4 Sigrid Gürgens Javier Lopez René Peralta

time), we consider the point at which E gets to know the
key KAB . Then it can start a new protocol run with B by
sending it the old ciphertext {KAB , A}KBS

as message
3 of a new protocol run. Since B has no means to notice
that this is an old ciphertext, it proceeds according to
the protocol description above. After the protocol run
has finished, it believes that it shares KAB as a new
session key with A, when in fact it shares this key with
E.

There is no way to repair this flaw without changing
the messages of the protocol if we do not want to make
the (unrealistic) assumption that B stores all keys it
ever used. So, this is an example of a flaw inherent in
the protocol design.

Another type of flaw arises, as we will explain in
later sections, from the particular protocol implemen-
tation (see [16]). Many protocol descriptions are vague
about what checks are to be performed by the recipient
of a message. Thus, a protocol implementation may be
secure or insecure depending exclusively on whether or
not a particular check is performed.

2.1 Attack models

The agents A, B, etc. participating in a classical crypto-
graphic protocol are usually assumed to act honestly, the
only threat being that of a hostile environment. A com-
mon way to model such an environment was introduced
by Dolev and Yao in [12]. The intruder is modelled with
maximal power, as he/she:

– can obtain any message passing through the network,
– is a legitimate agent, thus in particular can initiate

a protocol run,
– can be addressed by any agent as the responder of a

protocol run,
– can send any message it can generate to any agent of

the system.

This model is widely used for the analysis of classical
cryptographic protocols and is the basis for our commu-
nication and attack model, being explained in the next
section, for this type of protocols. Figure 1 depicts a
system with agents A, B, S and the intruder E.

In [40] the maximal power of the Dolev-Yao intruder
is reduced to a so-called “Macchiavellian” intruder com-
posed of self-interested collaborators that might be un-
willing to share signature keys and other long-term se-
crets. This attack model is more adequate for e-commerce
protocols than that of Dolev and Yao. It is shown that
under certain assumptions (e.g. an agent will only accept
messages having the format specified in the protocol,
and agents do not test for inequality) the Macchiavel-
lian model is attack-equivalent to the Dolev-Yao model,
i.e. every attack mounted in the latter can be mounted
in the former and vice versa.

S

E

A B

Fig. 1 The Dolev-Yao attack model

Other approaches to model the intruder are concerned
with a situation where k out of n nodes of a network are
compromised (see for example [39],[28]).

3 Our communication and attack model

The security analysis of protocols does not deal with
weaknesses of the encryption and decryption functions
from a cryptanalytic point of view. In what follows we
assume “perfect encryption”, i.e. we assume in particular
that the following security properties hold:

1. Messages encrypted using a function f and a secret
key K can only be decrypted with the inverse func-
tion f−1 and key K−1.

2. A key can not be guessed (during the period of its
validity).

3. Given m, it is not possible to find the correspond-
ing ciphertext for any message containing m without
knowledge of the key.

The first two items describe properties of encryption
functions and keys that are generally accepted for proto-
col analysis. In particular, every protocol will be found
insecure if an attacker can simply guess a key being used.
However, we do assume that already discarded keys are
guessable. The third property which Boyd called the ”co-
hesive property” in [5] does not hold in general. Boyd
and also Clark and Jacob (see [8]) show that under cer-
tain conditions, particular modes of some cryptographic
algorithms allow the generation of a ciphertext without
knowledge of the key.

These papers were important in that they drew at-
tention to hidden cryptographic assumptions in ”proofs”
of security of cryptoprotocols. In fact, it is clear now that
the number (and types) of hidden assumptions usually
present in security proofs is much broader than what
Boyd and Clark and Jacob point out.

All communication is assumed to occur over insecure
communication channels. We model these in accordance
with the Dolev-Yao attack model and assume that there
is a further agent E that intercepts all messages sent
by others. After intercepting, E can change the message

Analysis of e-commerce protocols: Adapting a traditional technique 5

to anything it can compute. This includes changing the
destination of the message and the supposed identity of
the sender. Depending on the decisions taken for a spe-
cific analysis, E may or may not act as a valid agent
of the system, i.e. may or may not share a symmetric
key KES with S and/or own a key pair (KE ,K−1

E) for
an asymmetric algorithm. As a valid agent, E can be al-
lowed to initiate communication either with other agents
or S. Our model leaves these decisions open to be fixed
for a particular analysis run.

E intercepts all messages and the agents and S only
receive messages sent by E. What E can send depends
on what it is able to generate, and this in turn depends
on what E knows.

The knowledge of E can be recursively defined as
follows:

1. E may or may not know the names of the agents.
2. E knows the keys it owns.
3. E knows its own random numbers.
4. E knows every message it has received.
5. E knows every part of a message received (where a

ciphertext is considered one message part).
6. E knows everything it can generate by enciphering

data it knows using data it knows as a key.
7. E knows every plaintext it can generate by decipher-

ing a ciphertext it knows, provided it knows the in-
verse of the key and the encryption function used as
well.

8. E knows every concatenation of data it knows.
9. E knows the origin and destination of every message.

10. At every instance of the protocol run, E knows the
”state” of every agent, i.e. E knows the next protocol
step they will perform, the structure of a message
necessary to be accepted, E knows in principle what
they will send after having received (and accepted) a
message, etc.

At every state in a possible run, after having received
an agent’s message, E has the possibility to forward this
message or to send whatever message it can generate
to one of the agents or S. Obviously, the state space
will grow enormously. Thus, we must limit the concept
of knowledge if the goal is to produce a validation tool
which can be used in practice. Therefore we restrict the
definition in various ways in order to make E’s knowl-
edge set finite. For example, if the protocol to be ana-
lyzed uses a public key algorithm, we do not allow E to
generate ciphertexts using data as a key which is neither
the private nor the public part of a key pair. We do this
on an ad-hoc basis. This problem needs further explo-
ration. It is important to note that leaving this part of
our model open allows for a very general tool. This is
in part responsible for the success of the tool, as docu-
mented in later sections. Also to note is that the above
knowledge rules imply that E never forgets. In contrast,
the other agents forget everything which they are not

specifically instructed to remember by the protocol de-
scription.

For the analysis of classical cryptographic protocols
we assume that agents can not distinguish between dif-
ferent message types, that is, will for example accept a
nonce as a key. This may or may not be relevant for
the particular environment the protocol will be used in.
Smartcard applications for example allow to use mes-
sage structures like ASN.1 but often use implicitly de-
fined structures. This is the case for the authentication
protocol of the German DIN standard for digital signa-
ture smartcards [10] that we will discuss in section 5.
Here the structure of the messages is fixed and the spec-
ification of the algorithm includes the specification of
the message structure. Other smartcard applications use
so-called headers to define the message structure. The
header specifies the type and length of each message
part and the message is interpreted accordingly. In these
cases the messages itself do not carry any type informa-
tion. However, as we will later see, it is easy to include
types of messages into the model.

4 Formalization of protocol instantiations

As the title of this section suggests, we make a distinc-
tion between a protocol and a ”protocol instantiation”.
We deem this a necessary distinction because protocols
in the literature are often under-specified. A protocol
may be implemented in any of several ways by the ap-
plications programmer.

For the security analysis of such protocols we used
Otter (Organized Techniques for Theorem-proving and
Effective Research) developed by Argonne National Lab-
oratories. Otter is a resolution-style theorem prover ap-
plying to statements written in first-order logic with
equality. However, we have not used Otter for proving
any security properties on protocols, but for exploring
the state space of a given protocol. For an extensive de-
scription of how Otter works and what kind of theories
it can be applied to we refer the reader to [42]. In the fol-
lowing, we will explain our use of Otter as an automatic
state exploration machine.

For formalizing a protocol, the environment proper-
ties and possible state transitions, we use first order logic
functions, predicates, implications and the usual connec-
tives. At any step of a protocol run predicates like

state(xevents, xEknows, . . . , xwho, xto, xmess, . . .)
describe a possible state of the system. Each predicate
contains the list xevents of actions already performed,
the list xEknows of data known by the intruder E, and
additionally, for each agent and each run it assumes to
be taking part in, components xagent, xrun, xstep, xran-
dom, xkey, etc., that describe the state of the agent in
the particular run (e.g. data like session keys, nonces,
etc., the agent has stored so far for later use, and the
next step it will perform). In general the predicates can

6 Sigrid Gürgens Javier Lopez René Peralta

include as many agents’ states and protocol runs as de-
sired, but so far we have restricted this information to
at most two agents, a server and the attacker in the con-
text of two interleaving protocol runs. Furthermore, the
predicates contain, among other data used to direct the
search, the agent xwho which sent the current message,
the intended recipient xto and the message xmess sent.

Using these predicates we write formulas which de-
scribe possible state transitions. The action of S when
receiving the first message of the Needham-Schroeder
symmetric key protocol described in section 2 can be
formalized as follows:

send(xevents, xEknows, . . . , xwho, xto, xmess, . . .)
∧
xto = S ∧ xwho = E
∧
is agent(el(1, xmess)) ∧ is agent(el(2, xmess))
→
send([. . . |xevents], xEknows, . . . , S, el(1, xmess),

[scrypt(key(el(1, xmess), S),
[el(3, xmess), el(2, xmess), new key,
scrypt(key(el(2, xmess), S),
[new key, el(1, xmess)])])], . . .)

where [. . . |xevents] includes the current send action,
el(k, xmess) returns the kth part of the message xmess
just received, and new key stands for a number uniquely
generated for each protocol run. By checking that the
message was sent by E (xwho = E) we model the fact
that agents only receive messages sent by E.

Whenever a message is intercepted by E (indicated
by a formula send(. . .) ∧ xwho 6= E), an internal pro-
cedure adds all that E can learn from the message to
the knowledge list xEknows. The result of this proce-
dure is a predicate added all knows(. . .). Implications
added all knows(. . .) → send(. . . , xwho, . . . ,message1,
. . .)∧send(. . . , xwho, . . . ,message2, . . .)∧. . . considering
xwho = E formalize that after having intercepted a par-
ticular message, E has several possibilities to proceed,
i.e. each of the predicates send(. . . , E, . . . , message, . . .)
constitutes a possible continuation of the protocol run.
The messages E sends to the agents are constructed us-
ing the basic data in xEknows and the specification of
E’s knowledge as well as some restrictions as discussed
in the previous section.

Symmetric keys shared by agents X and Y are de-
noted by key(X,Y), key(X,pub) denotes the public key
and key(X,priv) the private key of agent X. We use
different symbolic functions (i.e. functions that are not
evaluated) to distinguish between different cryptographic
algorithms. In this paper, scrypt(k,m) denotes the sym-
metric encryption of message m with key k. Similarly,
sdecrypt(k,m) formalizes the decryption of message m
with the same key. An asymmetric algorithm being used
is indicated by acrypt(k,m) and a digital signature by
sig(k,m).

We use equations to describe the properties of the
encryption and decryption functions, keys, etc., used in
the protocol. For example, the equation

sdecrypt(x, scrypt(x, y)) = y

formalizes symmetric encryption and decryption func-
tions where every key is its own inverse. These equations
are used as demodulators in the deduction process.

The above formulas constitute the set of axioms de-
scribing the particular protocol instantiation to be ana-
lyzed. An additional set of formulas, the so-called ”set of
support”, includes formulas that are specific for a partic-
ular analysis. In particular, we use a predicate describing
the initial state of a protocol run (the agent that starts
the run, with whom it wants to communicate, the ini-
tial knowledge of the intruder E, etc.) and a formula
describing a security goal. An example of such a secu-
rity goal is ”if agent A believes it shares a session key
with agent B, then this key is not known by E”, formal-
ized by −(state(. . .) ∧ xAstep = finished ∧ xAagent =
B ∧ in list(xAkey, xEknows)).

Using these two formula sets and logical inference
rules (specifically, we make extensive use of hyper resolu-
tion), Otter derives new valid formulas which correspond
to possible states of a protocol run. The process stops if
either no more formulas can be deduced or Otter finds a
contradiction which involves the formula describing the
security goal. When having proved a contradiction, Ot-
ter lists all formulas involved in the proof. An attack on
the protocol can be easily deduced from this list.

4.1 Known and new attacks

We used Otter to analyze a number of protocols. When-
ever we model a protocol we are confronted with the
problem that usually the checks performed by the parties
upon receiving the messages are not specified completely.
This means that we must place ourselves in the situa-
tion of the implementer and simply encode the obvious
checks. For example, consider step 3 of the Needham-
Schroeder protocol explained in section 2:

3. A −→ B : {KAB , A}KBS

Here is a case where we have to decide what B’s
checks are. We did the obvious:

– B decrypts using KBS .
– B checks that the second component of the decrypted

message is some valid agent’s name.
– B assumes, temporarily, that the first component of

the decrypted message is the key to be shared with
this agent.

However, Otter determined that this was a fatal flaw
in the implementation. We call the type of attack found
the ”arity” attack, since it depends on an agent not
checking the number of message blocks embedded in a

Analysis of e-commerce protocols: Adapting a traditional technique 7

cyphertext. The arity attack found by Otter works in
the following way. In the first message E impersonates
B (denoted by EB) and sends to S:

1. EB −→ S : B,A,RE

Then, S answers according to the protocol description
and sends the following message to B:

2. S −→ B : {RE , A, KAB , {KAB , B}KAS
}KBS

The message is intercepted by E and then passed on to
B, and B interprets it as being the third message of a
new protocol run. Since this message passes the checks
described above (B does not notice that the ciphertext
contains more than 2 items), B takes RE to be a new
session key to be shared with A and the last two protocol
steps are as follows:

4. B −→ EA : {RB}RE

5. EA −→ B : {RB − 1}RE

where the last message can easily be generated by E
since it knows its random number sent in the first pro-
tocol step (see the appendix for a formalization of B’s
actions).

It is interesting to note that an applications program-
mer is quite likely to not include an ”arity-check” in the
code. This is because modular programming naturally
leads to the coding of routines of the type

get(cyphertext, key, i)

which decodes cyphertext with key and returns the ith

element of the plaintext.
By including the arity check in B’s actions when re-

ceiving message 3, we analyzed a different instantiation
of the same protocol. This time Otter found the well-
known Denning-Sacco attack [9], where the third mes-
sage of an old protocol run is replayed to B and the
attack run ends with B and the intruder E sharing an
old session key that possibly was broken by E.

In order for this attack to work, Denning and Sacco
removed the assumption made in [27] by Needham and
Schroeder that KAB is unpredictable, fresh and only
known to A and B. The arity attack found by Otter,
however, works in an environment that fulfills all as-
sumptions stated in [27]. All the intruder needs to be
able to is to read messages from and add messages to
the network. In particular, he does not share a key with
the server, thus is not a regular agent of the system.

It seems that many protocols may be subject to the
”arity” attack: our methods found that this attack is
also possible on the Otway-Rees protocol (see [15] for a
detailed description of the protocol and its analysis) and
on the Yahalom protocol, as described in [7].

Among the known attacks which were also found by
our methods are the Lowe [21] and the Meadows [25] at-
tacks on the Needham-Schroeder public key protocol and
the Simmons attack on the TMN protocol [41] described
in [38]. For the latter we relaxed the assumption of per-
fect encryption and modeled the homomorphic property
of cryptoalgorithms like RSA [33] that allows to gener-
ate a ciphertext by multiplication. For this, we intro-

duced symbolic functions mult and div and an equa-
tion crypt(k,mult(m,n)) = mult(crypt(k,m),crypt(k,n)).
By adding the intruder’s respective capabilities we found
the attack described in [41].

5 A different scenario

All the above mentioned protocols were analyzed using
a scenario where we have several honest agents and the
attacker. In this section we will describe the analysis of
a first draft of an authentication protocol for smartcards
with a digital signature application that was standard-
ized by the German standardization organization DIN in
[11] (an earlier paper on this work is [14]). For this rea-
son we chose a somewhat restricted scenario where the
smartcard (Integrated Circuit Card, ICC) is the only
honest agent. The intruder plays the role of the smart-
card reader (Interface Device, IFD).

Generally it is assumed that the digital signature ap-
plication being for example located in a PC controls the
smartcard by using the smartcard reader. By sending
the respective commands to the IFD the application
causes the IFD to communicate with the smartcard ac-
cordingly. The actual computations (e.g. of signatures)
are accomplished by either the smartcard or the IFD
(depending on the capabilities of the smartcard). For
simplicity we will use IFD and the digital signature ap-
plication located in the PC synonymously. We will also
assume that all computation is performed in the smart-
card. Note that the smartcard always acts as the re-
sponding entity, i.e. never sends commands on its own.

The protocol uses a signature algorithm with the pos-
sibility of message recovery (which allows to retrieve the
original message from the signature) for authentication
purposes. After the successful run of the protocol the
smartcard and the smartcard reader shall share a session
key that they can then use for authentic and confiden-
tial communication. The first protocol phase proceeds as
follows:

1. IFD −→ ICC : SELECT FILE < name >
2. ICC −→ IFD : OK
3. IFD −→ ICC : READ BINARY
4. ICC −→ IFD : OK
5. IFD −→ ICC : MSE(

SET < key-reference(PKCA) >)
6. ICC −→ IFD : OK
7. IFD −→ ICC : V ERIFY CERTIFICATE

(CertIFD)

In this first phase of the authentication process the
smartcard reader IFD selects the file that contains the
certificate of the smartcard ICC (step 1) and reads it
(step 3). After having checked that the certificate is valid
(for simplicity we assume here that both IFD and ICC
have been issued a certificate by the same authentication
authority CA), IFD determines the public key PKCA

8 Sigrid Gürgens Javier Lopez René Peralta

that the smartcard shall use for the subsequent certifi-
cate check with the command MSE (Manage Security
Environment, step 5) and then sends its own certificate
CertIFD (step 7). When ICC finds IFD’s certificate
valid it stores the certificate’s public key (i.e. the pub-
lic key PKIFD of IFD) together with the certificate
holder’s distinguished name (IDIFD) in a temporary file
for later use. It also stores the access right to a file with
the message to be displayed after successful authentica-
tion. The certificates of ICC and IFD differ in that the
smartcard is not allowed to access this file. Then the au-
thentication phase of the protocol starts. In a first draft
of the standard [11] this consisted of the following steps:

9. IFD −→ ICC : MSE
(SET (< key-reference >))

10. ICC −→ IFD : OK
11. IFD −→ ICC : INTERNAL AUTH(RIFD,

IDIFD)
12. ICC −→ IFD : acrypt(PKIFD, sig(SKICC ,

(K1, hash(K1, RIFD,
IDIFD))))

13. IFD −→ ICC : GET CHALLENGE
14. ICC −→ IFD : RICC

15. IFD −→ ICC : MSE
(SET (< key-reference >))

16. ICC −→ IFD : OK
17. IFD −→ ICC : EXTERNAL AUTH

(acrypt(PKICC , sig(SKIFD,
(K2, hash(K2, RICC ,
IDICC),′ BC ′))))

In step 9 IFD determines the signature key SKICC

to be used by the smartcard for signature generation.
Then it requests the ICC to authenticate itself by send-
ing the command INTERNAL AUTH in step 11 with
its challenge RIFD and its distinguished name IDIFD,
where IDIFD determines the public key to be used by
the smartcard for the encryption of the signature. (The
smartcard searches for IDIFD in the temporary file in
which it has stored the certificate data received in step
7, and uses the respective key.) The smartcard now gen-
erates a secret K1 to be used later as part of the new
session key and then generates a signature using the key
determined in step 9. Essentially the following data are
signed: the key part K1 concatenated with some hash
value containing K1, IFD’s random number RIFD, and
IFD’s distinguished name IDIFD, both received in the
previous step. The exact message format is not of in-
terest for what follows. This signature is then encrypted
using the key determined by IDIFD and the resulting
ciphertext is sent to IFD. IFD decrypts the ciphertext
using its own private key and checks whether the signa-
ture is valid. Then IFD requests ICC’s challenge RICC

(step 13) and again determines a key with the command
MSE which the smartcard shall use subsequently to ver-
ify IFD’s signature (step 15). Finally, in step 17, IFD
generates its own authentication token by signing the

equivalent data using its signature key SKIFD and en-
crypting the signature with ICC’s public key PKICC .
For this it generates the second secret part K2 of the ses-
sion key to be used later on. The smartcard uses the key
determined in step 9 for decrypting the ciphertext and
the key determined in step 15 for checking the signature.

After successful mutual authentication the IFD is
allowed to read the display message of the smartcard
which shall inform the smartcard owner of the positive
result of the authentication. This part of the commu-
nication is already processed in secure messaging mode,
which means that each data field carries a cryptographic
checksum, and additionally the display message is en-
crypted using a symmetric algorithm. The key K used
for this is a combination of the secret parts K1 and K2
exchanged in the authentication phase.

5.1 Our analysis

Since in the above explained first draft of the standard
the possible use of the keys was not explicitly restricted
in any way, we allowed the smartcard to use any key for
any purpose, except that it only uses the CA’s public
key for checking certificates. As was pointed out to us
later, this is not in accordance with [18], a DIN standard
describing security related smartcard commands such as
MSE. However, we believe that a designer of a smart-
card operating system may not be aware of the key re-
strictions if not explicitly mentioned, which justifies our
formalization.

For verifying a certificate we let the smartcard only
check the certificate’s signature (the verification of cer-
tificates is out of the scope of [11]), which is the way this
will probably be implemented. (Note that the smartcard
is not able to check a validity date as it does not own an
internal clock.)

We modelled the smartcard reader as being a mali-
cious interface device that does not own a valid certifi-
cate. The first fact that our analysis showed is that the
smartcard will accept its own certificate as the IFD’s
certificate, thus storing its own public key to be used
in the subsequent authentication phase. This is possible
since the smartcard does not check that the certificate
owner is someone other than itself.

Second, we found that during the phase of authenti-
cation the following can happen:

9. IFD −→ ICC : MSE(SET
(< key-reference(SKICC) >))

11. IFD −→ ICC : INTERNAL AUTH
(RIFD, IDICC)

IFD correctly determines SKICC as the signature
key to be used by the smartcard in step 9, but with
IDICC as the second item of the command INTER-
NAL AUTH in step 11 it requests the smartcard to use
its own public key as encryption key (the key that was

Analysis of e-commerce protocols: Adapting a traditional technique 9

stored in step 7 with the certificate data). Since the pro-
tocol is designed for an algorithm with message recovery,
where acrypt(PKX , sig(SKX ,m)) = m for any agent
X, as a result the smartcard does not send its encrypted
signature in the next step. Instead, it sends plaintext, in
particular it sends the first secret part K1 of the session
key in plaintext:

12. ICC −→ IFD : K1, hash(K1, RIFD, IDIFD)

Now IFD requests the smartcard’s challenge as de-
scribed in the standard, but then, instead of determin-
ing the correct public key for signature verification, it
demands the smartcard to use its own signature key for
this purpose:

13. IFD −→ ICC : GET CHALLENGE
14. ICC −→ IFD : RICC

15. IFD −→ ICC : MSE(SET
(key-reference(SKICC))

Then it generates a ”signature” by using the smart-
card’s public key received in step 4 of the protocol and
encrypts this data, again using the same key. The result-
ing ciphertext is then sent to the smartcard:

17. IFD −→ ICC : EXTERNAL AUTH
(acrypt(PKICC , sig(PKICC ,
(K2, hash(K2, RICC ,
IDICC)))))

The smartcard uses its private key SKICC (deter-
mined in step 9) to decrypt the ciphertext and then, ac-
cording to the key having been specified in step 15, uses
this key again for checking the ”signature”. Since the
keys PKICC and SKICC correspond to each other the
smartcard finds the signature valid and accepts IFD’s
authentication data.

Now IFD can try to read the display message of
the smartcard but will not succeed, since the certificate
data stored by the smartcard in the first phase of the
protocol is the smartcard’s own data, and the smartcard
is not allowed to access its display message. However, we
may assume that a malicious interface device will be able
to present the necessary confirmation of the successful
authentication on its own.

At the end of this protocol run the malicious IFD
owns the two secrets that form the session key to be used
by the smartcard subsequently for secure messaging pur-
poses. If the smartcard accepts the above protocol run
as a successful authentication, i.e. if it does not insist
on the display message being read successfully, IFD is
now able to perform whatever action the application al-
lows. In any case the fact whether or not the display
message was read successfully should have no impact on
the security of the two earlier protocol phases.

As we pointed out already at the beginning of this
section, the above described use of the keys is not in ac-
cordance with [18]. In general, signature keys may not
be used for encryption and vice versa. In particular, the

smartcard is not allowed to use its own public key for
the encryption of its signature in step 12. However, af-
ter the presentation of our analysis the standard was
changed to explicitly not allowing the above described
attack. Notes were added that explain which keys the
smartcard is not allowed to use for which purpose. Ad-
ditionally, key determination by IFD was changed: in
the new version (of November 30th, 1998) one command
MSE(SET (< key-reference1, key-reference2 >)) is used
in step 9 to determine both keys to be used by the smart-
card later on (steps 15 and 16 are now obsolete), which
prevents the use of the smartcard’s signature key for the
signature verification during the EXTERNAL AUTH
command. This new version of the standard has not yet
been analyzed.

Nevertheless, in the new version of the standard it is
still possible to present the smartcard its own certificate
in the first protocol phase. In this case the authentication
process will break off with the INTERNAL AUTH
command, but it might be hard in practice to find the
reason for this, as the certificate was verified as being
valid. We believe that it is advisable to have the smart-
card only accept those certificates that are reasonable in
an authentication process.

6 Extending the model

As already pointed out in previous sections, e-commerce
protocols are much more complex than traditional cryp-
tographic protocols with respect to security requirements
and threats. In traditional protocols there is at most one
agent assumed to act dishonestly, namely the intruder
which in many cases is even not considered a valid agent
of the system. However, in e-commerce scenarios we have
a situation where agents do not necessarily trust each
other. A customer in a payment system might want to
gain advantage of the system by not paying the agreed
amount of money, a service provider may try to get away
with not sending the service. So it is not so much the abil-
ities of an outside intruder we are interested in but the
abilities of the agents themselves that are taking part in
a protocol.

As to security properties the protocols shall provide,
we still have to deal with confidentiality and authen-
ticity, but furthermore there are properties such as non-
repudiation, anonymity, accountability, notarization, etc.
that pose different questions. So besides the fact that
protocol flaws may arise because of type confusion, we
are interested in questions like ”Is it possible for the
client to receive the service without ever delivering the
payment?”.

It is clear that the difference in security threats be-
tween classical and e-commerce protocols induces differ-
ences in the formalization of the attack scenario. For the
rest of the paper, we will refer to the analysis model for
classical cryptoprotocols as the ”classical model” and to

10 Sigrid Gürgens Javier Lopez René Peralta

that for e-commerce protocols as to the ”e-commerce
model”.

Our communication and attack model for the anal-
ysis of e-commerce protocols (the e-commerce model) is
in some sense similar to the “Macchiavelli” model men-
tioned in section 2.1. However, we do not compose dis-
honest agents to one Macchiavellian intruder, and we do
not restrict dishonest agents’ actions.

We assume that additionally to an outside intruder,
any number of agents participating in the system can
be dishonest. The capability of agents to generate faked
messages is based on their knowledge, which is derived
along the ”rules” given in section 3. Furthermore, we also
allow a situation where dishonest agents are capable of
intercepting messages as well. This may or may not be
relevant, depending on the environment in which to use
the protocol.

In general our model allows an unrestricted number
of dishonest agents, but so far we have restricted analysis
runs to at most two. In the case of two dishonest agents,
we assume that they cooperate, i.e. exchange whatever
knowledge they have, except that they do not make avail-
able to each other their private keys. Modelling two dis-
honest agents not cooperating only leads to more results
than modelling just one if messages maliciously gener-
ated by one agent (i.e. messages not being specified in
the protocol) can be used by the other for some attack,
an event we considered unlikely.

As in the classical model, we are not concerned with
the security of the algorithms that are being used in the
protocols, i.e. we again assume perfect encryption. But
in contrast to the analysis of classical protocols where we
assume that agents are not able to distinguish between
different types, in the e-commerce model we add types to
the messages. Thus the agents can be modelled as being
able or not being able to distinguish between different
types of messages. This allows the analysis to concen-
trate on issues specific to e-commerce protocols rather
than searching for protocol flaws caused by type confu-
sion, but it keeps the search for type confusion based
flaws possible.

Consequently, in the analysis runs performed so far
we allowed dishonest agents only to send messages in the
correct format. Thus a message identification number
will not be sent as a price, a signature will not be used
as a random number, etc.

For the formalization of e-commerce protocols we
have made a few changes to predicates and formulas.
The most important ones are listed below:

– The predicates additionally contain a list of agents
that act dishonestly and a list of agents that cooper-
ate (which allows for future extension of the number
of cooperating agents). Furthermore, agents own a
list of keys and a list for keeping information they
extracted from messages not intended for them.

– In the classical cryptoprotocols we analysed so far
there was no need to model an agent sending two
messages subsequently. However, in e-commerce pro-
tocols the situation may be different, in particular
when allowing for cooperating malicious agents whose
actions are not fixed by the protocol description. Thus
we introduced a ”dummy message”: If agent X sends
first a message to agent Y and then a message to
agent Z, we model this by having Y answer to X
with dummy, after which X can proceed with send-
ing the second message to Z.

– We model the interception of messages by dishonest
agents principally in the same way as in the classi-
cal model: Whenever a message is sent by an honest
agent (send(. . .)∧−in list(xwho, xbadguys)), an in-
ternal procedure adds all that a dishonest agent P
can learn from the message to the respective knowl-
edge list xPknows. If there are cooperating agents,
their knowledge lists are exchanged. Finally for each
of the dishonest agents the messages to be sent are
constructed, on the basis of the agent’s knowledge
and keys he owns. The messages are then sent to
those agents that will accept the message with re-
spect to the format (e.g. an order will not be send
to a client, but only to a service provider). If we
want to analyse a protocol in an environment where
agents can not intercept messages, we skip the inter-
nal procedure of knowledge extraction and connect
the reception of messages directly with the genera-
tion of faked messages by way of demodulators such
as in list(xto, xbadguys) −→ send(. . .) =
construct messages(. . .).

7 The Internet Billing Server Protocol

Using the above described model, we analyzed the In-
ternet Billing Server Protocol (IBS protocol) developed
by Carnegie Mellon University and described in [29]. Ac-
tually, [29] includes several different versions of protocol
templates where the precise format of messages is left
open. We chose the version that uses only asymmetric
algorithms and made those changes we deemed necessary
for a reasonable analysis.

The protocols were designed to enable sales of goods
to be delivered over the network. There are three differ-
ent types of agents: service providers, users (those agents
which buy the goods) and the billing server, trusted by
all agents, which handles the money transfer. Both ser-
vice provider SP and user User register with the billing
server BS, which means in particular that accounts are
opened and key pairs are issued by BS.

The protocol assumes that a signature algorithm with
message recovery is used (an algorithm that allows to de-
cipher a signature in order to get the plaintext again).
{message}SKX

denotes the message signed with the pri-
vate key of agent X. In the following, we describe our

Analysis of e-commerce protocols: Adapting a traditional technique 11

version of the IBS protocol. It consists of two phases,
the first of which is price delivery, where the user asks
some service provider for a price and the service provider
answers with a price.

1. User −→ SP : {ID, request,
servicename}SKUser

2. SP −→ User : {ID, price}SKSP

The second phase is the service provision and pay-
ment phase:

3. User −→ SP : {{ID, price}SKSP
, ID,

price}SKUser
4. SP −→ BS : {{{ID, price}SKSP

, ID,
price}SKUser}SKSP

5. BS −→ SP : {ID, authorization}SKBS

6. SP −→ User : {ID, service}SKSP

7. User −→ SP : {ID, ackn}SKUser
8. SP −→ log : {{ID, ackn}SKUser}SKSP

9. SP −→ BS : log

First, in step 3, the user orders the service. In step 4
SP asks BS for authorization of this service, which means
in particular that BS checks that the user’s account pro-
vides enough money. If so, BS transfers the price for the
service from the user’s to the service provider’s account
and keeps a record with all data relevant for this trans-
action. Then it authorizes the service (step 5) and the
service is delivered (step 6). The user’s last action is to
send a message acknowledging that he received the ser-
vice. The service provider collects all acknowledgement
messages in a log file (step 8) which is sent to the billing
server in off-peak hours (step 9). When receiving the log
file, the billing server checks that the acknowledgement
messages in the log file match the previously performed
money transfers.

We added a message ID to all messages of the origi-
nal version, and the constant “request” and the variable
servicename to the first message, taking into account
that a price will depend on the time it was given, the user
it was given to, the service, and the service provider, that
an authorization refers to a specific amount of money to
be paid by a specific user to a specific service provider
for a specific service, etc. The identification number both
serves as a time stamp (it is issued by the user and
unique for each run) and connects the messages of one
run.

Some general assumptions where made in [29]:

1. In case of dispute, the user is always right. In conse-
quence, if the service provider tries to cheat and the
user complains about the charge, the service provider
will always loose. On the other hand, the service
provider can protect himself against malicious users
by refusing access to the system.

2. All agents have access to a verifiable source of public
keys, none of the keys gets compromised.

3. To secure the protocol against replay attacks etc.,
”time stamps, nonces, and other well documented
means” can be used.

A number of security requirements the protocol im-
poses are also explained in [29], some of which we list
below.

1. The service provider can only be held responsible for
those prices he indeed offered.

2. The user must be sure he will only be charged for
services he received for the price mutually agreed on.

3. The service provider must be sure that the user is not
able to receive a service and deny the receipt. Clearly,
the protocol does allow the user to deny having ever
received the service: he can just refuse to send the ac-
knowledgement message. According to [29], the pro-
tocol is designed for services with small value only,
thus a service provider can always deny a user that
has refused to send acknowledgement messages fur-
ther access to the system.

7.1 Our assumptions and formalization

To model this particular version of the IBS protocol, we
used the following assumptions:

1. The system consists of two users User1,User2, two
service providers SP1, SP2, the billing server BS
and an outside intruder E. The billing server is the
only agent that always behaves according to the pro-
tocol description. Furthermore, we have two services
service1, service2 with respective service names and
different prices to start with for the service providers.
The price is incremented after having been used in or-
der to model different prices being given to the users.
(We can use, however, a initial state where both ser-
vice providers use the same price as a starting point.)

2. All agents own valid key pairs and the public keys of
all other agents.

3. All predicates contain, for each user (service provider)
P , an additional component xPmemory. For each
protocol run an agent is engaged in we have an entry
in this component that contains the ID, the user /
service provider he is communicating with, the ser-
vice that is being negotiated, the price given and the
state the agent is in. Equivalently, the billing server
holds a list of authorization requests (xauthrequ),
each of which contains ID, price, User and SP being
engaged in the particular negotiation. Additionally,
BS holds a list with the accounts of users and service
providers.

4. Although in [29] it is not explicitly said so, we assume
that all signatures are checked. Since the protocol
does not provide information on who signed the mes-
sages, we added a further component xdetmessages
to the predicates that includes the ID, the message

12 Sigrid Gürgens Javier Lopez René Peralta

type (i.e. message1, message2, etc.) and the signers
of the message, starting with the outermost signa-
ture, the next inner one, then the innermost signa-
ture (if there are that many). This allows to identify
the signer of the first message (a service provider can
not know who has sent a particular price request),
and to identify which run the message belongs to by
use of the ID.
Whenever in the recipient P ’s xPmemory there exists
already an entry with the ID given in xdetmessages,
the public keys to be used for signature verification
are determined by using the public keys of the user
and service provider, respectively, given in this par-
ticular entry. This models the fact that a user will
only accept a service provided by the service provider
he ordered the service from, that a service provider
will only accept an order that was sent by the user he
offered the specific price to, etc. However, there may
be situations where only the integrity of the message
needs to be ensured and the actual signer is not of in-
terest. For example, a user might not be interested in
knowing who actually sent the mpeg file he ordered.
To model this we can determine the public keys to
be used for signature verification by using the agent
names given in xdetmessages.

8 Our analysis of the IBS protocol

As already pointed out in the previous section, there
are a number of security requirements to be met. In the
following we will list a few of these requirements and the
formula that models the respective property (thus the
formula to be found by Otter for finding a contradiction
and hence an attack).

1. The service provider can only be held responsible for
those prices he indeed offered. This can be formal-
ized with the formula −(state(. . .)∧ give price(xSP,
xID) > give price(xauthrequ, xID)).

2. The user must be sure he will only be charged for
services he received at the price mutually agreed on.
These are actually two requirements that can be cap-
tured by−(state(. . .)∧−service delivery(xauthrequ,
xevents)) and −(state(. . .)∧ give price(xUser, xID)
> give price(xauthrequ, xID)).

3. The service provider must be sure that the user is
not able to receive a service and deny the receipt:
−(state(. . .) ∧ denial ackn(xUsermemory, xSPme−
mory)).

The values of the predicates give price, denial ackn,
etc., are determined by means of conditional demodula-
tion.

For the analysis, in general we assumed that all pos-
sible checks are performed. This includes that the ser-
vice provider checks, receiving message 3, that the price
given in his own signature (which is part of the mes-
sage signed by the user) is the same as the one signed

by the user; that the billing server checks that the two
signatures of the service provider in the request for au-
thorization (inner and outer) are performed by the same
service provider, etc. This also includes that the billing
server checks, when receiving an authorization request,
that he has not yet received a request with the ID given.

The first protocol flaw we found is the one already
stated in [29]: By modelling a malicious user that can
stop the protocol run at any given point, we found (which
is not surprising) a state in which the user has stopped
the run after having received the service and the service
provider has not received an acknowledgement message
[13].

We then disabled the user’s ability to stop runs and
let the analysis run with a malicious user cooperating
with a malicious service provider. Now Otter found a
protocol run in which the user asks the service provider
for a price (they may also agree on a price beforehand, we
only modelled protocol runs that start with step 1), the
service provider sends the price and the user then orders
the service. The service provider then correctly asks the
billing server for authorization, which is given. But now,
instead of sending the service, this protocol run proceeds
with the user sending the message that acknowledges
having received the service (which in fact he did not) to
the service provider. Finally the billing server accepts the
log file containing the user’s acknowledgement message.
Thus the protocol does allow a situation where the user
is charged without having received a service.

One may argue that this can not be considered an
attack, since it is only possible with the active coopera-
tion of the user, and thus is no violation of the security
requirement that a user may only be charged for services
actually received. In many cases this will be right. How-
ever, our analysis reveals the fact that the messages re-
ceived by the billing server do not constitute a proof that
a service was delivered but a proof that the user agrees
on being charged a specific amount of money. There may
be environments where it matters whether or not the
billing server can be used for transferring money from
one account to another without service delivery being
involved, environments where any kind of “money laun-
dery” has to be avoided.

Our analysis shows that care must be taken when
specifying the security requirements. One way to for-
malize security requirements precisely is by way of sys-
tem states that describe a violation of the desired prop-
erty. In an environment where the above described pro-
tocol run is unacceptable, the formula −(state(. . .) ∧
−service delivery(xauthrequ, xevents)) captures the de-
mand that no user shall be charged without having re-
ceived a service. If “money laundery” is of no impor-
tance, the requirement can be relaxed by adding ∧ −
in list(xuser, xbadguys).

Analysis of e-commerce protocols: Adapting a traditional technique 13

9 Conclusions

In this paper we have presented our approach for the se-
curity analysis of cryptographic protocols. We used the
theorem proving tool Otter, not in order to verify se-
curity properties of cryptographic protocols, but as a
means to state space exploration. The learning curve for
using Otter is quite long, which is a disadvantage. Fur-
thermore, one can easily write Otter input which would
simply take too long to find a protocol failure even if
one exists and is in the search path of Otter’s heuristic.
Thus, using this kind of tool involves the usual decisions
regarding the search path to be followed.

Nevertheless, our approach has shown itself to be
a powerful and flexible way of analyzing protocols. By
making all of the agents’ actions explicit, our methods
reveal implicit assumptions that are not met by the pro-
tocol being analyzed. In particular, our methods found
protocol weaknesses not previously found by other for-
mal methods. Furthermore, our method is not restricted
to assuming perfect encryption. Properties of crypto-
graphic algorithms (such as the homomorphic property
of RSA) that may be misused by a dishonest agent can
easily be modelled by including symbolic functions and
adequate equations.

On the other hand, as we are concerned with pro-
tocol validation rather than verification, if our analysis
does not find an attack, we can not conclude that the
protocol is secure in general. All we know is that under
certain assumptions concerning the security properties
of the cryptoalgorithms used and the abilities of mali-
cious agents, a certain state is not reached.

Furthermore, we have successfully adapted our meth-
ods to address the specific needs of e-commerce protocol
analysis. The new model for the analysis of e-commerce
protocols is flexible enough to be used for different threat
scenarios with respect to possibilities of malicious agents.
Our analysis of a specific version of the IBS protocol
both shows our methods to be applicable to e-commerce
protocols and emphasizes that care must be taken when
identifying the security requirements of such a proto-
col. A way to formalize the desired properties is to use
formulas that describe a system state where the prop-
erty in question is violated. Future work will include the
formalization of more security properties relevant for e-
commerce protocols and the application of our methods
to other e-commerce protocols.

References

1. G. Bella and L.C. Paulson. Kerberos version iv: Induc-
tive analysis of the secrecy goals. In 5th European Sympo-
sium on Research in Computer Security, Lecture Notes in
Computer Science, pages 361–375. Springer-Verlag, 1998.

2. M. Bellare, R. Canetti, and H. Krawczyk. A Modular
Approach to the Design and Analysis of Authentication
and Key Exchange Protocols. In Annual Symposium on
the Theory of Computing. ACM, 1998.

3. M. Bellare and P. Rogaway. Provably secure session key
distribution - the three party case. In Annual Symposium
on the Theory of Computing, pages 57–66. ACM, 1995.

4. R. Berger, S. Kannan, and R. Peralta. A framework for
the study of cryptographic protocols. In Advances in
Cryptology – CRYPTO ’85, Lecture Notes in Computer
Science, pages 87–103. Springer-Verlag, 1985.

5. C. Boyd. Hidden assumptions in cryptographic proto-
cols. In IEEE Proceedings, volume 137, pages 433–436,
1990.

6. S. Brackin. Automatically detecting authentication lim-
itations in commercial security protocols. In Proc. of
the 22nd National Conference on Information Systems
Security, October 1999.

7. M. Burrows, M. Abadi, and R. Needham. A Logic of
Authentication. Report 39, Digital Systems Research
Center, Palo Alto, California, Feb 1989.

8. J. Clark and J. Jacob. On the Security of Recent Proto-
cols. Information Processing Letters, 56:151–155, 1995.

9. D. Denning and G. Sacco. Timestamps in key distribu-
tion protocols. Communications of the ACM, 24:533–
536, 1982.

10. DIN NI-17. Chipkarten mit Digitaler Signatur -
Anwendung/Funktion nach SigG und SigV - Teil 1:
Anwendungsschnittstelle, April 2000.

11. DIN NI-17.4. Spezifikation der Schnittstelle zu Chip-
karten mit Digitaler Signatur-Anwendung / Funktion
nach SigG und SigV, Version 1.0 (Draft), November
1998.

12. D. Dolev and A. Yao. On the security of public-key
protocols. IEEE Transactions on Information Theory,
29:198–208, 1983.

13. S. Gürgens and J. Lopez. Suitability of a classical anal-
ysis method for e-commerce protocols. In Yair Frankel
George I. Davida, editor, Information Security, 4th In-
ternational Conference, ISC 2001, volume 2200 of lncs,
pages 46–62. Springer Verlag, 2001.

14. S. Gürgens, J. Lopez, and R. Peralta. Efficient Detec-
tion of Failure Modes in Electronic Commerce Protocols.
In DEXA ’99 10th International Workshop on Database
and Expert Systems Applications, pages 850–857. IEEE
Computer Society, 1999.

15. S. Gürgens and R. Peralta. Efficient Automated Testing
of Cryptographic Protocols. report 45, GMD German
National Research Center for Information Technology,
Darmstadt, Germany, December 1998.

16. S. Gürgens and R. Peralta. Validation of Crypto-
graphic Protocols by Efficient Automated Testing. In
FLAIRS2000, pages 7–12. AAAI Press, May 2000.

17. N. Heintze and J.D. Tygar. A Model for Secure Protocols
and their Compositions. In 1994 IEEE Computer Society
Symposium on Research in Security and Privacy, pages
2–13. IEEE Computer Society Press, May 1994.

18. ISO/IEC. ISO/IEC CD 7816-8.2: “Identification cards -
Integrated circuit(s) cards with contacts - Part 8: Security
related interindustry commands”, June 1997.

19. R. Kailar. Accountability in Electronic Commerce Pro-
tocols. IEEE Transactions on Software Engineering,
22(5):313–328, 1996.

20. J. Kohl and C. Neuman. The Kerberos Network Authen-
tication Service (V5). Network Working Group, Request
for Comments 1510, September 1993.

14 Sigrid Gürgens Javier Lopez René Peralta

21. G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using CSP and FDR. In Second
International Workshop, TACAS ’96, volume 1055 of
LNCS, pages 147–166. SV, 1996.

22. W. Marrero, E. M. Clarke, and S. Jha. A Model Checker
for Authentication Protocols. In DIMACS Work-
shop on Cryptographic Protocol Design and Verification,
http://dimacs.rutgers.edu/Workshops/Security/, 1997.

23. C. Meadows. A system for the specification and verifica-
tion of key management protocols. In IEEE Symposium
on Security and Privacy, pages 182–195. IEEE Computer
Society Press, New York, 1991.

24. C. Meadows. Formal Verification of Cryptographic Pro-
tocols: A Survey. In Advances in Cryptology - Asiacrypt
’94, volume 917 of LNCS, pages 133 – 150. SV, 1995.

25. C. Meadows. Analyzing the Needham-Schroeder Public
Key Protocol: A Comparison of Two Approaches. In Pro-
ceedings of ESORICS, Naval Research Laboratory, 1996.
Springer.

26. C. Meadows and P. Syverson. A formal specification of
requirements for payment transactions in the SET pro-
tocol. In Proceedings of Financial Cryptography, 1998.

27. R. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers. Commu-
nications of the ACM, pages 993–999, 1978.

28. R. Ostrovsky and M. Yung. How to withstand mobile
virus attacks. In Proceedings of PODC, pages 51–59,
1991.

29. K. O’Toole. The Internet Billing Server - Transaction
Protocol Alternatives. Technical Report INI TR 1994-
1, Carnegie Mellon University, Information Networking
Institute, 1994.

30. S. Pancho. Paradigm shifts in protocol analysis. In New
Security Paradigms Workshop, 1999.

31. L. C. Paulson. The inductive approach to verifying cryp-
tographic protocols. Journal of Computer Security, 6:85–
128, 1998.

32. L. C. Paulson. Inductive Analysis of the Internet Proto-
col TLS. ACM Trans. on Information and System Secu-
rity, 2(3):332–351, 1999.

33. R. L. Rivest, A. Shamir, and L. A. Adleman. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126, 1978.

34. C. Rudolph. A Model for Secure Protocols and its Appli-
cation to Systematic Design of Cryptographic Protocols.
PhD thesis, Queensland University of Technology, 2001.

35. S. Schneider. Verifying authentication protocols with
CSP. In IEEE Computer Security Foundations Work-
shop. IEEE, 1997.

36. S. Schneider. Formal Analysis of a non-repudiation Pro-
tocol. In IEEE Computer Security Foundations Work-
shop. IEEE, 1998.

37. V. Shoup and A. Rubin. Session key distribution using
smart card. In Advances in Cryptology - EUROCRYPT
’96, volume 1070 of LNCS, pages 321–331. SV, 1996.

38. G. J. Simmons. Proof of Soundness (Integrity) of Cryp-
tographic Protocols. Journal of Cryptology, 7(2):69–77,
1994.

39. P. Syverson. A Different Look at Secure Distributed
Computation. In 10th Computer Security Foundations
Workshop, pages 109–115. IEEE, 1997.

40. P. Syverson, C. Meadows, and I. Cervesato. Dolev-Yao
is no better than Machiavelli. In Proceedings of WITS
2000, Workshop on Issues in the Theory of Security,
pages 87–92, 2000.

41. M. Tatebayashi, N. Matsuzaki, and D. Newman. Key
Distribution Protocol for Digital Mobile Communication
Systems. In G. Brassard, editor, Advances in Cryptology
- CRYPTO ’89, volume 435 of LNCS, pages 324–333.
SV, 1991.

42. L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated
Reasoning - Introduction and Applications. McGraw-
Hill, Inc., 1992.

Appendix

In the following we show the formalization of the agents’
actions in the Needham-Schroeder protocol for symmet-
ric algorithms. In these formulas, we use the Otter func-
tion $NEXT CL NUM to generate fresh numbers (the
function returns the number of the next clause gener-
ated by Otter).

All formulas are of the form (p1∧. . .∧pi) −→ f1 = f2

which is interpreted by Otter in the following way: If
predicates p1, . . . , pi hold on formula f1, then f1 is re-
placed (demodulated) by f2. This models an agent that
accepts the message being part of f1 after having per-
formed the checks modelled by the predicates, and then
sends the message of f2. Note that some of the predi-
cates p1, . . . , pi model the agent’s checks, while others
are used to direct the search.

% Agent’s protocol start:

(
$ID(xastep,init)

% xa is in state init
)
->
state(
xevents,xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,xbelief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,no_send,no_receive,no_message,

xscount,xdepth)
=
state(
[[xa,S,xrunnumber+1,message1,
[xa,xb,$NEXT_CL_NUM]] | xevents],xeknows,
xa,xrunnumber+1,expects_message2,$NEXT_CL_NUM,

no_key,xb,
xb,xbrun,init,no_nonce,no_key,no_agent,

no_belief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

Analysis of e-commerce protocols: Adapting a traditional technique 15

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber+1,xa,S,[xa,xb,$NEXT_CL_NUM],

xscount,xdepth+1).

% S’s program step2 (receive message 1,
% send message 2)

(
is_agent(x1) % 1. message element is

% agent’s name
&
is_agent(x2) % 2. message element is

% agent’s name
)
->
send_E(
xevents,xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,xbelief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,E,S,[x1,x2,x3],xscount,xdepth)
=
state(
[[S,x1,elem(3,elem(1,xevents)),message2,
[enc(key(x1,S),[x3,x2,$NEXT_CL_NUM,

enc(key(x2,S),
[$NEXT_CL_NUM,x1])])]] | xevents],xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,xbelief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,S,x1,[enc(key(x1,S),[x3,x2,

$NEXT_CL_NUM,
enc(key(x2,S),[$NEXT_CL_NUM,x1])])],

xscount,xdepth+1).

% Agent’s program step3 (receive message 2,
% send message 3)

(
$ID(give_message_type(xevents),message2)

% message shall be interpreted as message2
&
$ID(elem(1,dec(key(xa,S),xmessage)),xanonce)

% After decryption with key(xa,S), the
% first element of result is xa’s nonce

&
$ID(elem(2,dec(key(xa,S),xmessage)),xaagent)

% After decryption with key(xa,S), the

% second element of result is xa’s desired
% communication partner

&
$ID(xastep,expects_message2)

% xa expects message 2
)
->
send_E(
xevents,xeknows,xa,xarun,xastep,xanonce,no_key,

xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,xbelief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,E,xa,[xmessage],xscount,xdepth)
=
state(
[[xa,xaagent,xarun,message3,
[elem(4,dec(key(xa,S),xmessage))]] | xevents],

xeknows,
xa,xarun,expects_message4,xanonce,
elem(3,dec(key(xa,S),xmessage)),xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,a_believes,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,xa,xaagent,
[elem(4,dec(key(xa,S),xmessage))],xscount,

xdepth+1).

% Agent’s program
step 4 (receive message 3,
% send message 4)

(
% $ID(length(dec(key(xb,S),xmessage)),2)

%checking this avoids arity attack
% &
$ID(xbstep,init)

% xb is waiting for message 3
&
$ID(give_message_type(xevents),message3)

% message shall be interpreted as
% message 3

&
different(elem(2,dec(key(xb,S),xmessage)),xb)

% element 2 is not agent’s name
)
->
send_E(
xevents,xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,xbelief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

16 Sigrid Gürgens Javier Lopez René Peralta

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,E,xb,[xmessage],xscount,xdepth)
=
state(
[[xb,elem(2,dec(key(xb,S),xmessage)),

xrunnumber+1,message4,
[enc(elem(1,dec(key(xb,S),xmessage)),
[$NEXT_CL_NUM])]]| xevents],xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xrunnumber+1,expects_message5,$NEXT_CL_NUM,
elem(1,dec(key(xb,S),xmessage)),
elem(2,dec(key(xb,S),xmessage)),xbelief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber+1,xb,elem(2,dec(key(xb,S),xmessage)),
[enc(elem(1,dec(key(xb,S),xmessage)),
[$NEXT_CL_NUM])],xscount,xdepth+1).

% Agent’s program step 5a (receive message 4,
% send message 5)

(
$ID(xastep,expects_message4)
% xa expects message 4

&
$ID(give_message_type(xevents),message4)
% message shall be interpreted as message 4

)
->
send_E
(xevents,xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,xbelief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,E,xa,[xmessage],xscount,xdepth)
=
state(
[[xa,xaagent,xarun,message5,
[enc(xakey,[elem(1,dec(xakey,xmessage))-1])]]
| xevents],xeknows,
xa,xarun,a_finished,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,a_believes,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,xa,xaagent,
[enc(xakey,[elem(1,dec(xakey,xmessage))-1])],
xscount,xdepth+1).

% Agent’s program step 5b (receive message 5)

(
$ID(elem(1,dec(xbkey,xmessage)),xbnonce-1)

% After decryption with session key, result
% is xb’s nonce minus 1

&
$ID(xbstep,expects_message5)

% xb expects message 5
&
$ID(give_message_type(xevents),message5)

% message shall be interpreted as message 5
)
->
send_E(
xevents,xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,a_believes,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,E,xb,[xmessage],xscount,xdepth)
=
state(
[[both_believe]|xevents],xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,b_finished,xbnonce,xbkey,xbagent,

both_believe,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,no_send,no_receive,no_message,xscount,

xdepth+1).

(
$ID(elem(1,dec(xbkey,xmessage)),xbnonce-1)
&
$ID(xbstep,expects_message5)
&
$ID(give_message_type(xevents),message5)

)
->
send_E(
xevents,xeknows,
xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,xbstep,xbnonce,xbkey,xbagent,no_belief,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,xwho,xb,[xmessage],xscount,xdepth)
=
state(

Analysis of e-commerce protocols: Adapting a traditional technique 17

[[b_believes]|xevents],xeknows,
Xa,xarun,xastep,xanonce,xakey,xaagent,
xb,xbrun,b_finished,xbnonce,xbkey,xbagent,

b_believes,
xa2,xarun2,xastep2,xanonce2,xakey2,xaagent2,

xabelief2,
xb2,xbrun2,xbstep2,xbnonce2,xbkey2,xbagent2,

xbbelief2,
xrunnumber,no_send,no_receive,no_message,xscount,

xdepth+1)

