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Abstract. We present the adaptation of our model for the validation of
key distribution and authentication protocols to address specific needs
of protocols for electronic commerce. The two models defer in both the
threat scenario and in the formalization. We demonstrate the suitability
of our adaptation by analyzing a specific version of the Internet Billing
Server protocol introduced by Carnegie Mellon University. Our analysis
shows that, while the security properties a key distribution or authen-
tication protocol shall provide are well understood, it is often not clear
what properties an electronic commerce protocol can or shall provide.
Our methods rely on automatic theorem proving tools. Specifically, we
used “Otter”, an automatic theorem proving software developed at Ar-
gonne National Laboratories.
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1 Introduction

Cryptographic protocols play a key role in communication via open networks
such as the Internet. These networks are insecure in the sense that any adversary
with some technical background can monitor and alter messages interchanged by
application users. Thus cryptographic protocols are used to provide the desired
security properties. Messages are encrypted to ensure that only the intended
recipient can understand them, digital signatures are applied to provide a proof
that a message had been received, etc. All of these communication “services”
can be provided as long as the cryptographic protocols themselves are correct
and secure.

However, design of crytographic protocols is a difficult and error-prone task,
and many of these largely used protocols have been shown to contain flaws. For
this reason the use of formal methods that allow for the verification/validation of
such protocols in a systematic and formal way has received increasing attention.
In the last ten to fifteen years, active areas of research have developed around
the problems of:
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• Developing design methodologies which yield cryptographic protocols for
which security properties can be formally proven.

• Formal specification and verification/validation of cryptographic protocols.

An early paper which addresses the first of these issues is [4]. Here, it is
argued that protocols should not be defined simply as communicating programs
but rather as sequences of messages with verifiable properties; i.e. security proofs
can not be based on unverifiable assumptions about how an opponent constructs
its messages. As with much of the research work done in the area of cryptography,
this research does not adopt the framework of formal language specifications.
Some other work along the lines of specifying provably secure protocols includes
that of Bellare and Rogaway [3], Shoup and Rubin [28] (which extends the
model of Bellare and Rogaway to smartcard protocols), Bellare, Canetti and
Krawczyk [2], and the work of Heintze and Tygar considering compositions of
cryptoprotocols [11].

Another approach worth mentioning is [26]. Here agents are modeled by
using communicating automata and security properties are defined and can be
formally proven in terms of properties of abstract communication channels.

The second issue, formal specification and automatic verification or validation
methods for cryptographic protocols, has developed into a field of its own. Partial
overviews of this area can be found in [16], [14] and [22].

Most of the work in this field can be categorized as either development of
logics for reasoning about security (so-called authentication logics) or as de-
velopment of model checking tools. Both techniques aim at verifying security
properties of formally specified protocols.

As regarding the first category, a seminal paper on logics of authentication is
[6]. Work in this area has produced significant results in finding protocol flaws,
but also appears to have limitations which will be hard to overcome within the
paradigm.

Model checking, on the other hand, involves the definition of a state space
(typically modelling the “knowledge” of different participants in a protocol)
and transition rules which define both the protocol being analyzed, the network
properties, and the capabilities of an enemy. Initial work in this area can be
traced to [9].

Much has already been accomplished. A well-known software tool is the NRL
Protocol Analyzer [15], which has recently been expanded to include some spec-
ification capabilities, thus being able to specify the security requirements of the
SET protocol being used by Mastercard and Visa [18]. Other notable work in-
cludes Lowe’s use of the Failures Divergences Refinement Checker in CSP [13]
and Schneider’s use of CSP [27]. Recently, the CSP model was extended to cover
non-repudiation, a security requirement of e-commerce protocols [25]. To do so,
the outside intruder was removed from the model and the protocol participants
were given the ability to fake messages. However, it is not clear whether this
model can be extended to malicious agents with the ability to intercept mes-
sages as well.
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Also to mention are the model checking algorithms of Marrero, Clarke, and
Jha [14]; and Paulson’s use of induction and the theorem prover Isabelle [22]. To
the best of our knowledge, the model checking approach has been used almost
exclusively for verification of cryptographic protocols.

Verification can be achieved efficiently if simplifying assumptions are made
in order to obtain a sufficiently small state space. Verification tools which can
handle infinite state spaces must simplify the notions of security and correctness
to the point that proofs can be obtained using either induction or other logical
means to reason about infinitely many states. Both methods have produced
valuable insight into ways in which cryptographic protocols can fail.

The problem, however, is not only complicated but it is also evolving. The
”classical” work has centered around proving security of key-distribution and
authentication protocols, focusing on message properties such as key freshness,
message confidentiality, and message origin authentication. Currently, with elec-
tronic commerce applications deployment, cryptographic protocols are being
adapted for implementing commercial transactions.

This new generation of protocols imposes higher requirements on security is-
sues. Secure electronic commerce functions such as transaction certification, elec-
tronic notary functions, operational performance, commerce disposal, anonymity,
auditing, etc., are necessary for a successful deployment of electronic commerce
transactions. These functions in turn produce requirements like identification
of the sender and/or the receiver of a message, certification of delivery, confir-
mation of arrival, timestamping, detection of tampering, electronic storage of
originality-guaranteed information, approval functions, and access control.

Consequently, protocols for electronic commerce scenarios are becoming much
more complicated, and are more likely to contain errors. As a result, the com-
plexity for their security analysis is increasing exponentially too. Moreover, elec-
tronic commerce transactions involve an increasing number of participants in one
protocol run: Issuers, cardholders, merchants, acquirers, payment gateways and
Certification Authorities (CAs). This again makes the security analysis problem
harder to solve.

After Kailar’s approach to analyze accountability in electronic commerce pro-
tocols [12] , there have been attempts to model other protocols such as Kerberos
[1], TLS/SSL [23], Cybercash coin-exchange [5], and, as already mentioned, SET
[18].

Already existing analysis techniques can be successfully adapted, and hence,
applied to electronic commerce protocols (see [25]). In this paper we show how
the method we have developed for the analysis of classical protocols can be
adapted to cover specific needs of e-commerce protocols.

The rest of the paper is organized as follows: Section 2 describes the com-
munication and attack model we developed for the analysis of protocols related
to key distribution and authentication (which we will call “classical protocols”
throughout this paper). Section 3 illustrates the way the theorem prover Otter is
used for protocol analysis purposes, following criteria established in the previous
section. In section 4 we present a new type of attack and discuss some known
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attacks, in section 5 we explain how the model described in section 3 is adapted
for the analysis of electronic commerce protocols. As an example, section 6 and
7 describe the IBS payment protocol and the results of our analysis, respectively.
Section 8 concludes the paper.

2 The communication and attack model

The security analysis of protocols does not deal with weaknesses of the encryp-
tion and decryption functions used. In what follows we assume perfect encryption
in the following sense:

1. Messages encrypted using a function f and a secret key K can only be
decrypted with the inverse function and key f−1,K−1.

2. A key can not be guessed.
3. For the generation of a ciphertext {m}K , it is necessary to know both m

and K.

While the first two items describe generally accepted properties of encryption
functions, the last one does not hold in general. Actually, to date no proof is
known for a cryptoalgorithm to provide this property.

All communication is assumed to occur over insecure communication chan-
nels. We model these (in accordance with the Dolev-Yao attack model) by assum-
ing that there is one more agent E that intercepts all messages sent by others.
After intercepting, E can change the message to anything it can compute. This
includes changing the destination of the message and the supposed identity of
the sender. Furthermore, E can be considered a valid agent, thus may or may not
also share a symmetric key KES with S and/or own a key pair (SKE , PKE) for
an asymmetric algorithm, and can be allowed to initiate communication either
with other agents or S. Our model leaves these decisions open to be fixed for a
particular analysis run.

E intercepts all messages and the agents and S only receive messages sent
by E. What E can send depends on what it is able to generate, and this in turn
depends on what E knows. The knowledge of E can be recursively defined as
follows:

1. Depending on the decision for a particular analysis run, E may or may not
know the names of the agents.

2. E knows the keys it owns.
3. E knows its own random numbers.
4. E knows every message it has received.
5. E knows every part of a message received (where a ciphertext is considered

one message part).
6. E knows everything it can generate by enciphering data it knows using data

it knows as a key.
7. E knows every plaintext it can generate by deciphering a ciphertext it knows,

provided it knows the inverse of both the key and the encryption function
used as well.
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8. E knows every concatenation of data it knows.
9. E knows the origin and destination of every message.

10. At every instance of the protocol run, E knows the ”state” of every agent,
i.e. E knows the next protocol step they will perform, the structure of a
message necessary to be accepted, in principle what they will send after
having received (and accepted) a message, etc.

At every state in a possible run, after having received an agent’s message,
E has the possibility to forward this message or to send whatever message it
can generate to one of the agents or S. Obviously, the state space will grow
enormously. Thus, we must limit the concept of knowledge if the goal is to
produce a validation tool which can be used in practice. Therefore we restrict
the definition in various ways in order to make E’s knowledge set finite. For
example, if the protocol to be analyzed uses a public key algorithm, we do not
allow E to generate ciphertexts using data as a key which is neither the private
nor the public part of a key pair. We do this on an ad-hoc basis. This problem
needs further exploration. 1

Another design desicion concerns the question of whether or not messages
contain types, i.e. whether a recipient of a message can distinguish, say, a random
number from a cryptographic key. There is an open discussion in the research
community on whether protocol flaws resulting from type confusion are relevant.
We believe that this question can not be decided a priori but is dependant on
the message format of the particular application that the protocol is used in.
It may be advantageous to know that a particular type check is not needed in
order to achieve the desired security properties (by skipping unnecessary checks,
performance can be improved), but it is absolutely necessary to know that a
particular check is needed to avoid an attack in those applications that do not
perform type checks by default. Consequently, our analysis model does provide
the possibility to add types to messages, but for the analysis of classical protocols
we assume that messages are not typed.

3 Formalization of protocol instantiations

As the title of this section suggests, we make a distinction between a protocol and
a ”protocol instantiation”. We deem this a necessary distinction because proto-
cols in the literature are often under-specified. A protocol may be implemented
in any of several ways by the applications programmer.

The theorem prover Otter we used for protocol analysis is based on first order
logic. Thus for formalizing a protocol, the environment properties and possible
state transitions we use first order functions, predicates, implications and the
usual connectives. At any step of a protocol run, predicates like

state(xevents, xEknows, . . . , xwho, xto, xmess, . . .)
1 We note, however, that leaving this part of our model open allows for a very general

tool. This is in part responsible for the success of the tool, as documented in later
sections.
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describe a state of the system: each predicate contains the list xevents of ac-
tions already performed, the list xEknows of data known by E, and addition-
ally, for each agent and each run it assumes to be taking part in, components
xagent, xrun, xstep, xrandom, xkey, etc. that describe the states of the agent in
the particular run (e.g. data like session keys, nonces, etc., the agent has stored
so far for later use, and the next step it will perform). In general the predicates
can include as many agents’ states and protocol runs as desired, but so far we
have restricted this information to at most two agents, a server and the attacker
in the context of two interleaving protocol runs. Furthermore, the predicates
contain, among other data used to direct the search, the agent xwho which sent
the current message, the intended recipient xto and the message xmess sent.
Messages in our model are abstract objects, ordered tupels (m1,m2, . . . ,mr)
of concatenated messages mi which are viewed at an abstract level where the
agents can distinguish between different parts.

Using these predicates we write formulas which describe possible state tran-
sitions. For the first step of the Needham-Schroeder Protocol (where agent A
sends to the key server S the message A,B,RA, see section 4), the action of S
when receiving the message can be formalized as follows:

send(xevents, xEknows, . . . , xwho, xto, xmess, . . .)
∧ xto = S
∧ xwho = E
∧ is agent(el(1, xmess)) ∧ is agent(el(2, xmess))
→
send([. . . |xevents], xEknows, . . . , S, el(1, xmess),
[scrypt(key(el(1, xmess), S), [el(3, xmess), el(2, xmess), new key,
scrypt(key(el(2, xmess), S), [new key, el(1, xmess)])])], . . .)

where [. . . |xevents] includes the current send action, el(k, xmess) returns
the kth block of the message xmess just received, and new key stands for a
number uniquely generated for each protocol run. By checking that the message
was sent by E (xwho = E) we model the fact that agents only receive messages
sent by E.

Whenever a message is intercepted by E (indicated by a formula send(. . .)∧
xwho 6= E), an internal procedure adds all that E can learn from the mes-
sage to the knowledge list xEknows. The result of this procedure is a predicate
added all knows(. . .). Implications added all knows(. . .)→ send(. . . , xwho, . . . ,
message1, . . .)∧send(. . . , xwho, . . . ,message2, . . .)∧ . . . with xwho = E formal-
ize that after having intercepted a particular message, E has several possibilities
to proceed, i.e. each of the predicates send(. . . ,message, . . .) constitutes a pos-
sible continuation of the protocol run. The messages E sends to the agents are
constructed using the basic data in xEknows and the specification of E’s knowl-
edge as well as some restrictions as discussed in the previous section.

Symmetric keys shared by agentsX and Y are denoted by key(X,Y ), key(X, pub)
denotes the public key and key(X, priv) the private key of agent X. For being
able (if necessary) to distinguish between different cryptographic algorithms, we
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use scrypt(k,m) to formalise the encryption of message m with key k and the
symmetric algorithm scrypt, sdecrypt(k,m) formalizes the decryption of mes-
sagem. Similarly an asymmetric algorithm being used is indicated by acrypt(k,m)
and a digital signature by sig(k,m).

We use equations to describe the properties of the encryption and decryption
functions, keys, etc., used in the protocol. For example, the equation

sdecrypt(x, scrypt(x, y)) = y

formalizes symmetric encryption and decryption functions where every key is its
own inverse. These equations are used as demodulators in the deduction process.

The above formulas constitute the set of axioms describing the particular
protocol instantiation to be analyzed. An additional set of formulas, the so-called
”set of support”, includes formulas that are specific for a particular analysis.
In particular, we use a predicate describing the initial state of a protocol run
(the agent that starts the run, with whom it wants to communicate, the initial
knowledge of the intruder E, etc.) and a formula describing a security goal. An
example of such a security goal is ”if agent A believes it shares a session key with
agent B, then this key is not known by E”, formalized by −(state(. . .)∧xAstep =
finished ∧ xAagent = B ∧ in list(xAkey, xEknows))

Using these two formula sets and logical inference rules (specifically, we make
extensive use of hyper resolution), Otter derives new valid formulas which cor-
respond to possible states of a protocol run. The process stops if either no more
formulas can be deduced or Otter finds a contradiction which involves the for-
mula describing the security goal. When having proved a contradiction, Otter
lists all formulas involved in the proof. An attack on the protocol can be easily
deduced from this list.

Otter has a number of facilities for directing the search, for a detailed de-
scription see [30].

4 Known and new attacks

We used Otter to analyze a number of protocols. As an example, we show the
analysis of the well-known symmetric Needham-Schroeder key distribution pro-
tocol [19]. The protocol comprises the following steps:

1. A −→ S : A,B,RA
2. S −→ A : {RA, B,KAB , {KAB , A}KBS}KAS
3. A −→ B : {KAB, A}KBS
4. B −→ A : {RB}KAB
5. A −→ B : {RB − 1}KAB
S denotes a trusted key distribution server, {m}KXY denotes the encryption

of the message m using key KXY (shared by agents X and Y ), and RX denotes
a random number generated by agent X for a protocol run.

Whenever we model a protocol we are confronted with the problem that
usually the checks performed by the parties upon receiving the messages are not
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specified completely. This means that we must place ourselves in the situation
of the implementer and simply encode the obvious checks. For example, consider
step 3 of the previous protocol.

Here is a case where we have to decide what B’s checks are. We did the ob-
vious: (a) B decrypts using KBS ; (b)B checks that the second component of the
decrypted message is some valid agent’s name; and (c) B assumes, temporarily,
that the first component of the decrypted message is the key to be shared with
this agent.

However, Otter determined that this was a fatal flaw in the implementation.
We call the type of attack found the ”arity” attack, since it depends on an agent
not checking the number of message blocks embedded in a cyphertext. The arity
attack found by Otter works as follows: in the first message E impersonates B
(denoted by EB) and sends to S:

1. EB −→ S : B,A,RE
Then, S answers according to the protocol description and sends the following
message:

2. S −→ B : {RE , A,KAB , {KAB , B}KAS}KBS
The message is intercepted by E and then passed on to B, and B interprets it
as being the third message of a new protocol run. Since this message passes the
checks described above, B takes RE to be a new session key to be shared with
A and the last two prototol steps are as follows:

4. B −→ EA : {RB}RE
5. EA −→ B : {RB − 1}RE

where the last message can easily be generated by E since it knows its random
number sent in the first protocol step (see [10] for a formalization of B’s actions).

It is interesting to note that an applications programmer is quite likely to
not include an ”arity-check” in the code. This is because modular programming
naturally leads to the coding of routines of the type

get(cyphertext, key, i)

which decodes cyphertext with key and returns the ith element of the plaintext.
By including the arity check in B’s actions when receiving message 3, we

analyzed a different instantiation of the same protocol. This time Otter found
the well-known Denning-Sacco attack [7], where the third message of an old
protocol run is replayed to B and the attack run ends with B and the intruder
E sharing an old session key that possibly was broken by E.

It seems that many protocols may be subject to the ”arity” attack: our
methods found that this attack is also possible on the Otway-Rees protocol
(see [10] for a detailed description of the protocol and its analysis) and on the
Yahalom protocol, as described in [6].

Among the known attacks which were also found by our methods are the
Lowe ([13]) and the Meadows [17] attacks on the Needham-Schroeder public key
protocol and the Simmons attack on the TMN protocol (see [29]). For the latter
we relaxed the assumption of perfect encryption and modeled the homomorphic
property of cryptoalgorithms like RSA [24] that allow to generate a ciphertext
by multiplication.
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Furthermore, we analyzed an authentication protocol for smartcards with a
digital signature application standardized by the German standardization organ-
isation DIN ([8]) and found the particular version of the standard to be subject
to some interpretations which would make it insecure.

5 The extended model and its formalization

As already pointed out in the first section, e-commerce protocols are much more
complex than traditional cryptographic protocols with respect to security re-
quirements and threats. While in traditional protocols all agents are assumed
to act correctly and the only threat is being posed by a hostile environment, in
e-commerce protocols we have a situation where agents do not necessarily trust
each other. A customer in a payment system might want to gain advantage of
the system by not paying the agreed amount of money, a service provider may
try to get away with not sending the service. So it is not so much the abilities of
an outside intruder we are interested in but the abilities of the agents themselves
that are taking part in a protocol.

As to security properties the protocols shall provide, we still have to deal with
confidentiality and authenticity, but furthermore there are new properties that
pose different questions. So besides the fact that protocol flaws may arise because
of type confusion, we are interested in questions like ”Is it possible for the client
to receive the service without ever delivering the payment?”, in which case we
search for a system state where the service provider did deliver the service, the
client owns whatever the protocol provides as a proof of having paid, but never
did.

It is clear that the difference in security threats between classical and e-
commerce protocols induces differences in the formalization of protocol and at-
tack scenario. For the rest of the paper, we will refer to the analysis model for
classical cryptoprotocols as the ”classical model” and to that for e-commerce
protocols as to the ”e-commerce model”.

Our communication and attack model for the analysis of e-commerce proto-
cols is not the traditional Dolev-Yao model, where agents are assumed to act
honestly and where an intruder is in the center of communication, intercepts
every message and can send whatever message it is able to generate. Our model
does contain an intruder, but additionally we assume that any number of agents
participating in the system can be dishonest at any time. Regarding this, our
model is more flexible than the model of mobile adversary introduced in [20],
since here it is assumed that at most k out of n agents of the system can be
corrupted. The capability of agents to generate faked messages is based on their
knowledge, which is derived along the ”rules” given in section 2. Furthermore,
we also allow a situation where dishonest agents are capable of intercepting mes-
sages as well. This may or may not be relevant, depending on the environment
in which to use the protocol.

In general our model allows an unrestricted number of dishonest agents, but
so far we have restricted analysis runs to at most two. In the case of two dishon-
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est agents, we assume that they cooperate, i.e. exchange whatever knowledge
they have, except that they do not make available to each other their private
keys. It is very unlikely that one analysis run with two dishonest agents act-
ing independently gives more results than two analysis runs with one dishonest
agent each.

As in the classical model, we are not concerned with the security of the
algorithms that are being used in the protocols, i.e. we again assume perfect
encryption. But in contrast to the analysis of classical protocols where we assume
that agents are not able to distinguish between different types, in the e-commerce
model we add types to the messages. Thus the agents can be modeled as being
able or not being able to distinguish between different types of messages. This
allows the analysis to concentrate on issues specific to e-commerce protocols
rather than searching for protocol flaws caused by type confusion, but it keeps
the search for type confusion based flaws possible.

Consequently, in the analysis runs performed so far we allowed dishonest
agents only to send messages in the correct format, e.g. a message identification
number will not be sent as a price, a signature will not be used as a random
number, etc.

For the formalization of e-commerce protocols we had to make a few changes
to predicates and formulas, the most important ones are listed below.

– The predicates additionally contain a list of agents that act dishonestly and a
list of agents that cooperate (which allows for future extension of the number
of cooperating agents). Furthermore, agents own a list of keys and a list for
keeping information they extracted from messages not intended for them.

– In the classical cryptoprotocols we analysed so far there was no need to
model an agent sending two messages subsequently. However, in e-commerce
protocols the situation may be different, in particular when allowing for
cooperating malicious agents whose actions are not fixed by the protocol
description . Thus we introduced a ”dummy message”: If agent X sends
first a message to agent Y and then a message to agent Z, we model this
by having Y answer to X with dummy, after which X can proceed with
sending the second message to Z.

– We model the interception of messages by dishonest agents principally in the
same way as in the classical model: Whenever a message is sent by an honest
agent (send(. . .) ∧ −in list(xwho, xbadguys)), an internal procedure adds
all that the dishonest agents can learn from the message to the respective
knowledge list xagentknows. If there are cooperating agents, their knowledge
lists are exchanged. Finally for each of the dishonest agents the messages to
be sent are constructed, on the basis of the agent’s knowledge and keys
he owns. The messages are then sent to those agents that will accept the
message with respect to the format (e.g. an order will not be send to a
client, but only to a service provider). If we want to analyse a protocol in an
environment where agents can not intercept messages, we skip the internal
procedure of knowledge extraction and connect the reception of messages
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directly with the generation of faked messages by way of demodulators such
as in list(xto, xbadguys) −→ send(. . .) = construct messages(. . .).

6 The Internet Billing Server Protocol

Using the above described model, we analyzed the Internet Billing Server Pro-
tocol (IBS protocol) developed by Carnegie Mellon University and described
in [21]. Actually, [21] includes several different versions of protocol templates
where the precise format of messages is left open. We chose the version that uses
only asymmetric algorithms and made those changes we deemed necessary for a
reasonable analysis.

The protocols were designed to enable sales of goods to be delivered over the
network. There are three different types of agents: service providers, users (those
agents which buy the goods) and the Billing Server, trusted by all agents, which
handles the money transfer. Both service provider SP and user User register
with the billing server BS, which means in particular that accounts are opened
and key pairs are issued by BS.

The protocol assumes that a signature algorithm with message recovery is
used (an algorithm that allows to decipher a signature in order to get the plain-
text again), {message}SKX denotes the message signed with the private key of
agent X. In the following, we describe our version of the IBS protocol. It con-
sists of two phases, the first of which is price delivery, where the user asks some
service provider for a price and the service provider answers with a price.

1. User −→ SP : {ID, request, servicename}SKUser
2. SP −→ User : {ID, price}SKSP

The second phase is the service provision and payment phase:

3. User −→ SP : {{ID, price}SKSP , ID, price}SKUser
4. SP −→ BS : {{{ID, price}SKSP , ID, price}SKUser}SKSP
5. BS −→ SP : {ID, authorization}SKBS
6. SP −→ User : {ID, service}SKSP
7. User −→ SP : {ID, ackn}SKUser
8. SP −→ log : {{ID, ackn}SKUser}SKSP
9. SP −→ BS : log

First, in step 3, the user orders the service. In step 4 the service provider asks
the Billing Server for authorization of this service, which means in particular that
the Billing Server checks that the user’s account provides enough money. If so,
the Billing Server transfers the price for the service from the user’s to the service
provider’s account and keeps a record with all data relevant for this transaction.
Then he authorizes the service (step 5) and the service is delivered (step 6).
The user’s last action is to send a message acknowledging that he received the
service. The service provider collects all acknowledgement messages in a log file
which is sent to the Billing Server in off-peak hours (step 9). When receiving the
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log file, the Billing Server checks that the acknowledgement messages in the log
file match the previously performed money transfers.

We added a message ID to all messages of the original version, and the
constant “request” and the variable servicename to the first message, taking
into account that a price will depend on the time it was given, the user it was
given to, the service, and the service provider, that an authorization refers to
a specific amount of money to be paid by a specific user to a specific service
provider for a specific service, etc. The identification number both serves as a
time stamp (it is issued by the user and unique for each run) and connects the
messages of one run.

Some general assumptions where made in [21]:

1. In case of dispute, the user is always right. In consequence, if the service
provider tries to cheat and the user complains about the charge, the ser-
vice provider will always loose. On the other hand, the service provider can
protect himself against malicious users by refusing access to the system.

2. All agents have access to a verifiable source of public keys, none of the keys
gets compromised.

3. To secure the protocol against replay attacks etc., ”time stamps, nonces, and
other well documented means” can be used.

A number of security requirements the protocol imposes are explained in [21],
some of which we list below.

1. The service provider can only be held responsible for those prices he indeed
offered.

2. The user must be sure he will only be charged for services he received for
the price mutually agreed on.

3. The service provider must be sure that the user is not able to receive a
service and deny the receipt.
Clearly, the protocol does allow the user to deny having ever received the ser-
vice: he can just refuse to send the acknowledgement message. According to
[21], the protocol is designed for services with small value only, thus a service
provider can always deny a user that has refused to send acknowledgement
messages further access to the system.

6.1 Our assumptions and formalization

To model this particular version of the IBS protocol, we used the following
assumptions:

1. The system consists of two Users User1, User2, two service providers SP1,
SP2, the Billing Server BS and an outside intruder E. The Billing Server
is the only agent that always behaves according to the protocol description.
Furthermore, we have two services service1, service2 with respective service
names and different prices to start with for the service providers. The price
is incremented after having been used. (However, we can use a initial state
where both service providers use the same price as a starting point.)
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2. All agents own valid key pairs and the public key of all other agents.
3. All predicates contain, for each user and each service provider, an additional

component xagentmemory. For each protocol run an agent is engaged in we
have an entry in this component that contains the ID, the user / service
provider he is communicating with, the service that is being negotiated, the
price given and the state the agent is in. Equivalently, the Billing Server
holds a list of authorization requests (xauthrequ), each of which contains
ID, price, User and SP being engaged in the particular negotiation. Addi-
tionally, BS holds a list with the accounts of users and service providers.

4. Although in [21] it is not explicitly said so, we assume that all signatures are
checked. Since the protocol does not provide information on who signed the
messages, we added a further component xdetmessages to the predicates
that includes the ID, the message type (i.e. message1, message2, etc.) and
the signers of the message, starting with the outermost signature, the next
inner one, then the innermost signature (if there are that many). This al-
lows to identify the signer of the first message (a service provider can not
know who has sent a particular price request), and to identify which run the
message belongs to by use of the ID.
Whenever in the recipient’s xagentmemory there exists already an entry
with the ID given in xdetmessages, the public keys to be used for signature
verification are determined by using the public keys of the user and service
provider, respectively, given in this particular entry. This models the fact
that a user will only accept a service provided by the service provider he
ordered the service from, that a service provider will only accept an order
that was sent by the user he offered the specific price to, etc. However, there
may be situations where only the integrity of the message needs to be ensured
and the actual signer is not of interest. For example, a user might not be
interested in knowing who actually sent the mpeg file he ordered. To model
this we can determine the public keys to be used for signature verification
by using the agents given in xdetmessages.

7 Our analysis of the IBS protocol

As already pointed out in the previous section, there are a number of security
requirements to be met. In the following we will list a few of these requirements
and the formula that models the respective property (thus the formula to be
found by Otter for finding a contradiction and therefore an attack).

1. The service provider can only be held responsible for those prices he indeed
offered. This can be formalized with the formula−(state(. . .)∧give price(xSP,
xID) > give price(xauthrequ, xID)).

2. The user must be sure he will only be charged for services he received at
the price mutually agreed on. These are actually two requirements that can
be captured by −(state(. . .) ∧ −service delivery(xauthrequ, xevents)) and
−(state(. . .) ∧ give price(xUser, xID) > give price(xauthrequ, xID)).
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3. The service provider must be sure that the user is not able to receive a service
and deny the receipt:−(state(. . .)∧denial ackn(xUsermemory, xSPmemo−
ry)).

The values of the predicates give price, denial ackn, etc., are determined by
means of conditional demodulation.

For the analysis, in general we assumed that all possible checks are performed.
This includes that the service provider checks, receiving message 3, that the price
given in his own signature (which is part of the message signed by the user) is
the same as the one signed by the user; that the Billing Server checks that the
two signatures of the service provider in the request for authorization (inner and
outer) are performed by the same service provider, etc. This also includes that
the Billing Server checks, when receiving an authorization request, that he has
not yet received a request with the ID given.

The first protocol flaw we found is the one already stated in [21]: By modeling
a malicious user that can stop the protocol run at any given point, we found
(which is not surprising) a state in which the user has stopped the run and the
service provider has not received an acknowledgement message.

We then disabled the user’s ability to stop runs and let the analysis run with
a malicious user and a malicious service provider. Now Otter found that the
protocol can be run without performing step 6, i.e. without service delivery, and
the Billing Server still accepts the log file containing the user’s acknowledgement
message. Thus the protocol does allow a situation where the user is charged
without having received a service. One may argue that this can not be considered
an attack, since it is only possible with the active cooperation of the user, and
thus is no violation of the security requirement that a user may only be charged
for services actually received. In many cases this will be right. However, our
analysis reveales the fact that the messages received by the Billing Server do not
constitute a proof that a service was delivered but a proof that the user agrees
on being charged a specific amount of money. There may be environments where
it matters whether or not the Billing Server can be used for transfering money
from one account to another without a service being involved, environments
where any kind of “money laundrey” has to be avoided.

Our analysis also shows that care must be taken when specifying the secu-
rity requirements. One way to formalize security requirements precisely is by
way of system states that describe a violation of the desired property. In an
environment where the above described protocol run is unacceptable, the for-
mula −(state(. . .) ∧ −service delivery(xauthrequ, xevents)) captures the fact
that no user shall be charged without having received a service. If “money
laundrey” is of no importance, the requirement can be relaxed by adding ∧ −
in list(xuser, xbadguys).

8 Conclusions

As is well known, there does not exist an algorithm which can infallibly decide
whether a theorem is true or not. Thus the use of Otter, and per force of any
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theorem proving tool, is an art as well as a science. The learning curve for using
Otter is quite long, which is a disadvantage. Furthermore, one can easily write
Otter input which would simply take too long to find a protocol failure even if
one exists and is in the search path of Otter’s heuristic. Thus, using this kind of
tool involves the usual decisions regarding the search path to be followed.

Nevertheless, our approach has shown itself to be a powerful and flexible way
of analyzing protocols. By making all of the agents’ actions explicit, our methods
reveal implicit assumptions that are not met by the protocol being analyzed.
In particular, our methods found protocol weaknesses not previously found by
other formal methods. On the other hand, as we are concerned with protocol
validation rather than verification, if our analysis does not find an attack, we can
not conclude that the protocol is secure in general. All we know is that under
certain assumptions concerning the security properties of the cryptoalgorithms
used and the abilities of malicious agents, a certain state is unreachable.

Furthermore, we have successfully adapted our methods to address the spe-
cific needs of e-commerce protocol analysis. The new model for the analysis of
e-commerce protocols is flexible enough to be used for different threat scenarios
with respect to possibilities of malicious agents. Our analysis of a specific ver-
sion of the IBS protocol both shows our methods to be applicable to e-commerce
protocols and emphazises that care must be taken when identifying the security
requirements of such a protocol. A way to formalize the desired properties is
to use formulas that describe a system state where the property in question is
violated. Future work will include the formalization of more security properties
relevant for e-commerce protocols and the application of our methods to other
e-commerce protocols.
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