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Abstract

An Advanced Persistent Threat (APT) is an emerging attack against
Industrial Control and Automation Systems, that is executed over a long
period of time and is difficult to detect. In this context, graph theory can
be applied to model the interaction among nodes and the complex attacks
affecting them, as well as to design recovery techniques that ensure the
survivability of the network. Accordingly, we leverage a decision model
to study how a set of hierarchically selected nodes can collaborate to
detect an APT within the network, concerning the presence of changes
in its topology. Moreover, we implement a response service based on
redundant links that dynamically uses a secret sharing scheme and applies
a flexible routing protocol depending on the severity of the attack. The
ultimate goal is twofold: ensuring the reachability between nodes despite
the changes and preventing the path followed by messages from being
discovered.
Keywords: advanced, persistent, threat, attack, detection, response,
consensus, opinion, dynamics, secret, sharing, redundant, topology

1 Introduction

The interconnection of industrial environments with modern ICT technologies
has increased the number of internal and external threats in this context, in-
cluding those from traditional IT systems (e.g., malware, spyware, and botnets).
Among these, the Advanced Persistent Threats (APT) are a new class of so-
phisticated attacks that are executed by well-resourced adversaries over a long
period of time. They usually go undetected because they leverage zero-day
vulnerabilities and stealthy and evasive techniques [1]. While APTs originally
attacked military organizations, they are now targeting a wide range of indus-
tries and governments with multiple purposes: economic (espionage, intellectual
property), technical (access to source code), military (revealing information) or
political (destabilization of a company). Their goal is to get through the orga-
nization’s network and take over the industrial control systems.
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Stuxnet was the first attack of this kind, reported in 2010, which sabotaged
the Iranian Nuclear Program by causing physical damage to the infrastructure
and thereby slowed down the overall process. Ever since, the number of reported
vulnerabilities concerning Industrial Control Systems has been dramatically in-
creasing, as the research community has become more involved and new attacks
have been revealed. Like Stuxnet, all APTs are tailored to the specific victim’s
network topology, and they count on a defined succession of steps: firstly, the
attacker intrudes on the network by using social engineering (e.g., by means of
fraudulent e-mails containing trojans); secondly, they install a backdoor from
which the attackers connect to the target network. Then, several exploits and
malware are used to compromise as many computers in the victim network as
possible, to ultimately modify the productive process or exfiltrate information
back to the attacker domain.

On the whole, an APT is a meticulously planned attack adapted to the
target infrastructure, one whose complexity makes the use of traditional coun-
termeasures (e.g., antivirus, firewalls) insufficient to tackle them. An additional
effort is required to mitigate their effects, by involving the organization in secu-
rity awareness training and introducing novel services in continuous evolution
within the company [2]. For this reason, we propose the design of practical
mechanisms to firstly detect and then effectively respond to these attacks, ap-
plied to a common network representation. We can summarize our contributions
as:

• Modeling the evolution of an APT within the victim network topology.

• Implementation of a multi-agent system for the detection of an APT based
on the topological changes suffered in selected parts of the network, ob-
served by hierarchically chosen nodes in accordance with controllability
criteria.

• Use of redundancy edges and random routing protocols to overcome the
network deformation provoked by the APT and to avoid compromised
systems, ensuring the reachability between nodes and the survivability of
the network.

The remainder of this paper is organized as follows: Section 2 outlines prelim-
inary concepts about dynamic control networks and describes the threat model
used for the APT. In Section 3 the detection of these attacks is addressed by
means of a network decision model. Based on this mechanism, response tech-
niques are implemented in Section 4, which are theoretically and experimentally
analyzed in Section 5.
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2 Preliminaries

2.1 Structural Controllability

Considering the cost of the implementation of large control networks from a
research point of view, it becomes mandatory to model and simulate the problem
through graph theory, taking into account the network topology and the nature
of its distribution. Specifically, we focus on topologies of the type power-law y ∝
x−α [3], since the vast majority of critical control systems follow these structures,
which produce small sub-networks similar to current control substations.

With the purpose of helping the reader understand the underlying theoretical
concepts of our model, topics related to structural controllability and power
dominance are described here. The concept of structural controllability was
introduced by Lin in 1974 [4], which associates the control to a subset of nodes
with the maximum capacity of dominance.

Let G = (V,E) be a directed graph that represents the network topology,
given by its adjacency matrix, that is, a square binary matrix M with dimen-
sion |V | where M(i, j) = 1 whenever (vi, vj) ∈ E and zero otherwise. Through
G(V,E), it is possible to characterize dynamic control networks including loops
and weighted edges that represent the interconnection of control devices with
remote terminal units (e.g., sensors or actuators). These links contain the max-
imum capacity to conduct the main traffic between two points, which is defined
as the control load capacity (CLC).

To represent this traffic, we use the edge betweeness centrality (EBC) [5]. It
is an indicator that represents the sum of the fraction of the shortest paths that
pass through a given edge, so that edges with the highest centrality participate
in a large number of shortest paths. The result is a weighted matrix related to
Gw(V,E) whose weights are computed as follows:

EBC =
∑
s,t∈V

δ(s, t|e)
δ(s, t)

(1)

where δ(s, t) denotes the number of shortest (s,t)-paths and δ(s, t|e) the
number of paths passing through the edge e. On the other hand, let the in-
neighborhood N in

i of a node i be the set of nodes vj such that (vj , vi) ∈ E,
while the out-neighborhood Nout

i is the set of nodes vj such that (vi, vj) ∈ E.
Consequently, let the in-degree diin of a node vi be the number of its incoming
edges, i.e., dini = |N in

i |, while the out-degree douti is the sum of its outgoing
edges, i.e., di = |Nout

i |.
Taking these concepts and EBC into account, the Dominating Set (DS)

of a graph G can be defined as the minimum subset of nodes D ⊆ V such
that for each vertex vi 6∈ D is adjacent to at least one member of D, that is
∃vk ∈ D|(vk, vi) ∈ E. These nodes D with highest control capacity will be
those with the highest edge betweeness centrality EBC(v) for all their outgoing
edges. The creation of this set is explained in Algorithm 1. Related to this
concept, the Power Dominating Set (PDS) consists in an extension of the DS by
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including new driver nodes (denoted by ND), those with the maximum capacity
of dominance. The original formulation of this set was given by Haynes et al.
in [6], and was later simplified into two fundamental observation rules by Kneis
et al. in [7]:

OR1 A vertex in ND observes itself and all its neighbors, complying with DS.

OR2 If an observed vertex v of degree d+ ≥ 2 is adjacent to d1 observed ver-
tices, the remaining un-observed vertex becomes observed as well. This
also implies that OR1 ⊆ OR2 given that the subset of nodes that comply
with OR1 becomes part of the set of nodes that complies with OR2.

For our purpose in this paper, the dominating nodes play the role of agents
that detect topological changes in their surroundings that may be derived from
an APT attack, and establish backup links that ensure the continuity of the
network.

Algorithm 1 DS(G(V,E))
output (DS = {vi, ..., vk} where 0 ≤ i ≤ |V |)
local: BC(V ) representing betweeness centrality of V

Choose v ∈ V with highest BC
DS ← {v} and N(DS)← {vi, ..., vk} ∀i ≤ j ≤ k \ (v, vj) ∈ E
while V − (DS ∪N(DS)) 6= ∅ do

Choose vertex w ∈ V − (DS ∪N(DS)) with highest BC
DS ← DS ∪ {w}
N(DS)← N(DS)

⋃
{vi, ..., vk} where ∀i ≤ j ≤ k \ (w, vj) ∈ E

end while

2.2 Threat model: Representation of APT Attacks

Assuming a successful intrusion inside a network represented by a matrix M, we
model an APT with a succession of attacks perpetrated on its topology. Specif-
ically, just as an actual APT works, the attacker firstly selects one node and
then makes several lateral movements in order to find new nodes to compro-
mise. Since we want to provide realism in this model and consider a scenario
of high criticality, we assume the attacker always seeks those nodes with more
controllability, that is, those belonging to the DS and hence the ones with the
highest betweeness centrality.

In each of the steps in its life cycle, the APT can commit individual attacks
on the topology, i.e. changing the edges from the compromised node at a given
time instant. This consequently generates a new matrix M’. The types of attacks
can be:

* Removal of an incoming edge: given the vertex vi that represents the
compromised node such that vj exists and M(j, i) = 1, it implies setting
M(j, i) = 0.
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* Removal of an outgoing edge: given the vertex vi that represents the
compromised node such that vj exists and M(i, j) = 1, it implies setting
M ′(i, j) = 0.

* Addition of an incoming edge: given the vertex vi that represents the
compromised node such that vj exists and M(i, j) = 0, it implies setting
M ′(i, j) = 1.

* Addition of an outgoing edge: given the vertex vi that represents the
compromised node such that vj exists and M(i, j) = 0, it implies setting
M ′(i, j) = 1.

In a simple version of the APT, we suppose that the kind of the attack and
the first node compromised within the network are chosen randomly. From that
moment on, the attack migrates to the adjacent node with highest betweeness
centrality, simulating the fact that the attacker can perform a reconnaissance
of the network when looking for potential victims that deal with higher loads
of control traffic. The resulting attacker behavior is described in Algorithm 2.
An example of an APT with three attacks over a defined network topology is
depicted in Fig. 1, where driver nodes are marked in black to show how the
APT always migrates to vertices with higher controllability. Firstly, node 4 is
selected and an outgoing edge is added towards node 2. Then, the attacker
moves to node 6 and removes the edge coming from node 3 and then, since node
6 still has dominance, the attack stays there and removes the edge going to 7.

Algorithm 2 Advanced persistent threat life cycle
output: M ′ representing the resulting matrix
local: M representing G(V,E), numOfAttacks
attackedNode← random vi ∈ E
M ′ ←M

for i:=1 to numOfAttacks step 1 do
attack ← randomAttack over attackedNode (edge addition or removal)
update M ′ based on attack
attackedNode← SelectNewAttackedNode(M,attackedNode)
if attackedNode == null then

attackedNode← random vi ∈ E
end if

end for

function SelectNewAttackedNode(M ,node)
childNodes← vertexes vj |M(node, vj) = 1
parentNodes← vertexes vk|M(vk, node) = 1
candidates← childNodes ∪ parentNodes
maxCentrality := 0
attackedNode← null
for vertex v in candidates do

centrality ← CalculateBetweenessCentrality(v)
if centrality > maxCentrality then

attackedNode← v
end if

end for
return attackedNode

end function
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Figure 1: Example of APT with 3 attacks: 1st: Addition of edge from node 4
to node 2. 2nd: Removal of edge from node 3 to node 6. 3rd: Removal of edge
from node 6 to node 7.

3 APT Detection through Opinion Dynamics

Now we have modeled the effect of an APT over the network topology, in this
section we describe a feasible method to allow the network to locate subtle
changes in certain parts, making it easier to accurately deploy response tech-
niques to overcome the effect of one of these threats.

We start with the notion introduced before: let us suppose a power law dis-
tribution network defined by the directed graph G = (V,E) and represented
by the adjacency matrix M. Let us also suppose the presence of n agents de-
ployed over that network (the DS nodes of the graph G), so each node vi ∈ V
is connected to one or more agents. We further assume that the agents can
also communicate with each other according to a communication network rep-
resented by the directed graph Gc = (V,Ec), where for all (vi, vj) ∈ Ec, we
have that (vi, vj) ∈ E. Our goal is to put into practice a distributed cooper-
ative algorithm among these agents to detect precise topology attacks in their
neighborhood by exchanging information on changes produced in their observ-
able nodes. In this regard, various decision models can be imported from graph
theory, among which we can highlight consensus and opinion dynamics.

In the consensus approach, a collection of agents cooperate to reach a com-
mon objective by sharing information about their state and other environmental
conditions [8]. Such negotiation depends on the network topology, so it can be
leveraged to collectively build a global indicator of the entire network health
at a given moment. Compared to this algorithm, opinion dynamics proposes a
model that admits the fragmentation of patterns, so the aforementioned agents
may differ in their opinions during the negotiation process [9]. These network
partitions will depend on the closeness to the opinion of each node, which is
calculated based on the number of topological changes they detect. Therefore,
it makes it easier to identify which areas of the network are more affected by
the action of the APT and to what extent.

Opinion dynamics originally models the influence among individuals in a
group or the entire society, where there is a wide spectrum of opinions. Each
agent crafts its own opinion taking into consideration the ones from the rest of
agents to a certain extent. Eventually, the opinions are distributed into several
clusters. For our purpose, it implies fragmenting the network according to the
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multiple changes that could occur in separate areas, whose individual consensus
value raises an indicator of the severity of the attacks over that particular portion
of the topology.

Let us suppose that xi(t) represents the opinion of a fixed agent i at time t.
The vector x(t) = (x1(t), ..., xn(t)) represents the opinion profile at time t for all
the agents. Given an agent i, the weight given to the opinion of any other agent
j is denoted by aij . For simplicity, we consider aii such that

∑n
k=1 aik = 1.

Therefore, agent i also takes into account its own opinion during the opinion
formation process, which can be described as follows:

xi(t+ 1) = ai1x1(t) + ai2x2(t) + ...+ ainxn(t)

In a matrix notation it can be written as:

x(t+ 1) = A(t, x(t))x(t)

where the matrix A(t, x(t)) = [aij ] is the square matrix that collects the
weights, which summarize the relationships between the agents’ opinions. These
weights can change over time or by opinion, so finally an agent i adjusts its
opinion in period t+ 1 by taking a weighted average of the opinion of agent j at
time t. When t tends to infinity, the final behavior of the opinion profile may
lead to a consensus among all or part of the agents, which can also be visualized
graphically.

Returning to our domain, we execute this algorithm assuming that xi(0) will
be calculated for each agent i as follows: let us suppose that BC(vi) represents
the original betweeness centrality for each agent i that, as explained, works as
an indicator of the controllability of that particular node. If BC ′(vi) is the
betweeness centrality of the same agent after being victim of a particular attack
of those defined in Section 2.2 or another node in its neighborhood, we define
the initial opinion xi(0) as

xi(0) =
|BC ′(vi)−BC(vi)|

BC(vi)
(2)

Consequently, xi(0) holds the ratio of change in the controllability of an agent
i after an attack, compared to its initial state (due to an increase or decrease
of adjacent edges). We assume that when the value was originally zero or the
resulting ratio is greater than 1, the result is normalized to the value of 1.

Altogether, if we have the vector x(0) concerning the initial opinion of all
agents in the DS, we can run the opinion dynamics algorithm to obtain a value
of the change ratio of the network after suffering an individual attack, making it
possible to distinguish between different clusters of agents with similar opinion.
In this case, the closeness among opinions, which is represented by the matrix
A with the weights assigned for each agent, has been modeled according to the
difference in the degree of change (the individual opinion each agent holds): for
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two given agents i and j, if the difference is below a determined epsilon value
(e.g., 0.3), they increase the weight given to each other; this models the fact that
agents that experiment a similar degree of change in their surrounding topology
must agree on the presence of an anomaly in their respective area.

Figure 2 shows the opinion dynamics algorithm for a network of 30 nodes
and 17 agents after suffering an APT comprising 10 attacks. The lines repre-
sent the evolution in the opinions for each agent, so finally there is multiple
consensus between them: in particular, there are only two agents that indicate
relatively large changes (more than 0.5 of fluctuation in their betweeness cen-
trality). However, four agents agree on a change of about 0.25 points around
their zone of influence, and many of them indicate a fault of approximately 0.1
in the zone governed by these nodes. As can be seen in the figure, a α value has
been added to the plot, which holds the ratio of agents that find a consensus on
the amount of degree experienced. This value, together with the opinion about
the changes in the topology, serves as the criticality indicator that regulates how
strong the response technique must be to mitigate the effects of the APT.
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Figure 2: Calculus of the opinion dynamics for a set of agents

4 APT Response

Once we have obtained a measure of the extent to which the network topology
is at risk due to the effect of an APT attack, we are in a position to adopt
multiple response techniques. We set the goal of preserving the connectivity
for all those nodes in charge of delivering control signals to the rest of nodes
of the network. According to the different change ratios raised by the opinion
dynamics algorithms, we can apply different techniques in separate nodes of the
network.

Specifically, we suppose a scenario where we wish to ensure that one node i
belonging to the DS wants to send control messages to another node j in the net-
work. This is done in the presence of an APT that can remove certain edges that
originally enabled both nodes to communicate over a defined path, traversing
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other points of the topology [10]. At the same time, we want to avoid hopping
over compromised nodes that may be victims of the APT and hence intercept
these sensitive packets, preserving confidentiality by this means. Moreover, it
is desirable that the communication pattern (i.e., the paths described by the
messages when being transmitted over the network) is as random as possible,
so as to guarantee that the attacker cannot easily determine the topology of the
network. As a result, we have a security service that ensures the continuity of
the network until the APT has been successfully removed from the system. To
sum up, we seek these three objectives when designing a response technique:

(a) Ensure the presence of a path between node i and j when possible.

(b) Define a routing protocol that prevents determining the path.

(c) Introduce a mechanism to avoid the interception of messages.

To satisfy objective (a), we propose building an edge-redundant network
with hidden edges that are added to the original network topology, so these
auxiliary links can be leveraged in the event a path between two given nodes is
lost after an APT attack. To accomplish this, we create a parallel network from
G = (V,E), which we name G′ = (V,E′), where E′ contains the same edges as
E and includes new ones from the DS nodes to recover the controllability of the
network. Specifically, we define and compare three different strategies:

• STG1: addition of redundant edges to all nodes in the network.

• STG2: addition of redundant edges only to DS nodes.

• STG3: addition of redundant edges only to nodes that are not included
in the DS.

Our aim is to compare their level of response in terms of message loss and the
overhead they experience, as described in Section 5. Algorithm 3 describes the
procedure by which redundancy is added depending on the strategy selected:
for each vertex, a set of candidates is created that includes the DS and excludes
its parents and the node itself. In the case it is empty, we simply select the
DS with maximum out-degree as the new parent of the aforementioned vertex,
creating a new edge by this means. It is important to note that during the
process, it is ensured that the resulting network G′ = (V,E′) fulfills OR1 and
OR2 conditions, as stated in [11].

On the other hand, to address objectives (b) and (c), we leverage a secret
sharing scheme [12]: a secret (i.e., control message) is divided into n shares that
are distributed among the sender’s neighborhood nodes and follow independent
routes, so that the recipient cannot reconstruct the message until it collects,
at least, a defined number k of them, where 1 ≤ k ≤ n. In the case we have
k = 1, it can be considered as the basic level of security, as the message in clear
is sent over a determined path over the network. If we have k = n, then the
recipient must collect all the shares to reconstruct the original message. At this

9



Algorithm 3 hiddenTopology(G(V,E), DS, STGx)

output (G′ = (V,E′))
local: Dr ← ∅, E′ ← E

if STGx = 1 then
Dr ← V

else if STGx = 2 then
Dr ← DS

else if STGx = 3 then
Dr ← V −DS

end if

for vertex v in Dr do
F ← Fathersa(G(V,E), v)
Dc ← DS − (F ∪ v)
Candidates← ∅
for vertex c in Dc do

D ← Childrenb(G(V,E), c) ∩DS
O ← Children(G(V,E), c)−D
comment: checking of OR1 and OR2 fulfillment
if v ∈ DS and ((|O| ≥ 2 and |D| ≥ 0) or (|O| = 0 and |D| ≥ 1) or (|D| = 0 and

|O| = 0)) then
Candidates← Candidates ∪ c

else if v /∈ DS and ((|D| ≥ 0 and |O| ≥ 1) or (|D| = 0 and |O| = 0) then
Candidates← Candidates ∪ c

end if
end for
if Candidates = ∅ then

Candidates←MaxOutDegreec(G(V,E), DS)
end if
Arbitrarily select vertex c1 ∈ C
E′ ← E′ ∪ (c1, v)

end for

aSelection of fathers of v, those belonging to its in-neighborhood
bSelection of sons of c, those belonging to its out-neighborhood
cSelection of the DS node with maximum out-degree

point, since our aim is to provide a security mechanism that bases its robustness
on the criticality of the attack detected, the election of n will depend on the
number of DS agents whose opinion is similar, for which we make use of the α
value defined in Section 3. Namely, the maximum number of shares to divide
the original message into depends on the ratio of agents that have experienced
the same severity in the attacks against their surrounding nodes: the greater
the number of DS that experience the same criticality, the greater the number
of shares. However, the k value can be random (ranging from 1 to n) in order
to make the recovery method as stochastic as possible and thereby not leak any
information about the topology when analyzing the stream of messages. The
resulting methodology, to divide the messages into shares and send them over
the network when it has been attacked, and opinion dynamics has been executed,
is described in Algorithm 4. It is important to note that the respective shares
are arbitrarily sent over the original and redundant links, in order to make the
protocol as misleading for the attacker as possible. Figure 3 shows how shares
are divided and distributed over the network leveraging a pathfinding algorithm
(e.g., Dijkstra, Breadth-first search (BFS)) [13][14]. In that example, the secret
is divided into three shares with k = 2.
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Algorithm 4 SecretSharing(G(V,E′))
local: M representing the set of messages to be sent.
for message m in M do

agent← GetRecipient(m)
alpha← GetAlpha(agent)
n← alpha ∗ |Nout

agent|
k ← generate random from 1 to n
S ← divideSecret(m,n, k)
send shares to n neighbours

end for
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1

Neighbour

2

Neighbour

3

Rest of the network

Recipient

Share 1

Share 2

Share 3

Loss or interception

Shares

recollection

Pathfinding algorithm

k = 2

n = 3

Figure 3: Secret sharing scheme and shares delivery

5 Theoretical and Practical Analysis

So far in the paper, we have modeled the behavior of an APT against a control
network represented with a graph, over which we have applied structural con-
trollability concepts to define a dominance set of nodes. These take the role of
agents that make a distributed decision algorithm determine the health of the
network based on topological changes detected in their neighbourhood. From
this information, they can leverage a parallel hidden topology with redundant
links, over which they can continue to deliver their messages with enhanced
privacy in the presence of the APT.

In this section, we demonstrate the correctness of this mechanism, as well as
offer experimental results to show how effective it is when ensuring the continuity
of the network.

5.1 Theoretical Analysis

The correctness proof of the message recovery problem is solved when the fol-
lowing requirements are satisfied: (1) the ratio of lost messages when facing
an APT attack decreases when using the redundant topology; (2) the algorithm
that crafts the set of redundant edges and sends the messages along the network
is able to properly finish in a finite time (termination).

We can show the termination of the algorithm through induction, where we
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first define the initial and final conditions, and the base cases.

Precondition We assume that the network described by G(V,E) is threat-
ened by one or more attacks, probably causing the removal of available
routes from the sender to the destination. In other words, there exists a
share s belonging to a message m from sender v1 whose recipient is vr for
which it is not possible to find a sequence of vertices v1, v2, ..., vr such that
(vi, vi+1) ∈ E, ∀i ∈ 1, .., r.

Postcondition given the aforementioned message share and redundant net-
work G′(V,E′), there exists a sequence of vertices v1, v2, ..., vr such that
(vi, vi+1) ∈ E′, ∀i ∈ 1, .., r. The availability of additional edges in E is
subject to the redundancy strategy selected. Either way, the new route is
located by a pathfinding algorithm like BFS or Dijkstra.

Case 1 We have a message m that is divided into n shares, such that m =
{s1, s2, ..., sn}. In the first step, share s1 is sent to vertex v2 through
(v1, v2) ∈ E.

Case 2 In an intermediate step of the path from sender to destination, the
share s1 traverses the node vl, and the pathfinding algorithm is evaluated
to check the availability of a route. According to Algorithm 4, three
scenarios can be distinguished in this point:

-Recovery solution: it takes place when the destination is reachable only
through the redundant topologyG′, that is, there exists a route vl, vl+1, ..., vr
where (vl, vl+1) ∈ E′ but (vl, vl+1) /∈ E.

-Privacy solution: it occurs when multiple routes are available to reach the
recipient of the share, using either the original or the redundant topology.
Namely, there exists, at least, a route vl, vm, ..., vr where (vl, vm) ∈ E and
another one vl, vl+1, ..., vr such that (vl, vl+1) ∈ E′ and (vl, vl+1) /∈ E. In
this case, the share hops to vm or vl arbitrarily, with the aim of making the
route as confusing as possible, thereby dodging potentially compromised
nodes over which the attacker expects the traffic to flow. At this point,
note that the network may experience some delays when delivering such
shares (due to extra hops to reach the recipient), which could be the
subject of further research. However, since we are considering a critical
scenario, we prioritize availability rather than performance.

-Share loss: in the worst-case scenario, the redundant edges are not suf-
ficient to find a path from vl to vr and the original path is no longer
available due to the APT. In these circumstances, the share is lost and
the algorithm terminates. Note, however, that the secret sharing scheme
is resistant to share losses with a given threshold, so the rest of shares si
with i 6= 1 can still rebuild the message m. This depends on the n and k
parameters: specifically, the message m successfully reaches its recipient
with a probability k

n . In this regard, we must stress that the choice of n
is based on the severity indicator α, as explained in Section 4.
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Induction finally, after a finite number of steps where the different subcases
of Case 2 have been applied (except for a secret loss), the node vj be-
fore the last in the sequence holds the share s1 and there exists an edge
(vj , vr). The share is finally delivered and Algorithm 4 terminates, satis-
fying the postcondition of saving a portion of the messages from getting
lost, ensuring the validity of our algorithm.

We can also give a brief analysis of the computational complexity of the
response algorithm, which must be performed in two ways: for the secret sharing
scheme and for the subsequent delivery of shares over the network by using a
pathfinding algorithm. As for the former, processing a given message takes n
steps, as many as the number of shares it has been split into (determined by
α), having O(n) complexity. With respect to the communication mechanism,
the complexity must firstly consider the overhead invested by the pathfinding
method, which in the case of BFS is O(n + e), where n ≈ |V | and e ≈ |E|.
Secondly, it also implies the complexity associated with the share delivery along
the graph. Considering the worst-case scenario of the longest route, such a
transmission has a cost of O(n− 1 + e), since the share has to traverse all edges
and every node in the network but the sender.

5.2 Experimental Analysis

After successfully designing mechanisms to firstly detect topological changes
by using distributed opinion algorithms and consequently deploying a response
technique to ensure the continuity and preserve privacy in the network, our aim
is to test these services in practice. We have conducted the implementation
in MATLAB of an APT that follows the behavior described in Algorithm 2.
After each attack of the sequence, opinion dynamics is executed on those agents
belonging to the DS, which is calculated based on Algorithm 1. If we run
different test cases, we can check how the opinion of agents evolve to reach
a consensus with each other and form different clusters within the network.
Figure 4 shows how the total number of DSs of three different networks (of 100,
200 and 300 nodes) is divided into substantial sets depending on the degree of
change they experience after suffering a battery of 50 attacks. It is especially
significant to note the presence of a big cluster in each of the three test cases,
which indicates an important effect of the APT (of approximately 0.35, 0.25
and 0.45 ratio of change).

Opinion dynamics influences the α value that regulates the number of shares
in which the secret messages are divided and distributed from each DS node to
the rest of the network to their destination, as explained in Section 4.

To probe the effectiveness of our response technique that leverages a hidden
topology comprising additional edges, we have generated a set of 100 messages
whose sender belongs to the DS and the recipient is any other node within
the network. Following the secret sharing scheme of Algorithm 4, each agent
divides the message and gives each part to the corresponding neighbors, which
are responsible for the delivery by leveraging the BFS algorithm. The path is
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calculated at each hop when traversing all nodes until the destination, since
the topology can change over time, caused by the APT. In the event that the
recipient is unreachable from a certain node at a given time, we consider that
share to be lost. Consequently, taking into consideration the scheme, we deem
a message to be lost if a number of its shares greater than k have been lost,
since it is no longer possible for the recipient to construct the message.

Figure 5 shows the ratio of errors (i.e., message loss due to the unavailability
of control paths) when using the normal and the hidden topology networks of
STG1, STG2, and STG3. In more detail, we have run three test cases with a
network of 100, 200 and 300 nodes, against which we perpetrate an APT of 50
attacks. Prior to executing it, we craft a set of 100 random messages for which
we ensure the availability of paths from the sender’s neighbors to the recipient.
From that point on, the attacks take place and we try to send the original
messages after each one. As a result, we can check how the loss ratio fluctuates
as attacks occur. In this sense, based on the plots, the original network presents
a higher quota of lost messages, whereas applying STG1 (i.e., a redundant edge
for all nodes) experiments the lowest ratio, as expected in principle. However, we
can see how redundancy in DS nodes (STG2) also achieves an acceptable degree
of message reachability, comparable with STG1 and even better at certain points
when running the same experiment in different topologies, as Table 1 indicates.
This can be explained by the fact that attacks always move to nodes that deal
with more traffic and hence have higher controllability (i.e. the DS nodes), as
described in Section 2. Therefore, the addition of extra links to recover the
connectivity between DSs results in a robust response that, on the other hand,
does not introduce too much overhead because of the lower number of additional
edges added.

The supremacy and higher connectivity of STG2 and especially STG1 are
visible when analyzing the network global efficiency [15]. This measure indicates
the efficiency of the information exchange in the network and how resistant it is
to failures. If the distance d(i, j) between any two vertices i and j in the graph
is defined as the number of edges in the shortest path between i and j such that
i 6= j , the efficiency is expressed as 1/d(i, j). From this definition, the global
efficiency of a graph is the average efficiency over all i 6= j. Figure 6 shows the
evolution in this indicator when performing an APT attack over the original
and redundant topologies, for the three test cases of 100, 200 and 300 nodes.
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Figure 4: Opinion dynamics after 50 attacks

Table 1: Message loss ratio after 50 attacks, 100 messages and multiple topolo-
gies

Nodes \Strategy Original network STG1 STG2 STG3
10 0.81 0.64 0.64 0.58
50 0.076 0.25 0.3 0.36
100 0.62 0 0.03 0.01
200 0.24 0.04 0.02 0.14
300 0.71 0.02 0 0.21
400 0.07 0.04 0.02 0.03
500 0.39 0.1 0.07 0.19
600 0.4 0.05 0.02 0.03
700 0.32 0.03 0.07 0.1
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Figure 5: Message loss ratio with the different strategies, 100 messages and 50
attacks over a network of 100, 200 and 300 nodes
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Figure 6: Global efficiency with different strategies after 50 attacks
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6 Conclusions

APT attacks must be addressed with innovative techniques that supplement
traditional detection and response techniques. As for the former, we have put
into practice a dynamic decision mechanism by making use of graph theory and
structural controllability concepts and defining a framework of attacks. That al-
lows us to accurately identify topological anomalies in the network with different
degrees of criticality. Accordingly, we have proposed the design of a redundant
topology that allows the continuity of the network and also preserves privacy
by making the routing process as uncertain as possible for an external attacker.
Future work will involve the creation of a richer taxonomy of attacks that not
only focus on topological changes, but also on the stealthy compromise of se-
lected nodes within the network. The integration of other distributed decision
mechanisms will be also studied, together with restoration and recovery services
that ensure a better resilience against APT attacks.
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