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Abstract

In Industrial Internet of Things (IIoT) scenarios, where a plethora of
IoT technologies coexist with consolidated industrial infrastructures, the
integration of security mechanisms that provide protection against cyber-
security attacks becomes a critical challenge. Due to the stealthy and
persistent nature of some of these attacks, such as Advanced Persistent
Threats, it is crucial to go beyond traditional Intrusion Detection Systems
for the traceability of these attacks. In this sense, Opinion Dynamics
poses a novel approach for the correlation of anomalies, which has been
successfully applied to other network security domains. In this paper,
we aim to analyze its applicability in the IIoT from a technical point of
view, by studying its deployment over different IIoT architectures and
defining a common framework for the acquisition of data considering the
computational constraints involved. The result is a beneficial insight that
demonstrates the feasibility of this approach when applied to upcoming
IIoT infrastructures.
Keywords: Intrusion, Detection, Traceability, IIoT, Opinion, Dynamics,
Industry.

1 Introduction

Critical infrastructures, such as industrial systems, have traditionally worked in
isolation from external networks such as the Internet. However, modern tech-
nologies (e.g. Big Data, Cloud Computing) are increasingly being integrated
in such rigid environments in order to provide additional benefits, such as ser-
vice automation and cost reduction. One of these technologies is the Industrial
Internet of Things (IIoT). The conventional Internet of Things is envisaged to
interconnect day-to-day objects to the Internet and the cloud, so as to moni-
tor their behaviour and manage them easily. When it comes to the industry,
the IIoT has the ultimate goal of providing benefits to the production chain
such as predictive maintenance and production optimization. Yet the inher-
ent heterogeneity associated to the IIoT (multiple technologies developed by
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diverse actors) and its connectivity capabilities also widens the attack surface,
increasing the risk of cyber-security attacks.

In such a unstable scenario, security must be consolidated to keep up with
the progress of integrating novel technologies such as the IIoT. In this sense,
traditional solutions to perform an early detection of intrusions are just a first
line of defense and are not enough to anticipate the stealthy actions of the most
sophisticated threats. In turn, Opinion Dynamics is a novel approach that is
specifically conceived for this purpose, by proposing a multi-agent collaborative
system that permits to trace down the actions and impact of a sophisticated at-
tack, returning useful information to accurately address and repair the affected
resources. It was originally proposed to be integrated in a traditional indus-
trial control system, but its openness to include multiple indicators of detection
makes it able to be integrated in a IIoT-based infrastructure. In this paper,
we revisit this approach and conduct a concise study of the applicability of this
promising solution to the particular context of the IIoT, while also addressing
all its structural and computational constraints.

The remainder of this paper is organized as follows: Section 2 presents the
technologies considered in the IIoT, surveys the most used intrusion detection
and traceability techniques in this context and introduces the Opinion Dynamics
approach. In Section 3 the applicability study is carried out considering all
its stages of implementation. Based on these findings, a conceptual example
of the integration of the Opinion Dynamics system over a IIoT network with
the theoretical simulation of an attack is presented in Section 4. Finally, the
conclusions drawn are presented in Section 5.

2 Industrial Internet of Things

2.1 Industrial Internet of Things Technologies

At present, there are multiple actors that are defining the technologies that
comprise the IIoT [1]. Such actors include various standardization groups (e.g.
IETF) and several consortia (e.g. the Industrial Internet Consortium (IIC) [2]
and the Platform Industrie 4.0 consortium [3]). As a result, the IIoT technology
ecosystem is very heterogeneous, ranging from standards that originated from
specific industry verticals to protocols that were designed for general-purpose
use. These technologies provide all the necessary components to build a func-
tional IIoT infrastructure: from hardware and software platforms to communi-
cation technologies at the lower and upper layers of the networking stack.

From a hardware perspective, a “thing” in the IIoT can be any sensing
or actuating device that interacts with the physical world and can be accessed
through the Internet protocol suite – either directly or indirectly. These entities
range from existing industrial devices enhanced with additional networking ca-
pabilities and high-level services (e.g. Programmable Logic Controllers (PLCs)
equipped with the MQTT protocol) to sensor/actuator devices equipped with
wireless connectivity (e.g. WirelessHART sensors forming a capillary network).
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The capabilities of these devices in terms of memory and computational power
is also very heterogeneous, ranging from constrained nodes to more capable
devices.

From a software perspective, there are various reference architectures
whose goal is to provide additional services beyond the basic exchange of data,
including operation, management, business logic, and security. The most impor-
tant reference architectures are the Industrial Internet Reference Architecture
(IIRA) developed by the Industrial Internet consortium [2], and the Reference
Architectural Model Industrie 4.0 (RAMI4.0) developed by the Platform Indus-
trie 4.0 consortium [3]. Although as of 2020 there are no complete instantiations
of these reference architectures, the functionality of some of their components
is being verified through the use of testbeds. Moreover, certain major industry
players, such as Siemens [4], already provide basic IIoT solutions.

As for the communication technologies and protocols, they can be classified
into two categories: lower layer protocols and upper layer protocols. Lower
layer protocols are deployed under the network layer (IP), and in the context
of the IIoT all protocols make use of a wireless transmission channel (cf. [1]).
These protocols can be classified as Wireless Personal Area Networks (WPAN)
(e.g. IEEE 802.15.4, Bluetooth), Wireless Local Area Networks (WLAN) pro-
tocols (e.g. IEEE 802.11), and Cellular Networks and Low-Power Wide-Area
Networks (LPWAN) protocols (e.g. 4/5G, SigFox). In the context of indus-
trial networks, the main difference between these technologies is the location of
the gateway that connects the wireless network with the industrial network: In
WPAN and WLAN, gateways can be deployed and controlled at the industrial
premises, while in cellular networks data must first traverse the telecommuni-
cations network before reaching the specific industrial network that consumes
the information – which can be located on premises or in the cloud. Also, most
WPAN networks make use of subsets of the IP standards (e.g. 6LowPAN) or
proprietary protocols (e.g. WirelessHART).

Upper layer protocols are deployed over the transport layer (TCP or
UDP), and allow the exchange of information in a shared data structure between
participants. The most important upper layer IIoT protocols, as defined in [1]
and [2], are Messaging and data-oriented protocols like MQTT (which focus
mainly on publish-subscribe mechanisms), lightweight RESTful Web Services,
and Specific frameworks such as OPC-UA (an evolution of the OPC specification
that provides better semantic modelling) and OneM2M (a service layer that
provides efficient communication between application endpoints).

2.2 Traceability of attacks in Industrial and IIoT scenarios

As with traditional IT systems, IIoT deployments can be attacked by malicious
adversaries, which could generate serious operation disruptions in critical infras-
tructures. In this context, intrusion detection systems (IDS) become a necessary
defense layer to detect potential attacks against these infrastructures. Even if
the field of IDS for IIoT technologies is not as developed as the field of IDS for
traditional industrial ecosystems (cf. [5]), there is still a plethora of detection
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approaches. Some of these detection mechanisms focus on the integration of
signature-based IDS and Deep Package Inspection (DPI) technologies [6], which
try to find specific patterns in the network frames. Other anomaly detection
systems implement various machine learning techniques, aiming to detect in-
stances of data (exchanged from IIoT devices) that do not belong to a learned
class (i.e., a model that has been trained and validated).

Besides, there are several IDS specifically designed for IIoT deployments that
benefit from the unique characteristics of industrial networks (e.g. deterministic
operation procedures) compared to general IT networks [7]. According to the
state of the art (cf. [8]), these intrusion detection procedures mainly focus on
the analysis of the communication patterns and the protocols states to identify
a deviation from a previously created specification. This leads to two main
detection strategies: specification based anomaly detection and physical state
dynamic estimation.

In the first strategy, specification based IDS, human experts build a model
that describes the legitimate system behavior (e.g., protocols, programs, oper-
ations) to latter compare it with the current state to detect anomalies. Some
examples of this approach include [9], where an advanced metering infrastruc-
ture is modelled to represent a legitimate activity profile at various levels, and
[10], where the specification is at protocol-level to model the Modbus TCP com-
munication patterns. The second strategy, physical state dynamic estimation,
complements the first strategy by modeling the physical dynamics of the op-
erations performed in the production chain. For example, in [11], the authors
propose a resilience framework for cyber-physical systems which permits to de-
scribe physical domains mathematically. Other examples include [12] and [13],
which models the physical constraints of a power grid infrastructure and a water
distribution network, respectively.

Regardless of the detection strategy used in the industrial premises, IDS only
pose a first line of defense, and further post-incident analysis of the generated
evidences (e.g., alarms, network events) and raw traffic must be conducted all
across the network to anticipate the effects of sophisticated and persistent at-
tacks such as Advanced Persistent Threats (APTs) [14]. This is carried out by
traceability and advanced correlation mechanisms, which provide information of
the overall network health status and facilitate the deployment of accurate re-
sponse measures based on the threat evolution. This has been mostly addressed
in traditional corporate environments, by means of proactive techniques (evi-
dences are analyzed as incidents occur) and reactive techniques (evidences are
studied once the events occur). Among the former, [15] proposes a framework
for flow-based analysis of network traffic in near real time to detect APTs in
Cloud Computing. Also, in [16], researchers present a security framework for
the analysis of high volumes of traffic to identify data exfiltrations and suspi-
cious activities in TCP/IP networks. Some other approaches conduct advanced
analytics with the outputs of external IDS. For example, in [17], researchers
propose an approach entitled TerminAPTor, a theoretical supervision system
capable of linking multiple information flows from classical IDS. In [18], the au-
thors propose MLAPT, a machine learning-based system to detect and predict
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APT attacks by correlating the outputs of different detection methods. As the
rest of approaches, it is experimentally validated in a corporate infrastructure
(using a dataset of attack scenarios against a campus network).

As for industrial ecosystems, the introduction of increasingly dynamic topolo-
gies and the growing range of security threats in the IIoT and Industry 4.0
complicate the process of information acquisition [19]. Moreover, to the best of
our knowledge, all existing traceability approaches are designed for generic IT
networks, and have not explicitly discussed how they could be implemented and
validated using real attacks. Therefore, as no traceability solution exists that
takes into account the IIoT context, it is the main motivation of this paper to
provide a first step in this area.

2.3 An intrusion detection and traceability framework based
on Opinion Dynamics

After reviewing some of the most representative methods for intrusion detection
in IIoT environments, this section presents the Opinion Dynamics detection
and traceability framework, as the analysis of the applicability of this existing
framework to IIoT ecosystems forms the core of the paper. The framework was
originally described in [20], where the approach was presented in theory. Its
authors then enhanced the attack model [21] and the event correlation process
[22]. In practice, this framework was implemented in a realistic industrial setting
in [23], and the authors demonstrated its applicability of the approach to a Smart
Grid ecosystem in [24].

The framework consists of a cooperative multi-agent system whose (virtual)
agents correspond to all existing industrial devices deployed in the network. The
algorithm followed by the elements of this framework is presented in Figure 1,
and its comprised by six stages. In S1, data retrieval setup, the system extracts
the outputs of multiple anomaly detection mechanisms, vulnerability scanners
or SIEM systems. In S2, agents creation, all data associated to a particular
entity or device is assigned to its corresponding virtual agent. Note that raw
data not extracted from existing IDS, such as network traffic, can be used to
obtain additional features (e.g. traffic volume, type of connections established)
in S3, Feature extraction.

In S4, feature selection and opinion formation, Each agent i combines all
available data into an opinion xi(t), which shows the opinion (i.e. anomaly
value) of the agent at a given time t (i.e., the security state of its monitored
node, measured from 0 to 1). For this task, different models can be applied to
weigh each feature depending on the current security scenario and the anomalies
sensed. The evolution of these opinions over time is considered in S5, Correla-
tion of opinions. In this phase, all opinions evolve by taking into consideration
the opinions of the surrounding agents xj(t) and a weight wij . In order to facili-
tate this process, in the current incarnation of this framework this correlation is
executed in a central system. All opinions evolve using the following expression:
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Figure 1: Stages of the Opinion Dynamics framework in a IIoT network

xi(t + 1) = wi1x1(t) + wi2x2(t) + ... + winxn(t)

As a result of this correlation, it is possible to extract additional indicators
in S6, Computation of indicators. For example, all opinions can be grouped
into clusters at any given time, providing a representation of the segments of
the network that are being affected by existing attacks. Moreover, a global
health indicator can also be calculated from the aggregation of all opinions.
This opinion model can be enhanced by taking into account other parameters
such as the criticality of the monitored resource, its historical events, or the
persistence of the detected attacks.

As a result of its design, this framework has provided various contributions
to the current state of the art on IDS in industrial ecosystems, such as i) cir-
cumventing the heterogeneity of IDS solutions by combining various solutions to
provide protection at all levels, ii) facilitating the accommodation of new tech-
nologies and business scenarios due to the adaptable nature of the framework,
and iii) easing the traceability of attacks and the precise application of response
procedures thanks to the dynamic partitioning of the elements of the network
and the correlation of events.

Nevertheless, further research is necessary to fully realize the Opinion Dyna-
mics framework, as there are several open questions to be solved. For example,
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whether using a centralized entity is a feasible solution in all scenarios, or how
to precisely instantiate these agents (e.g., IDS, anomaly detection mechanisms)
on a physical infrastructure whose criticality may restrict the modifications of
hardware and software. Additionally, the potential overhead introduced in the
communications, or the provisioning of parallel network interfaces to gather and
analyze network traffic are other open issues that we aim to resolve in this pa-
per. Especially, we aim to successfully apply the Opinion Dynamics approach
in the IIoT domain, taking into consideration the constraints mentioned in the
Introduction. More specifically, we will study the precise instantiation of the
algorithm, making more emphasis on the earliest stages – as they revolve around
the integration of the algorithm with the IIoT network at low level.

3 Applicability of the Opinion Dynamics Sys-
tem to the IIoT Scenario

3.1 Feasibility of Data Retrieval (S1)

To start devising the integration of the Opinion Dynamics framework over an
IIoT scenario, the main question that arises is the nature of the information
that can be collected by the detection system. As stated previously, we must
provide the agents (regardless of where they are executed) with data of interest
about the state of the resource they are monitoring, as to finally output a
single – but aggregated – value of anomaly, that represents its opinion (stage
S4). This process requires of data that is retrieved in stage S1, either from
raw information extracted from the low layer and high layer protocols or from
outputs of IDS solutions such as the ones described in section 2.2. Here, we will
especially focus on the former, as the existence of IIoT IDS already proves their
feasibility as inputs to the framework. In general, the information that can be
processed by agents include, but are not limited to:

• Network parameters: involves two kinds of information, related to the
topology and the state of the network, to infer the presence of anomalies
via traffic analysis (by comparing the current value with the one learned
in normal conditions):

1. A physical network mapping that contains every pair of devices con-
nected through a communication channel (in form of a graph, with
the address of every node within the topology). This can be easily
determined from the number of packets per protocol and recipient,
which helps to tag frequent and non-frequent communications.

2. Quality of Service indicators: they inform about the reliability of
connections by means of metrics like the delay time from one node
to another, the bandwidth experienced and the packet loss ratio in
connection-oriented protocols.
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• Communication information: it implies the analysis of the payload
contained within the exchanged packets and their frequency, which in-
cludes low-level commands issued from one source to its destination (e.g.,
control commands to actuators), as well as quantitative values from opera-
tions (e.g., readings from sensors). The former allows to detect suspicious
actions potentially performed by compromised devices, while the latter
permits to create a statistic model to later identify deviations in the val-
ues exchanged.

Going back to the early stages of the algorithm, the method for extract-
ing these features from the traffic in a IIoT network is highly dependent on
the wireless transmission channel used, its particular deployment architecture,
and the application endpoint where data is consumed (which is presumed to
be the central correlator). The aim with stage S1 is to seamlessly gather the
aforementioned network information without interfering with the operations of
the production chain (i.e., additional computation and delays) and, whenever
possible, without introducing extra physical equipment. This imposes several
challenges, such as inferring a low-level network mapping out of the applica-
tion data received by upper layer protocols (e.g., when only a gateway is visible
for the industrial segment as an interface to the IIoT subnetwork) or estimate
indicators through a parallel communication channel when the primary one is
inaccessible (e.g., in third-party cellular networks).

Consequently, we must start by studying the amount and quality of data that
can be potentially collected from the IIoT network given a specific configuration.
For the sake of clarity, we define the concept of OT cell as a subsection of the
entire industrial infrastructure where the same underlying wireless technology
is implemented. Thus, according to the classification of lower layer protocols
described in Section 2.1, we can draw some conclusions about the network pa-
rameters that can be obtained:

• WPAN networks. Both classic Bluetooth and the low-energy specifi-
cation (the latter featuring the creation of a large-scale mesh of devices)
support connectivity at IP-level in certain nodes within a network, acting
as bridges between the industrial domain and the sensors at field level.
As for IEEE 802.15.4 devices, gateways (e.g., coordinators in a Zigbee
network) often centralize the retrieval of data from the lower layers of
the industrial architecture. Therefore, the network-related information
that is possible to extract in a OT cell of this kind is the one retrieved
by the gateway that interconnects it with the upper levels of the infras-
tructure. This usually implies that the original information exchanged by
sensors/actuators using these lower layer protocols is translated by the
gateway into common industrial standards such as ModbusTCP, thereby
losing granularity when studying the precise topology and QoS indicators.
Consequently, we have three alternatives: 1) to deploy a capillary network
that captures and relays the missing information through an auxiliary net-
work interface (introducing hardware in exchange); 2) to manually provide
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the network mapping information at low level and establish the relation-
ship with high level packets (lacking the QoS information); 3) to rely on
this aggregated data and carry out a deep analysis of high level packets
to infer the network mapping.

• Wireless Area Networks (WLAN). IEEE 802.11 standards, and in
particular the latest 802.11ah standard, facilitate the creation of IIoT
networks where a large number of devices need to cover wider areas. In
contrast with WPAN networks, this is achieved with a higher power con-
sumption, which enables the use of the IP protocol in all devices to cover
areas of up to 1000m in a single hop. In addition, Relay Access Points are
used to extend the connectivity to Access Points (APs), that transparently
deliver the field level information to the industrial network, without any
routing between the endpoint and the gateway. From the data acquisition
perspective, this means that the network mapping and QoS indicators are
easily obtained by capturing and analyzing the exchanged traffic packets.

• Cellular networks. When collecting low-level information in Cellular
Networks, the amount of packets that can be captured decreases dramat-
ically due to the presence of a public telecommunication network that
processes all the traffic before it is consumed in the industrial network.
Thus, it is not possible to obtain QoS data while packets are relayed
through the multiple hops of the external infrastructure. Plus, the net-
work mapping must be inferred at logical level, by capturing application
level traffic and accounting for every source-destination pair within the
industrial premises. This scarce amount of information increases when an
edge paradigm is leveraged (e.g., fog computing or mobile edge computing)
or when some of the cellular network infrastructure assets are controlled
privately by the company, instead of an external provider.

Wireless transmission
channel

Network parameters accesible
Network mapping QoS

WPAN
(IEEE 802.15.4,
Bluetooth)

Through an additional
capillary network,
analysing high-level data
from the gateway
or manually

From the IT/OT
network to the
gateway only

WLAN
(IEEE 802.11)

Yes, all data Yes, all indicators

Cellular Networks
and LPWAN

Logical network mapping,
unless external telecomm.
infrastructure or
edge network resources
are monitored

end-to-end indicators,
unless external telecom.
infrastructure or edge
network resources
are monitored

Table 1: Network parameters collected from the different IIoT cells

Table 1 summarizes the different methods for collecting low-level network
information in each IIoT cell. Still, stage S1 does not depend only on the infor-
mation provided by lower layer protocols – it also also revolves around gathering

9



information about the communications at application level, as explained before.
This can be classified into two classes: information about the production chain
from the field devices, and control commands issued from the IT section to the
industrial process. As for the former, the process of extracting the measured
data from sensors is relatively straightforward, depending on the upper layer
protocol used to exchange data:

• In asynchronous message protocols and publish-subscribe mechanisms such
as MQTT or AMQP, the entity in charge of running the detection algo-
rithm should be registered as subscriber to receive the measurements from
the broker (i.e., the intermediate gateway).

• In RESTful architectures like CoAP or HTTP, the sensors readings would
be accessed by means of an API (published by a CoAP server executed
on an intermediate gateway or embedded in the own device on the field).

• In frameworks such as OPC-UA and OneM2M, the retrieval of data re-
quires additional analysis of how it is generated and consumed by end-
points, since they respond to abstract specifications of communication
interfaces between services and components that are integrated in specific
domains. It usually implies reading values from a common server that
exposes a friendly API under a unified data model.

It is worth noting these communication channels very frequently use encryp-
tion measures to ensure the confidentiality of data (e.g., CoAP is built on top of
DTLS). This makes it necessary that the entity that retrieves data from devices
and executes the detection algorithm is allowed to access the exchanged data
and comply with the system access control policy.

On the other hand, we also should be able to retrieve the precise set of
commands that are issued from the managerial level of the industrial network,
as explained before. According to the architecture of a IIoT-based control sys-
tem, this implies filtering the operations executed by a PLC, which is hier-
archically placed on top of an IIoT cell and ultimately issues commands to
sensors/actuators (potentially using intermediate IIoT gateways). These de-
vices can operate with a large range of protocols, ranging from open source
standards like ModbusTCP or Ethernet/IP to private alternatives such as S7
from Siemens. In this case, accessing to the commands executed requires the
development of dissectors for the particular protocol, which exceeds the scope
of this paper. However, as there are numerous solutions available in the market
that especially focus on the analysis of these standards [5], it is possible to use
external IDS results as inputs for our system.

3.2 Opinion Dynamics in IIoT Networks (S2-S4)

In this section, we introduce the design of the rest of the stages of the Opinion
Dynamics algorithm in IIoT networks. Note that we do not analyze stages S5
and S6, as these stages are independent from the underlying infrastructure once
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all necessary information (e.g. opinions) is available. For this particular instan-
tiation, we will make use of the information extracted in section 3.1, without
resorting to external systems (i.e. existing IDS systems). Note that, due to the
nature of the framework, such IDS can be integrated anytime.

The virtual agents created in stage S2 deal with the processing of data
retrieved in S1 and the features extracted from S3. From a physical point of
view, this firstly means that the central correlator that executes the Opinion
Dynamics System must establish a communication channel with every IIoT cell
that is being monitored, in order to gather the network parameters (e.g., a link
to the gateway in a WPAN or to the AP in a WLAN network). Likewise, it
must be able to access the interfaces where data is published (e.g., the API in
a CoAP based network). Then, from a logical perspective, this information in
bulk is divided and assigned to virtual agents created by the correlator.

These agents, according to the theoretical approach [21], are threads in
charge of individually monitoring the security of an IIoT device within the
topology to subsequently derive an opinion, following a 1:1 relationship between
devices and agents. Equivalently, an agent receives the traffic (containing data
and commands) that is exchanged by its assigned device, as well as the QoS
indicators of every connection that it shares with the rest of neighbours. At this
point, the physical network mapping conducted in S1 is essential for the central
correlator to make such assignment of information. Nevertheless, as discussed
before, the knowledge about the physical topology is not always accurate, due
to the presence of intermediate gateways that aggregate data from a mesh of
constrained devices and hinder the retrieval of network parameters. In this
case, when the actual mapping cannot be determined by any of the methods
presented in Table 1, we can assume the existence of agents that encompass a
set of multiple devices.

Once agents are created and provided with the information that they need to
process, they perform an extraction and selection of features from that data in
stage S3. These features refer to variations in certain magnitudes or indicators,
which evidence anomalies suffered as a consequence of an attack. Some examples
of features applicable to IIoT networks are:

• Number of connections established and devices accessed

• Traffic load (total number of packets exchanged)

• Type of communication protocols used

• Delay experienced in every communication channel

• Ratio of lost/corrupted packets

• Frequency and type of commands issued

• Precise data values transmitted by sensors

These features are monitored periodically (as often as the Opinion Dynamics
is executed to visualize the latest changes in the network). A model is created
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to represent the behavior of each one so that it is updated in every period. Even
though diverse alternatives could be proposed for formalizing this model, here we
conceptually propose a simple but accurate approach, which is internally used in
commercial IDS: in the case of quantitative values (e.g., number of packets), the
average is calculated. As for discrete features (e.g., devices accessed or protocols
used), the model is represented with the set of occurrences for each value (e.g.,
number of packets sent to a given recipient or using a certain protocol) and
their corresponding average. Either way, the values obtained for each feature
are compared in each period with the existing model, which is assumed to reflect
the behavior of the system in normal conditions (therefore, a initial phase of
training is assumed). As a result, the standard deviation provides a value of
anomaly for quantitative features. In discrete ones, the value of anomaly can be
determined by analyzing the individual deviation in the number of occurrences.
This way, the extraction of features would be complete for each agent.

All of these features are closely related to intrinsic network aspects of the
devices monitored. A future work could involve the analysis of host-based pa-
rameters in the own IIoT devices as a source of anomaly for the opinion compu-
tation. For instance, the usage of CPU and memory, the processes running, and
others. This would require the integration of capillary networks that retrieve
such information from the OT cells or using external detection systems. This
is possible due to the adaptable nature of the Opinion Dynamics framework,
which is open to include all kinds of features.

The opinion formation in stage S4 is the last stage before the correlation of
anomalies and analysis of detection results. The opinion of each agent is formed
at this point by deriving a single value from the set of anomalies sensed in each
feature, which implies making a selection or aggregation. Diverse policies could
be applied and compared, being the easiest to select the feature whose anomaly
value is the maximum as the opinion for a particular agent. This would make the
overall results of the opinion dynamics system very sensitive to changes, since a
singular feature from the complete set of indicators measured by an agent could
influence a whole neighbourhood of agents and raise risk alarms indicating the
presence of a threat. Still, this approach could be recommendable in highly
critical infrastructures where a fine grained auditing is needed. An alternative
to selection is the aggregation of features, using the average of anomalies sensed
for all the indicators considered (as long as they are not zero), for instance.
However, the drawback of this approach is that greater anomalies measured in
important features would be occulted to the correlator due to the aggregation
with lower anomalies in other features. In this case, a weighted average of
features would be interesting.

Lastly, there is one more way to implement this stage and avoid the loss of
detail as a consequence of a selection or aggregation. It consists in conducting a
Opinion Dynamics correlation per feature considered, so that multiple instances
of the detection algorithm are executed in the centralized entity, where each
one concerns on a specific indicator; in that case, the correlator would take the
anomalies in each feature as individual opinions for all the Opinion Dynamics
instances (equivalently, each device would have an agent per feature monitored).
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Figure 2: Alternatives for the opinion formation in S4

As a result, it would be possible for a security administrator to visualize the
state of connections, delays, protocols, etc. with a deeper level of detail. All
these three alternatives are summarized in Figure 2 and shown in the next
section through a simple example.

After the formation of opinions in all agents of the network, they can be
correlated and analyzed in stages S5 and S6 using the Opinion Dynamics
algorithm to visualize the clusters of agents that expose the same degree of
anomaly measured in their surroundings. This information is useful for com-
puting health indicators for diverse areas and carry out a precise analysis of the
historical data to draw conclusions about the attack pattern and predict future
actions, as explained in [21].

4 Case study

After the study of the applicability of the Opinion Dynamics in the IIoT, this sec-
tion focuses on showing the benefits of a conceptual deployment of this approach
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Figure 3: Example of network composed by two IIoT cells, using the
Watts–Strogatz (WS) and Barabási–Albert (BA) model

by means of a theoretical study case. Additionally, the three aforementioned
alternatives for conducting stage S4 are discussed. In order to achieve these
goals, we will follow the same methodology of the original publication [21] to
represent the attacker model and its evidenced anomalies using graph theory.

The formalization of the network is explained in the following: firstly, we
define a graph that represents the physical interconnection of the Opinion Dyna-
mics system with the multiple IIoT cells that are present in the infrastructure,
from which data is retrieved. For this purpose, the authors of the original paper
used a power-law network random distribution to simulate a traditional indus-
trial infrastructure, which can be punctually connected to the Internet. In this
case, we leverage the Watts-Strogatz [25] and the Barabási-Albert model [26].
Both distributions permit to simulate the topology of an IIoT cell, being the
former used for producing graphs with small-world properties [27] and the lat-
ter for for generating random scale-free networks [28], such as the connection
of devices on the Internet. Here, we generate two simple cells of seven devices,
which are accessed by a central correlator through the nodes which hierarchi-
cally have more connectivity (the Power Dominating Set [29], as in [21]), in
order to simulate the presence of gateways, as explained in previous sections.
The resulting network is depicted in Figure 3, that illustrates the implementa-
tion of the Opinion Dynamics correlator and its connection to the rest of nodes,
which are labelled in each IIoT cell according to the model used.

Therefore, in this case study we assume the existence of a central correlator
that is able to gather the network parameters and the communication infor-
mation from all devices across each IIoT cell, using the strategies described in
Section 3. Afterwards, the virtual agents located in this central correlator will be
able to extract features and subsequently form their opinions. In order to show
the impact of an attack over their computation, we use the same methodology
as in [21]. Here, the authors formalize the attacker model of APTs in a sequence
of steps. Each step has its own detection probability, which is quantitatively
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Figure 4: Opinion Dynamics clusters after a lateral movement in the IIoT cell

reflected in each agent to simulate a certain degree of anomaly measured. In our
case, we provide these agents with a minimum set of anomaly detection rules
based on two features: (1) the delay in their communication channels, and (2)
the data values transmitted through those links.

As for the attacker model of this case study, we will base it on the attacker
model phases described in [21]. In summary, APTs are sophisticated threats
that usually begin with a initial intrusion (e.g., through social engineering or
zero-day vulnerabilities), which is followed by stealthy movements throughout
the topology until some information is exfiltrated or disruption is caused [14].
Therefore, in this case study we will perpetrate a simple two-step APT attack
against the IIoT cell based on the Watts-Strogatz model. These two steps are
as follows: an initial intrusion against node 2, and a lateral movement towards
node 4. In this basic example, if we consider that this propagation makes use of
a covert channel attack (which usually leverages delays introduced arbitrarily
in the packet transmissions), then each affected agent should raise a level of
anomaly with respect to that feature. This would serve as input to ultimately
execute the Opinion Dynamics algorithm and narrow down the attack.

Figure 4 plots the result of the Opinion Dynamics correlation between the
seven agents that belong to the Watt-Strogatz cell. The lines represent every
agent opinion, that ultimately form two consensus after executing the algorithm
with 10 iterations, as explained in Section 2.3. This means that the network is
divided into two clusters of nodes that suffer two grades of anomalies: one group
of five agents (that sense a 10% of anomaly) and another one of two agents with
a 90% that correspond to the nodes involved in the lateral movement. Here,
stage S4 has been carried out by selecting the feature whose anomaly value is
higher, that in the case of node 2 and 3 is the delay. As for the rest of agents, the
level of anomaly around 10% appears as consequence of a negligible variation on
their data values transmitted. In case that feature aggregation was used instead
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of selection, an average of the anomalies in both features would be shown on
the figure, which only serves as indicator that a greater-than-zero anomaly is
occurring. Otherwise, if an individual Opinion Dynamics instance were used for
each feature, the bottom of the plot in Figure 4 would not appear in the delay
one (since those nodes do not show any variation of delay), whereas the top of
the plot would not appear in the instance that concerns on the data variation
(and opinions of nodes 2 and 3 would also be merged into the bottom cluster
due to a low level of variation).

The next step of the framework execution would be to keep track of the
multiple APT anomalies over time, associate them with actual attack phases
and create a map with the complete threat evolution throughout the network.
This is further illustrated with a real setup in [23]. Altogether, this brief example
of threat detection exhibits how a security administrator could benefit from
different correlation configurations to trace down the implicate nodes of an
attack and accurately filter the anomalies suffered across the topology at all
levels. This helps to identify the origin of the infection while anticipating further
actions to introduce effective response procedures.

5 Conclusions and future work

The degree of sophistication of cyber-security attacks perpetrated against criti-
cal infrastructures is increasing world-wide, while the introduction of technolo-
gies like the Internet of Things bring benefits but also vulnerabilities across all
sectors. Therefore, it is crucial to envision advanced security services beyond
traditional measures, being the Opinion Dynamics approach a promising solu-
tion that has been proved theoretically in traditional control systems. In this
work, we have studied the applicability of this algorithm to the context of the
IIoT, providing an insight on how potential instantiations of the Opinion Dyna-
mics algorithm could improve the traceability of attacks in IIoT environments.
Our ongoing work includes not only the execution of practical attack cases on
a real IIoT testbed to validate these findings, but also additional studies on the
advantages and disadvantages of centralized and distributed correlators in this
context, plus the potential inclusion of host-based parameters of IIoT devices
as data inputs.
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