R. Rios, C. Fernandez-Gago, and J. Lopez, “Modelling Privacy-Aware Trust Negotiations”, Computers & Security, vol. 77 , pp. 773-789, 2018.
http://doi.org/10.1016/j.cose.2017.09.015
NICS Lab. Publications: https://wuw.nics.uma.es/publications

Modelling Privacy-Aware Trust Negotiations

Ruben Rios**, Carmen Fernandez-Gago?®, Javier Lopez®

@ Network, Information and Computer Security (NICS) Lab,
University of Malaga, Spain

Abstract

Trust negotiations are mechanisms that enable interaction between previously unknown users. After exchanging various
pieces of potentially sensitive information, the participants of a negotiation can decide whether or not to trust one
another. Therefore, trust negotiations bring about threats to personal privacy if not carefully considered. This paper
presents a framework for representing trust negotiations in the early phases of the Software Development Life Cycle
(SDLC). The framework can help software engineers to determine the most suitable policies for the system by detecting
conflicts between privacy and trust requirements. More precisely, we extend the SI* modelling language and provide a
set of predicates for defining trust and privacy policies and a set of rules for describing the dynamics of the system based
on the established policies. The formal representation of the model facilitates its automatic verification. The framework
has been validated in a distributed social network scenario for connecting drivers with potential passengers willing to

share a journey.

Keywords:

Secure Software Engineering, Requirements Engineering, Goal-Oriented Modelling, Trust, Privacy, Policy.

1. Introduction

The development of software systems has traditionally
been guided by the fulfilment of functional requirements
whereas other important aspects, especially security-related
requirements, have been left aside and only considered
after the functional requirements were completely satis-
fied. Fortunately, the trend is changing and nowadays
both academia and industry are supporting the use of Se-
cure Software Engineering initiatives (Stavropoulos, |2011)),
which consider security from the early phases of the Soft-
ware Development Life Cycle (SDLC), being the require-
ments phase one of these early phases.

The requirements engineering phase (Mellado et al.|
2010) is an important part of the SDLC as subsequent
phases of the SDLC build on top of the outcomes of it. At
this stage, the software engineer identifies the stakeholders,
their goals and the requirements of the system while other
low level decisions are obviated. A common approach to
requirements engineering is to describe socio-technical sys-
tems in terms of the goals pursued by the various actors of
the system rather than on programming concepts. Some of
these goal-oriented methodologies (Horkoff and Yu, 2013))
have started to incorporate security concepts (van Lam-
sweerdel 2004} |Giorgini et all [2005a)), such as delegation
or authorisation. However, and despite the importance

*Corresponding author
Emazil addresses: ruben@lcc.uma.es (Ruben Rios),
mcgago@lcc.uma.es (Carmen Fernandez-Gago), jlm@lcc.uma.es
(Javier Lopez)

Preprint submitted to Computers € Security

of security-related concepts such as privacy and trust, re-
quirements engineering methodologies only consider them
on a very shallow level (Paja et al. |2015)). Often, these
methodologies do not reflect all the complexities and the
relationships that arise when modelling these intertwined
concepts. Typically, trust is based on the availability of
information about another entity while privacy is about
retaining control over personal data. The more informa-
tion available, the more accurate and informed are the
decisions on the risk associated with establishing a trust
relationship. However, this means more information is dis-
closed, which raises privacy concerns. Modelling these re-
lationships and detecting conflicts between them during
the requirements engineering phase is precisely the main
goal of this paper.

This paper presents a framework that enables the au-
tomatic verification of system models involving trust nego-
tiationsﬂ The framework provides requirements engineers
with a tool for reasoning about suitable system policies,
although they can be changed at run-time by the users.
The proposed framework can be regarded as an extension
of the SI* modelling language (Massacci et al., 2010]) and
is capable of identifying trust and privacy conflicts at de-
sign time and thus facilitating the tasks of the software
engineer. This privacy-aware trust negotiation framework
allows the policies for trusting other entities to be graph-
ically defined together with the privacy preferences and
sensitivity levels of the resources owned by each of the ac-

LA preliminary version of this paper appeared in (Rios et al.
2016)).

September 21, 2017

tors of the system. The graphical representation of the
model can be then automatically translated into a set of
formal predicates that, together with a set of rules that
define the behaviour of the system, leads to derive stable
models and allows conclusions to be drawn.

The rest of this paper is organised as follows. Sec-
tion 2] introduces the related work in the field while Sec-
tion [3| provides an overview of the ST* modelling language
and presents some extensions that are relevant to our so-
lution. Section [4 describes the various components of our
trust negotiation extension paying particular attention to
the definition of privacy policies and how privacy degrades
with the exchange of information between actors during
the negotiation. The model is formalised in Section [5| and
then evaluated in a distributed social network scenario in
Section [f] A brief discussion about the suitability of the
framework is provided in Section [} Finally, Section [§]
presents the conclusions of the paper and outlines some
potential lines of future work.

2. Related Work

The design of methods and tools for requirements en-
gineering is a key topic of research and essential for the
SDLC, goal-oriented methodologies being a common ap-
proach to modelling software systems.

The KAOS framework (van Lamsweerde; R. Darimont,
; E. Letier, |1998) is a goal-oriented approach based on
temporal logics that includes techniques for resolving in-
consistencies or goal conflicts. Tropos (Castro et al., 2005))
is another methodology founded on the i* organisational
modelling framework (Yu, [1996]). i* offers the notions
of actor, goal and (actor) dependency. Originally, these
frameworks did not take security requirements into consid-
eration but were later extended to consider some security
notions. On the one hand, KAOS has been extended to
deal with security analysis by considering the notions of
obstacle (van Lamsweerde and Letier, 2000) and the no-
tion of anti-goal (van Lamsweerde, 2004). On the other
hand, Secure Tropos (Mouratidis and Giorginill [2007) ex-
tends the Tropos methodology by making explicit who is
the owner of a service, who is capable of providing a ser-
vice and who is entitled to do so. The modelling language
for producing diagrams during the requirements acquisi-
tion phase in Secure Tropos is SI* (Giorgini et al., 2005a;
Massacci et al.l 2010). ST* includes a number of security
notions, including trust of execution and delegation. Sev-
eral extensions have been proposed for SI* so as to refine
it or to use the extensions to deal with risk or to detect
threats (Paci et all [2013). Our work is also based on
ST*. Other goal-oriented methodologies use different mod-
elling languages. For example, STS-ml (Paja et al., 2015)
is similar to SI* but places more emphasis on authorisa-
tion relationships and introduces the notion of document
beyond asset and resource.

Although an extensive body of research exists on se-
curity engineering, privacy has traditionally been left out

from all the aforementioned frameworks and their corre-
sponding extensions. The only support for privacy in most
of these frameworks, including SI* and STS-ml, is in the
narrow sense of privacy as data confidentiality and not
as data disclosure control (Paja et al., 2015)). Privacy is-
sues are tackled in (Notario et al.,|2015) by defining a set
of best practices at different stages of the SDLC. LIND-
DUN (Deng et al., [2011)) is a privacy engineering method
that considers how threats influence privacy requirements
and maps threats to software components. Then, threats
are used to elicit privacy requirements. Pris (Kalloniatis
et al.,[2008) models privacy requirements as organisational
goals and later privacy patterns are used to identify archi-
tectures.

In (Bonatti et al.l [2010) the authors introduced a rule-
based trust negotiation called PROTUNE that as well as
ours use the definition of rules for deriving the negotia-
tion strategy. However, it does not deep into the problem
of identifying privacy conflicts. The work that is closest
to ours is PP-Trust-X (Squicciarini et al.l 2007), which
extends a framework for trust negotiations called Trust-
X (Bertino et al.,2004)) with a privacy agreement subphase
intended for exchanging privacy policies on the data to be
negotiated. The goal of this additional phase is to allow
each of the participants to learn about the privacy prac-
tices and preferences of their counterpart before releasing
their credentials. The main difference with our proposal
is that our framework enables detecting privacy conflicts
during the requirements engineering phase rather than at
runtime. To the best of our knowledge no other works
address privacy preserving trust negotiations in the early
phases of the SDLC.

Note, that our framework is meant to be a useful tool
for the developers of a system that includes trust. Al-
though it includes mechanisms for defining privacy poli-
cies, this is left to the designers and developers, in con-
trast to other works on privacy policies, which are user-
centric (McDonald and Cranor, [2008; McDonald et al.,
2009; Milne and Culnanj, 2004) and focus on strategies
for allowing users to compare system privacy policies with
their own preferences.

Finally, we want to highlight the differences of this
work with a preliminary version of our framework that
appeared in (Rios et al.,[2016)). The current version intro-
duces a significant improvement over the former as it en-
ables the modelling of trust negotiations where the actors
can exchange multiple informational assets with various
entities. Although this situation is much more realistic,
it was not covered in the previous version since it adds
complexity to the modelling. It requires to consider the
way in which privacy degrades as the entity releases their
data to one or more entities. Moreover, this paper includes
the validation of the framework with a distributed social
network scenario.

3. The SI* Modelling Language

This section provides an overview of the SI* modelling
language. First, we describe the methodology and provide
some insight into its functionality. Then, we present the
core elements of the language and their formalisation. Fi-
nally, we introduce some extensions to the language that
are relevant to our framework.

3.1. Introduction to SI*

ST* (Massacci et al., 2010)) is a goal-oriented modelling
language that was proposed to capture the functional and
security requirements of socio-technical systems, that is,
systems that take into account social interactions. For
that reason, the SI* modelling language is an attractive
tool when dealing with security notions such as delegation
and trust. There are other predicates in SI* that denote so-
cial relationships, such as supervision, dependency or dis-
trust, but we have not included the details of them in this
paper as we do not use them for our purpose. Moreover,
this language is the basis for Secure Tropos (Mouratidis
and Giorginil, [2007)), a requirements engineering method-
ology that, besides modelling, provides model instantia-
tion, model verification and support for the application of
security patterns.

Graphical SI* models can be translated into Answer
Set Programming (ASP) specifications to enable the analy-
sis and validation of the models. ASP (Brewka et al.,[2011))
is a form of declarative programming language, which is
well suited for solving hard computational problems. This
is done by expressing a problem as a set of facts and
rules, which are inputted into an inference engine to derive
new facts and eventually reach a solution to the problem.
Therefore, ST* models are encoded as a set of facts while
the semantics are expressed by means of rules (or axioms)
using Horn clauses. Then, the specification is fed into a
system like DLV (Alviano et al.,[2011)) for detecting incon-
sistencies in the model. This is exactly the approach we
follow in this paper.

3.2. Core Elements

The SI* modelling language defines some fundamental
concepts that are necessary to represent socio-technical
systems, including the actorsEl, their goals and entitle-
ments, and the relationships between them. An agent is
an actual entity of the system that plays an active role
in it. Thus, an agent of the system may be a particu-
lar individual, a specific organisation or even a software
agent. A role represents the behaviour of an agent within
the system. This enables modelling situations in which
a particular agent has various roles and to characterise
how the actor is expected to behave depending on its role.

2The notion of actor is inherited from i*. Although this notion
is no longer part of the language, it is used as a generalisation of the
concepts of agent and role.

Table 1: Core ASP predicates in ST*
Goal model
actor(Actor: a)
agent(Agent: a)
role(Role: r)
service(Service: s)
goal(Goal: g)
task(Task: t)
resource(Resource: 1)
Actor properties
play(Agent: a, Role: r)
own(Actor: a, Service: s)
request(Actor: a, Service: s)
provide(Actor: a, Service: s)
Goal refinement
subgoal(Service: s1, Service: s3)
AND_decomp(Service: s, Service: s1, Service: s3)
OR._decomp(Service: s, Service: s, Service: sg)
means_end(Service: s1, Service: sg)
Social relations
del_perm(Actor: ag, Actor: as, Service: s)
del_exec(Actor: ay, Actor: aq, Service: s)
trust_perm(Actor: a1, Actor: ag, Service: s)
trust_exec(Actor: aj, Actor: ag, Service: s)

The language also includes the play relationship to indi-
cate that an agent plays a particular role. It also defines
some other relationships between roles but these are not
described here since they are not relevant for our purposes.

The language also includes the notion of service, which
is a generalisation of the goal, task and resource concepts.
A goal is a desirable situation or interest expressed by an
entity, while a task is a set of actions that can be executed
as a means to fulfil a goal. Finally, a resource is a phys-
ical or informational artefact, which is produced or used
by another goal or task. Connecting services to actors is
done via three relationships: own denotes the authority
of entities over resources and goals; provide represents the
ability of an actor to accomplish a goal or to provide a
resource; and request denotes the interest of an entity over
a goal or resource. In the graphical representation of the
model, these relationships are depicted with arcs labeled
with O, R, and P, respectively. There are some additional
relationships to denote that a goal can be achieved by sat-
isfying a set of subgoals. In the case that the goal can only
be fulfilled by satisfying all of its subgoals, this is repre-
sented by using an AND_decomposition relation, but if a
single subgoal is sufficient to reach the goal, then this is
represented by means of an OR_decomposition relation. A
means_end relation is also introduced to identify goals that
are necessary to achieve another goal or resources that are
used or produced by a goal. Although these goal refine-
ment relationships are core to SI* they are only described
here for the sake of completeness.

As SI* is intended for socio-technical systems, the lan-
guage deals with social relationships such as delegation
and trust. These notions have security implications as
trusting other entities or delegating permission over them

for achieving a goal pose some risk. The language can
be used to represent the transfer of responsibility (exe-
cution delegation) and authority (permission delegation)
from one actor to another to achieve a goal or to provide
a resource. These relationships are labelled De and Dp,
respectively. Similarly, it is possible to model the expec-
tations that one actor has of another actor regarding his
capabilities to perform a task (trust execution) or with re-
spect to his behaviour concerning a given permission (trust
permission). Trust relationships are labelled Te and T'p,
respectively.

The formalisation of the aforementioned elements is
done by using ASP predicates. Table || provides a sum-
mary of the most relevant predicates. These are only a
subset of the predicates available in SI*. Also, note that
these are extensional predicates that are used to translate
graphical diagrams in formal specification. There are also
some intensional predicates, which are necessary to model
the actual willingness to achieve services, to provide them,
and so on. These predicates are the result of applying rules
and we will not describe them here.

3.8. SI* Extensions

Despite the expressiveness of the language, some au-
thors have proposed extensions in order to support the
modelling of complex scenarios. Some of these extensions
are useful to our framework, which will be described in
Section [l

The first of the extensions, which are relevant for our
purposes is due to Asnar et al. (Asnar et all 2011)), who
extended SI* to introduce different levels of permissions
on resources and the relationships between them to enable
the identification of threats at the organisational level. In
general, the resources of an information system can be
characterised by means of three types of relationships that
identify their composition, allocation and dependency. A
stored_in relationship identifies that an informational re-
source is allocated in a physical resource. The part_of
predicate denotes a compositional relationship, which de-
notes that a resource is composed of several other re-
sources. The require relationship indicates that a resource
needs another resource to function. Moreover, resources
are marked with a security requirement label that indicates
the security property (confidentiality, integrity and avail-
ability) that must hold for it. The security requirement
is also related to the permission type granted to agents
on resources. Actors can be provided with three different
types of permissions on resources, namely, access, modify
or manage permission. As such, a permission type might
lead to a violation of a security property if the agent mis-
uses its permission on a resource. This situation is covered
with the threat predicate that holds when an agent poses
a threat to a particular security property on a resource.

Later, Paci et al. (Paci et al., [2013) introduced two ad-
ditional extensions to the language (an asset model and
a trust model) to identify insider threats. An asset is a

service with a particular sensitivity level that has a secu-
rity property associated with it. These labels identify the
level of protection for the resource demanded by its owner.
This model distinguishes two types of assets. Direct as-
sets are those for which a security property and sensitivity
level are modelled explicitly, while indirect assets are ser-
vices for which these values are derived from rules based
on their relationships with other entities. The trust model
proposed by the authors allows to specify the trust leveﬂ
that an actor places in another actor with respect to a
given permission for a particular asset. Similarly to what
is proposed in the asset model, a series of rules are defined
to derive indirect trust values. Also, a set of rules is in-
troduced to resolve potential conflicts caused by applying
derivation rules and to transform numerical trust values
into ordinal trust categories.

Table 2: Predicates in SI* Extensions
Resource model

stored_in(Resource: r, Resource: r)

part_of(Resource: r, Resource: rq)

require(Resource: r, Resource: 1)

Permission model

permission(Actor: a, Resource: r, PType: pt)
del_perm(Actor: a, Actor: aq, Resource: r, PType: pt)
trust_perm(Actor: a, Actor: aj, Resource:)
Security and Threat model

secure_req(Resource: r, SProperty: sp)
secure_req(Goal: g, SProperty: sp, Resource: r)
threat(Actor: a, Resource: r, SProperty: sp)
threat(Actor: a, Goal: g, SProperty: sp, Resource: r)
Asset model

asset(Service: s, Actor: a)

sensitivity(Service: s, SLevel: sl, Actor: a)
secure_req(Service: s, SProperty: sp, Actor: a)

Trust model

trust_perm(Actor: a, Actor: ay, Service: s, PType: pt)

A summary of the predicates proposed by the afore-
mentioned extensions is presented in Table 2] Again, for
the sake of simplicity, the table only covers extensional
predicates. The interested reader is referred to the origi-
nal papers for the definition of intensional predicates and
derivation rules. Also, note that we have slightly adapted
some of these predicates in order to follow a common no-
tation throughout the paper.

4. Trust Negotiation Extension

This section presents the main elements of our frame-
work, which allows the incorporation of trust negotiations
into the definition of socio-technical systems. First, we
provide a general overview and then concentrate on each
of its elements, namely, the trust negotiation relationship
and the informational resources that are exchanged during

3In the original SI* language, trust was a binary relationship; an
actor was either trusted or distrusted.

Priv. Level

Personal
Data

part_of | part_of art_of
| Location | Job
[sensttvity [sensivity

Figure 1: Trust Negotiation Representation in ST*

| Contact
[sensitvity

the trust negotiation process. Since the exchange of infor-
mational assets is core to trust negotiations, we provide
details on the privacy policy definition and the privacy
exposure due to the release of multiple data resources.

4.1. Overview

A trust negotiation (Lee et al.l |2009; Winslett et al.
2002) is a process in which various entities exchange (ac-
credited) information in order to establish a base of trust
as a means to achieve a goal. Therefore, a trust negoti-
ation is a dual relationship in which the participants de-
mand and offer information to one another and, as such,
information about the participants is revealed.

This process can be modelled during the requirements
engineering phase as shown in Figure |l Note that at this
stage it is not relevant to decide on the underlying mech-
anisms used for exchanging data or the format of the data
itself. Thus, our framework abstracts from these issues
and concentrates on transactions at a high level. Negotia-
tion strategies, data exchange protocols and other relevant
decisions can be made later, at design time.

The figure presents two main components that play a
fundamental role in the modelling of trust negotiations.
First, the dual relationship that considers the data be-
ing demanded by each of the agents and the goal to be
accomplished. Second, it contemplates the informational
resources (i.e., data) owned by the entities, which are im-
portant to establish the base of trust but at the same
time need to be under control. For that reason, these are
marked with a privacy requirement label and a sensitivity
level to indicate the risk of sharing these data. Addition-
ally, the sensitivity label is associated with the level of
detail that an entity is willing to reveal about this infor-
mational resource.

This representation is based on existing features of the
SI* modelling language and some existing extensions, as
shown in Section[3] Next, we provide a detailed description
of the elements that are necessary to model trust negoti-
ations during the requirements engineering phase at the
beginning of the SDLC.

(b) Simplified notation

Figure 2: Graphical notation for trust negotiations

4.2. Trust Negotiaton Relationship

There is a natural trade-off between privacy and trust
in trust negotiation models due to their conflicting objec-
tives. On the one hand, trust is founded on the availability
of information about other entities and, for that reason,
the parties involved in trust negotiations request informa-
tion to their counterparts. The more information an entity
has about another entity, the more accurate the decisions
made will be about the trustworthiness of this entity. On
the other hand, privacy refers to the ability to keep con-
trol of sensitive information and thus it is important to
prevent the indiscriminate disclosure of information. As a
result, trust negotiations are ruled by two parameters that
determine the amount of information that each participant
demands and the amount of data that each participant is
willing to offer in order to establish a base of trust.

The trust negotiation relationship can be represented
with a notation that is consistent with the structures and
components available from the SI* modelling language, as
shown in Figure In this figure, actors A and B are
represented by circles, the goal to be accomplished is rep-
resented by a squared oval, and these three elements are
connected by a labelled arc. The label Tx is contained
within a pentagon that is further parameterised with the
information being requested from the other actor. Since
a trust negotiation is a dual relationship it is necessary to
have one arc in each direction.

However, and for the sake of simplicity, we propose an
alternative notation with a single arc, as depicted in Fig-
ure[2b] Now, the pentagons at each side of the relationship
are associated with their closest actor and point to the ac-
tor from whom information is being requested. Each of the
pentagons have demand labels attached to them. These la-
bels indicate the particular informational assets of interest
to the actor as well as the level of detail that needs to be
satisfied in order to establish the trust relationship.

4.3. Privacy Policy Definition

Privacy violations are usually associated with a loss of
control over personal information and thus it is necessary
to define privacy policies. To limit the release of data, our
framework takes into consideration the ownership of dataf]
and on top of that defines a set of labels that are attached
to resources. The labels indicate the level of privacy that a
particular resource must retain as well as the sensitivity of
the resources. The privacy policy of each actor is defined
based on these labels. Note that these are not the policies
that the user will be assigned at run time, they are just
a tool for the engineer to reason about suitable default
policies for the system.

In previous extensions to the SI* modelling language (As-
nar et al.l 2011} [Paci et al., [2013)) the concept of security
requirement label was defined. These labels are attached
to assets (i.e., goals and resources) in order to specify the
security properties that must hold for a particular asset.
The security properties considered in these works include
confidentiality, integrity, and availability. Similarly, we
propose the use of a privacy requirement label to indicate
that a particular resource must maintain a specific level of
privacy.

Data resources may be additionally labelled with a sen-
sitivity level to indicate how valuable this information is.
The sensitivity level thus provides a natural indicator of
the severity of leaking this informational asset. In other
words, the sensitivity level helps to quantify the cost of a
privacy violation. Moreover, sensitivity is related to the
level of accuracy that the owner of the data is willing to
reveal in such a way that the higher the sensitivity, the
lower the precision of the data being disclosed. They are
inversely proportional to each other.

The level of granularity of these labels depends on the
application, and the requirements engineer is responsible
for defining them. The choice of these labels will depend
on the complexity of the application and the granurality
needed for establishing the trust negotiation process. For
the sake of simplicity, we will consider a discrete set of 3
levels, namely, Low, Medium, and High. Since the level of
sensitivity is related to the accuracy of the data, we will
also have 3 levels of granularity for each data type. The
level of granularity of data depends on the type of data
being considered. Suppose we are dealing with location
information, we can provide these data at 3 different lev-
els of detail, say, Low: city, Medium: zip code, and High:
exact address. Just as the engineer is responsible for de-
ciding the number of labels to use, it is also his role to
decide the level of detail of the data associated with each
label depending on the requirements of the application.
These decisions are beyond the scope of this paper.

4Data ownership is a convoluted term that lacks a universal defini-
tion. Here, we define data ownership as the possession of information
coupled with the ability to control the disclosure of that information,
which is typically not known to others. For our purposes, the data
owner is either the creator of an informational asset or the individual
to whom the information refers.

4.4. Privacy Fxposure

As actors release personal information, their privacy
degrades. The disclosure of various pieces of information
accumulates in a very particular way depending on the
types of data being released. This is related to the notion
of quasi-identifier (Vimercati and Foresti, [2011]), which was
introduced in the area of micro-data release protection to
designate a set of attributes that are apparently innocu-
ous but, in combination, can be used to re-identify indi-
vidualsﬂ Therefore, it is paramount to keep track of the
amount of data that may be released by each actor in or-
der to control their privacy exposure. However, knowing
how critical the combination of different types of data at-
tributes is is not straightforward and very much depends
on the amount of external information available to the at-
tacker, which cannot be known in advance.

Here we propose a simple approach to the problem of
disclosing multiple data items that consists in adding up
the sensitivity levels of each of these items. To that end,
we propose dividing the range of sensitivity levels into sev-
eral sub-ranges. In Section [£.3|we considered a discrete set
of 3 sensitivity levels and now we further divide each of the
them into a lower and upper part, represented by ~ and
T symbols, respectively. For example, the Low level has
two sub-levels: L™ and LT. Moreover, we consider two
additional intermediate levels, namely, Low-Medium and
Medium-High, with their corresponding sub-levels. Alto-
gether, this is basically a 1 to 10 scale where each of the
elements has a particular weight. As a result, these weights
can be added up together in order to determine the pri-
vacy exposure caused by releasing information. A visual
representation of this is depicted in Table [3]

In the simplest case, releasing two informational re-
sources labelled with a Low sensitivity level result in a
Low™ privacy exposure. In the case that no further infor-
mation is revealed, the privacy exposure can be regarded
as Low but if an additional piece of low sensitivity data
is disclosed, then the privacy exposure raises to the next
level, up to Low-Med ™. Similarly, if a new release of data
exposes an asset with a Medium sensitivity, we end up
with a Med-High™ privacy exposure, and so on, until the
retained level of privacy is extremely low, which is the case
that we represent with F in order to indicate that the pri-
vacy exposure is Fxtreme.

As previously stated, the intermediate levels considered
here can be finally mapped to the original space consisting
only of 3 levels: Low, Medium, and High. Depending on
the criticality of the application scenario and the data be-
ing exposed, the requirements engineer can choose to take
a strict or loose approach for the definition of the mapping
function. A strict mapping function is useful in situations
where the privacy of the users is extremely sensitive, say, a

5A former governor of the state of Massachusetts was re-identified
based solely on the date of birth, zip code and sex. Moreover, these
data are sufficient to re-identify 87% of the U.S. population (Sweeney},
2002).

Table 3: Privacy aggregation

healthcare application. This function can be as simple as
translating an intermediate sensitivity level into the level
immediately above it. In this way, LM~ and LM* are
both mapped to Medium and, similarly, MH~ and MH™"
are mapped to High. On the other hand, a loose mapping
function makes more sense when the scenario and the data
being transferred are not so critical. In this case, the func-
tion can map each of the elements of an intermediate level
to the sensitivity level that is closer. In other words, the
~ element can be mapped to the original sensitivity level
below it (on its left) and the T element can be mapped
to the level above it. In any case, F will be mapped to
High, unless a new category is added to represent that this
situation is extremely sensitive. Clearly, other mapping
functions are possible.

4.5. Privacy Assessment

So far we have considered how privacy degrades when
one actor discloses informational assets to another actor.
However, a single user may be involved in several trust
negotiations and thus it is important to determine how to
proceed in these situations.

As new trust negotiation relationships are established,
the privacy exposure of the actors typically grows since
they need to share more resources with other users. Yet
it is not trivial to quantify how much privacy degrades,
which basically depends on how the actors receiving the
data behave. For that reason, it may be useful to consider
different approaches for quantifying the privacy exposure
of actors involved in trust negotiation relationships. We
consider three main approaches to deal with this situation:

1. Worst case: assumes that the privacy of an actor
degrades whenever the actor releases more detailed
information about a resource regardless of the en-
tity receiving these data. The rationale behind this
approach is that the owner of the data loses control
over these items as soon as they are shared with an-
other actor and eventually they may be learned by
any other actor in the system.

Ideal case: assumes that the privacy exposure of an
actor depends on the maximum amount of data be-
ing released to a single actor. This approach assumes

Low Low-Med Medium Med-High High
L~ LT LM~ [LMT || M~ [MT || MH~| MHT
B L~ LT [LM~ || LM* | M~ Mt | MH- || MET| H-
3 LT LM~ | LM* || M~ | M+ [| MH- | MHT || H- Ht
£ g | LM™ LM* | M~ M+t [MH- || MEF | H- +
S = [IMF | M- | Mt || MH- | MHT || H- Ht
s M~ M* [MH || MEF| H- H
= MF MH- | MH* || H— H*
—qé) < | MH™ | MHT H
S | MHET | H-
< H™ Ht
£ W

EN|

that the actors of the system will not share the infor-
mational assets received from one actor with other
actors in order to reduce the privacy of this one ac-
tor.

Realistic case: assumes that the informational as-
sets being offered by one actor to another can be
eventually shared with any other actors connected
with him by means of a trust relationship. There-
fore, the privacy exposure of an actor is equal to
the maximum amount of information that a group
of related actors may learn if they shared all the in-
formation they know about this actor.

The first approach is the most conservative one as it
considers that privacy is lost as soon as data leaves the
sphere of control of the user. This is the typical approach
to data privacy as one cannot know for certain whether
the recipient of the data will redistribute them to other
users. To the contrary, the second approach is the most
permissive one as it presumes that the actors in the sys-
tems are never going to share information about another
actor. In one sense, the first approach can be seen as if all
the actors of the system are connected to each other and
collude while the second approach considers that all the
actors are isolated and follow the rules of the game.

The third approach can be regarded as the middle
ground between the other two, since it assumes that ac-
tors can share information about another actor only if they
are related to each other, i.e. there is a trust path in the
model connecting them. This approach can be further
complicated to consider two different cases: (a) whenever
there is a path between two actors they share all the infor-
mation they know, (b) the amount of information shared
between two related actors is dependent on the length of
the path that connects them. Moreover, if there is more
than one path connecting two actors, we can assume that
the amount of information leaked is equal to the leakage of
the shortest path. Notwithstanding, one might argue that
the greater the number of paths connecting two actors, the
greater the likelihood that these actors share information.
Many similar approaches may be devised but this is left
for future work. In this paper we will concentrate on the

first case.

Regardless of the approach, we will assume that the
privacy of the users degrades in a way that it is consistent
with the method described in Section[4.4] Moreover, in the
Appendix we devise three basic scenarios where actors are
involved in one or more trust negotiations. These scenar-
ios are then fed into our framework and we compare the
resulting privacy leak of the actors for the aforementioned
approaches.

5. Model Formalisation

The graphical notation for privacy-aware trust nego-
tiations presented in Section [4 has to be translated into
a set of facts and rules to enable the automatic verifica-
tion of the models. As mentioned in Section [3] SI* uses
the ASP paradigm for this purpose. Next, we introduce
both extensional and intensional predicates to formalise
the graphical description of the model and then describe
the rules that determine its behaviour. Some of these pred-
icates and rules were introduced in our preliminary work
in (Rios et all 2016) but only superficially.

5.1. Predicates

The first predicate that we need to incorporate is one
for representing the trust negotiation relationship itself.
This is done by using the predicate trust_neg, which indi-
cates that actorsﬁ a1 and ao may initiate a trust negotia-
tion as a means to achieve a common goal g. Note that it
is unreasonable to have a trust negotiation where the two
actors are the same, therefore it will always be the case
that a1 # ay. Formally, the predicate is defined as follows:

Py: trust_neg(Actor: a, Actor: ag, Goal: g)

The predicate offers denotes that actor a is willing
to offer resource r up to a given granularity level [€
{Low, Medium, High}. The granularity level offered is
determined by the sensitivity of the resource in such a way
that the higher the sensitivity level, the lower the granu-
larity of the resource. This is denoted by means of the
sensitivity predicate, which associates a resource r with a
given sensitivity level [. Similarly, the predicate demands
indicates that an actor a requests a resource r with at
least a given granularity [. Additionally, this predicate in-
dicates to which actor the resource is demanded. This is
necessary since an actor can be involved in several trust
negotiation relationships and may thus request data from
different actors. It helps to identify which of the nego-
tiations are satisfied. This is not the case in the offers
predicate as it expresses the maximum level of granularity
of data that the agent will release regardless of the agent
involved in the trust negotiation. Finally, the predicate

SWe use the notion of actor for simplicity. Instead, the actual
predicates and rules consider roles and agents as arguments.

privacy_req denotes the level of privacy [that needs to be
satisfied for a particular resource r, which is given by the
application and set by the requirements engineer. Thus,
if for example, the privacy level is Low, the exposure level
will be High. These predicates are formally represented as
follows:

Py: offers(Actor: a, Resource: r, Level: 1)

P5: demands(Actor: aq, Actor: as, Resource: r, Level: 1)
Py: sensitivity(Resource: r, Level: 1)

Ps: privacy_req(Resource: r, Level: 1)

So far we have only presented extensional predicates,
which translate the graphical description of the system
into a formal specification. In order to reason about the
system and to validate it, we need to define a series of
intensional predicates, which express relevant intermediate
information. Intensional predicates will be derived after a
set of rules, which define the semantics of the framework,
are applied to the extensional predicates. Finally, some
conclusions can be derived about the potential presence of
privacy conflicts.

The predicate satisfy denotes that an actor a; is able
to meet the demands of another actor as for a particu-
lar resource r. Moreover, this predicate indicates the level
of granularity [that the requested actor will offer to the
requesting actor in the case that the trust negotiation is
successful. This last parameter will be useful to account
for the privacy exposure level of the requested actor. The
predicates n_demands indicates that actor a; demands a
total of n informational resources from actor as. Simi-
larly, n_satisfy denotes the number of resources that the
first actor is able to offer to the second actor at the de-
sired granularity level. These predicates are necessary to
determine whether or not a trust negotiation will be suc-
cessful, which is denoted by the following establish_trust
predicate. More precisely, this predicate represents that
actors a; and ao trust each other to reach a particular
goal g, meaning that they have reached an agreement ac-
cording to the privacy policy of each actor. Moreover, we
define an additional predicate, which is useful to determine
the trust paths between actors. A trust path between two
actors exists if there is a group of actors who can estab-
lish pairwise trust relationships. The predicate trust_path
indicates that there is a trust path p of length n start-
ing at actor a; and ending at actor as. Finally, predicate
Py indicates the opposite to predicate Ps but will be use-
ful for the identification of resources that are limiting the
establishment of trust between actors.

Ps: satisfy(Actor: ap, Actor: ag, Resource: r, Level: 1)
P;: n_demands(Actor: ay, Actor: as, NV : n)

Pg: n_satisfy(Actor: aj, Actor: ag, NO : n)

Py: establish_trust(Actor: aj, Actor: as, Goal: g)

Pyo: trust_path(Actor: ay, Actor: ag, Path: p, NT : n)
Py1: not_satisfy(Actor: a1, Actor: ag, Resource: r)

Pyy: data_exposure(Actor: a, Resource: r, NV : n)
Py3: aggreg_func(Actor: a, NO : n)

Pyy: privacy_leak(Actor: a, NO : n)

Py5: privacy_threat(Actor: a, Resource: r, Level: [)

The last four predicates (Pio-Pi5) are useful for identi-
fying privacy violations. The predicate data_exposure indi-
cates that the resource r belonging to an actor a is exposed
to a certain degree [. The predicate aggreg_func calculates
the aggregated privacy exposure result for all the resources
exposed by a given user according to the function described
in Section The predicate privacy-leak represents the
level of exposure of a particular actor and, finally, the pri-
vacy_threat predicate denotes that the exposure level of an
actor has exceeded the desired privacy exposure level.

Some additional predicates are used by the framework
but they will be presented when necessary.

5.2. Rules

Once the required predicates have been presented we
can proceed with the definition of the rules that determine
the reasoning of the model. First, we describe the rules
related to the process exchange of resources as a means to
establish trust, and then we present the rules for detecting
privacy threats caused by these negotiations.

5.2.1. Trust Negotiation Rules

The first set of rules described here, from R; to Rg,
express that the sensitivity of a resource is inversely pro-
portional to the granularity level that the actor owning
the resource is willing to offer. Rule R4 denotes that an
actor A satisfies the demands of another actor B if the
resource required by B is offered by A with a granularity
level higher than or equal to the desired granularityﬂ In
the case that actor A can satisfy the demands of actor B,
he will follow a data minimisation principle thus sharing
the resource to the granularity level being requested (i.e.,
L) and not to the level that A might be able to offer.
Also note that in this rule there is no need to specify that
actors A and B are different since it is not possible to de-
rive from the model that an actor demands a resource to
himself.

The next rule, Rs, establishes that two actors A and B
can trust each other to reach a particular goal if there is
a trust negotiation relationship between them and all the
demands of each of the actors are satisfied. This rule is
defined in a way that it enables unconditional trust if one
of the actors (or both) trust the other actor without the
need to receive any informational assets from him. Also
note that this rule is not limited by the existence of privacy
threats. Our approach here is to address trust and privacy
issues separately. By doing this, the framework enables to

"We use the > symbol to compare ordinal values. In particular,
High > Medium > Low.

Ry: offers(A, R, High) «— own(A, R) A sensitivity(R, Low).
Ry: offers(A, R, Med) « own(A, R) A sensitivity(R, Med).
R3: offers(A, R, Low) + own(A, R) A sensitivity(R, High).
Ry: satisfy(A, B, R, Lg) < demands(B, A, R, Lg) A

offers(A, R, L4) A (La = Lp).

Rs: establish_trust(A, B, G) < trustneg(A, B, G) A
n_demands(A, B, Dag) A
n_satisfy(B, A, Sga) A
n_demands(B, A, Dpa) A
n_satisfy(A, B, Sap) A

(Dap < Spa) A (Dpa < Sag)-

Rg: not_satisfy(A, B, R) < demands(B, A, R, Lg) A
OH‘CI‘S(A? R, LA) A (LB - LA).
R7: not_satisfy(A, B, R) < demands(B, A, R, Lg) A

not offers(A, R, La).

Rg: trust_path(A, B, [], 1)
Ry: trust_path(B, A, [1, 1)
Ryp: trust_path(A, C, P, L)

establish_trust(A, B, G).
establish_trust(A, B, G).
trust_path(A, B, Pag, Lag) A
trust_path(B, C, [], 1) A

not member(C, P4g) A
(A#C)A(L=Lap+1)A
insLast(Pag, B, P).

T

determine whether or not a trust negotiation might be
established based solely on the resources being offered and
requested. In the case that trust can be established and
there is a potential threat to privacy, the security expert
can take measures to prevent the loss of privacy.

Rules Rg and Ry identify that the demands of an actor
B for a particular resource R cannot be satisfied by actor
A. This may happen for two reasons. The first being that
actor A is not willing to offer the resource with as much
precision as B is demanding, and the second being that A
does not offer the resource requested by B. The not_satisfy
predicate is useful for identifying the cause of unsuccessful
trust negotiations.

The last set of rules represent all possible trust paths
between actors. A trust path exists between any two actors
A and B if they can establish a base of trust towards a
particular goal. A path exists in each direction. This
is represented by rules Rg and Rg. Moreover, rule Rig
establishes that a trust path P exists between actors A
and C if there already exists a path P4ap between A and
B of unitary length and there is another path between
B and C such that C is not yet in the path. Note that
this rule uses some built-in predicates available in DLV. In
particular, we use member for checking the existence of an
item in a list and insLast to insert an item at the end of a
list.

5.2.2. Privacy Rules

The rules presented so far have been aimed at detect-
ing whether the actors in the system are capable of es-
tablishing trust relationships based on the informational
resources they are willing to share with other actors. Sub-
sequently, we focus on detecting potential privacy issues
arising as a consequence of the exchange of information
between actors.

As described in Section [I.5] dealing with the degrada-
tion of user privacy when the actor is involved in multi-
ple trust negotiations may be approached from different
angles. In particular, we consider three different scenar-
ios: the worst case, the ideal case, and the realistic case.
The first approach is the most conservative one as it con-
siders that once an informational asset is released it will
eventually be known by any actor of the system. The sec-
ond approach assumes that the actors receiving data will
not share it with anyone, and the third approach assumes
that they will share data only with those actors they trust.
Here, we provide the three approaches:

Ryy: data_exposure(A, R, X) <+ offers(A, R, L) A
max_exposure(R, X).

nlow(A, Np) A

n.med(A,Ny) A

n_high(A, Ng) A

X =Ny +5x Ny +9 x Npy.
data_exposure(A, _,) A

aggreg_func(A, X).

Ris: aggreg func(A, X) —

Ry3: privacy_leak(A, X)

The worst case approach is represented by rules from
R11 to Rys. In particular, Ry is used to determine the
maximum exposure of the resources being offered by an ac-
tor. This rule takes advantage of the maz_exposure pred-
icate, which is true if X is the maximum level of expo-
sure of a given resource. Rule Rps is used to calculate
the aggregated privacy exposure for a given user. This
rule counts the number of resources being offered at a low,
medium and high granularity level and calculates the expo-
sure based on the method defined in Section [4:4] Finally,
rule Ry3 allows the privacy leak of an actor to be calcu-
lated, provided that he has exposed some of his resources.

The ideal case approach is modelled with rules Rj4
and Ri5. The first of these rules is used to calculate the
exposure of one actor to another actor provided that they
have established a trust relationship. Again, this is done
using the aggregation function described before, but in
this case it must only account for the number of resources
given to each particular actor separately. The following
rule obtains the privacy leak of a user, which is calculated
as the maximum exposure of the user to each of the actors.

Ry4: data_exposure_id(A, B, X) <« trust_path(A, B, [], 1), A
aggreg_func_id(A, B, X).
Ry5: privacy leak id(A, X) + data_exposure_id(A, _,) A

max_exposure_id(A, X).

The realistic approach is more complex as it involves
the discovery of groups of actors that may share infor-
mation from another actor. Thus, the number of rules
required to model this situation is larger, as shown below.

The first two rules are intended to obtain all actors
connected with any actor B that receives information from
another actor A. This includes actor B itself (rule Rj¢)
and all nodes that can be reached from B such that A
is not in the path (rule Ry7). This allows us to create
all disjunct groups of actors that may share information

10

Ry6: data_recipient(A, B, B) + trust_path(A, B, [], 1).

Ry7: data_recipient(A, B, C) « trust_path(A, B, [], 1) A
trust_path(B, C, P, L) A
not member(A, P) A
(C#£ A).

Rys: tmp_exp(A, B, C, R, X) « data_recipient(A, B, C) A
satisfy(A, C, R, X).

Ryg: data_exposurer(A, B, R, X) <+ tmpexp(A, B, _,R,_,) A
max_exposure_r(A, B, R, X).

Ry group_leak(A, B, X) + data_recipient(A, B, C) A
aggreg_func_r(A, B, R, X).

Roq: privacy_ leak r(A, X) «— satisfy(A, _,_) A

max_group_exposure(A, X).

from another particular actor. Then, with rule R1g we can
obtain the leak level of a particular resource to any node of
each group and rule R;9 obtains the maximum exposure of
a given resource using these intermediate predicates. Rule
Ry obtains the total leak of all resources from A with each
of the groups that know information about this actor and
rule Ry calculates the privacy leak of A as the leak to the
group that has most information about him.

Finally, we need to map the privacy exposure of a user
with the defined privacy policies in order to detect poten-
tial privacy conflicts. To that end we first need to define
the function for transforming the privacy leak value into
a privacy label and then compare it with the privacy re-
quirements of the user.

Ry privacylabel(A, Low) < privacyleak(A, X) A (0 <X < 3)
Rog: privacy_label(A, Med) « privacy leak(A, X) A (3 <X < 7)
Ryy: privacy label(A, High) « privacy_leak(A, X) A (7 < X < 10)
Rys: privacy label(A, Extr) « privacyleak(A, X) A (X > 10)
Rag: max_desired_expos(R, Low) < privacyreq(R, High)

Ro7: max_desired_expos(R, Med) < privacy req(R, Med)

Ros: max_desired_expos(R, High) <« privacyreq(R, Low)

Ryg: privacy_threat(A, R, Lg) < max_desired_expos(R, Lg) A

privacylabel(A, Lg) A
(Lg = Lg)

Rules Rgs to Raos describe the behaviour of the map-
ping function, which converts integers into labels as dis-
cussed in Section [4.4] Additionally, rules from Ras to Ros
transform a privacy requirement label into the maximum
desired exposure. The last rule Rog is in charge of compar-
ing the privacy requirements for user data with their actual
level of exposure. In the case that the actual exposure is
greater than the maximum desired privacy exposure, the
predicate privacy_threat is activated.

6. Evaluation

This section presents the validation of our privacy-
aware trust negation framework. First, we describe the
main features of the scenario as well as the roles involved
in it together with the relationships between these roles.
Then, we focus on a particular instantiation of the model
in order to show how it translates into ASP. Finally, we

run our framework in order to detect trust and privacy
conflicts.

6.1. Scenario Definition

Trust negotiations are mostly relevant in situations where
two entities, which do not know each other in advance need
one another in order to achieve a common goal. There
are many scenarios where these mechanisms are useful,
including the typical trust negotiation scenario where an
unknown client and a server exchange credentials in order
to determine whether access to a controlled resource can
be granted to the client. However, the proposed frame-
work can also model more advanced scenarios where the
goal is not simply an access control decision.

Therefore, to illustrate the utility of our framework for
detecting privacy violations during the process of trust ne-
gotiations, we consider a social network intended to con-
nect drivers with empty seats and passengers willing to
travel and share the costs of the journey with the driver.
This scenario is similar to the one provided by the BlaBlaCar
community (BlaBlacar)lﬂ

In this simple scenario it is easy to identify basically
two main types of roles, namely the Driver and the Pas-
senger, whose main features are:

e Driver is the person who is going to drive his vehicle
from one location to another and has seats available
to share for that particular journey;

e Passenger is the person who is willing to take the
same journey and is willing to share the costs in-
curred during the trip, say road tolls and fuel.

These two roled”] share the goal share ride in order to
reduce costs, meet other people or simply for convenience.
To meet this goal, the actors need to establish a base of
trust. Basically, the driver wants to know whether the pas-
sengers will pay for the expenses and the passengers want
to know whether the driver is experienced or trustwor-
thy. Thus, trust between entities needs to be established
and this can be done by sharing information between the
actors involved. However, an indiscriminate disclosure of
information will result in a significant loss of privacy.

The data items owned by the participants of the ride-
sharing scenario are depicted in Figure [3a] This figure
provides a general representation in SI* of the actors in-
volved in the system together with their goal and available
resources. The model is adequate for illustrating the de-
fault (i.e., system-defined) policies but since privacy is a
subjective property that very much depends on the ex-
periences and beliefs of the user, the model should also

8 Although the participants in this type of social networks usually
build trust based on reputation systems they might benefit from trust
negotiations in fully distributed scenarios where there is no central
authority to manage the reputation of the participants.

9A single person may play both roles at different instants, that
is, a driver may be a passenger in a future journey and vice versa.

11

consider privacy at the individual level (i.e., user-defined
policies). Since we consider two levels for defining privacy
policies when modelling the system, some of these policies
may be defined only at one level. In the case that the pol-
icy is defined at user level we consider it to be the right
policy and if defined at role level alone, it is inherited by
the actors with no user-defined preferences. There may
also exist situations in which the privacy preferences are
defined both at the agent level and at the role level and be
in conflict with each other. We resolve this by assuming
that user-defined policies are dominant. This same issue
was taken into consideration by Giorgini et al. (Giorgini
et al., |2005b) when modelling functional trust in ST*.

For the purpose of the application scenario under con-
sideration, the Driver must be able to provide informa-
tion about the vehicle he/she owns, address information,
the type of job, and personal details related to gender and
age. Similarly, the Passenger might be required to provide
personal details as well as information about his/her ad-
dress, job and also information to contact him/her in the
case that the driver is interested. Moreover, each piece
of these data is labelled with a particular sensitivity level
whose value must be established by the requirements en-
gineer based on his/her own experience. Specifically, the
figure represents that, by default, a Driver is not extremely
concerned about privacy (i.e., privacy requirement is set
to medium) as long as passengers are willing to cover the
expenses of the journey. Similarly, the Passenger will usu-
ally demand a moderate level of privacy.

6.2. An Instantiation of the Model

Now that we have presented the general model of the
system, let us assume that David is a Driver who is going
to travel by car from New York City to Philadelphia and
wants to share two free seats in his car with other people
in order to reduce travel costs. Peter and Paula both
play the role of Passenger as they are willing to travel but
they do not have either a license or a vehicle. Therefore,
the driver can engage in a negotiation with each of the
potential passengers in order to determine whether they
will share the ride. These statements can be put into ASP
syntax as followﬂ

The actors of the system own a number of informa-
tional assets that they might be willing to share in order
to fulfil the trust negotiation. These informational assets
may be offered to other actors only when they are required
and up to the granularity level determined by the sensi-
tivity of the resources. Next we provide a subset of the
predicates that are necessary to define the ownership of re-
sources and the relationships between resources and with
the roles. Moreover, we provide the predicates that define
the system-defined privacy preferences for each role as well
as the default sensitivity level for each informational asset:

100nly the predicates that are relevant to our model are presented.

Privacy

part_of

Personal details

(a) General Model

Personal details

Pers. details: Med
Address: Med

[0]
Driver
~ Data
e

Address Personal details
(o)

(b) Model Instantiation

Figure 3: Ride-sharing Scenario

role(driver)

role(pass)

agent (david)

agent (peter)

agent (paula)

play(david, driver)

play(peter, pass)

play(paula, pass)

goal (share_ride)

trust neg(david,driver,peter,pass,share_ride)
trust neg(david,driver,paula,pass,share_ride)

So far we have presented the representation of the gen-
eral model but it is necessary to define the particular trust
and privacy preferences of the agents, as shown in Fig-
ure The information being requested by David from
the passengers is their Address and Job. In particular,
David demands a very imprecise (i.e., low) level of ad-
dress information as he simply wants to know whether the
passenger is close to the departure location or on route to
his destination. With respect to the job information he
requires a medium level of detail. The actors playing the
role Passenger also demand information from the Driver.
More specifically, Peter is interested in information about
the type of Vehicle that is owned by the driver as well as
some Personal details. On the other hand, Paula demands
more information before accepting a ride with someone.
The information she requests is related to the Job and
Address of the driver and Personal details. The level of
granularity of the data requested by Paula is low for the
first data item and moderate for the remaining ones. Some
of the requests for particular resources (i.e., resource in-
stances) are modelled using predicates like the ones shown
next:

Moreover, the privacy preferences of particular actors
and the sensitivity level of their resources can be re-defined
by using two particular predicates, which are introduced
here for the first time. In particular, the user_def_sensitivity
to specify the sensitivity of a particular instance of a re-

12

resource(driver_data)
resource (pass_data)
resource(vehicle)
resource(driver_addr)
resource (pass_addr)

part_of (vehicle,driver_data)
part_of (driver_addr,driver _data)
part_of (pass_addr,pass_data)

own(driver, driver_data)
own(pass, pass_data)

privacy._req(driver_data,low)
privacy._req(pass_data,med)
sensitivity(driver_addr,high)
sensitivity(driver_job,low)

sensitivity(pass_addr,high)
sensitivity(pass_job,low)

source and user_def_privacy_req redefines the privacy re-
quirements of a particular actor for a given resource. Some
additional rules have been defined to generate the actual
policies from system-defined and user-defined policies. These
rules have not been included in Section to improve the
readability of the paper.

In particular, the sensitivity level for both the Address
and Personal details of David’s resources have been low-
ered with respect to the default system settings. However,
as Paula is a more privacy-conscious person her prefer-
ences for Job, and Contact have been changed to a medium
sensitivity level. Peter has no special privacy demands
and therefore inherits the system-defined privacy prefer-
ences and sensitivity levels. For the sake of readability,
in Figure we have only represented the informational
assets whose sensitivity level have been re-defined.

demands (david,driver,peter,pass,
resource_inst(pass_job,peter,pass),low)

demands (david,driver,paula,pass,
resource_inst(pass_job,paula,pass),low)

demands (paula,pass,david,driver,
resource_inst(driver_job,peter,driver) ,low)

demands (paula,pass,david,driver,
resource_inst(driver_addr,peter,driver) ,med)

user_def_sensitivity(resource_inst(driver_addr,
david,driver) ,med)

user_def _sensitivity(resource_inst(pass_addr,
paula,pass) ,med)

user_def privacy req(resource_inst(driver_data,
david,driver),low)

user_def _privacy_req(resource_inst(pass_data,
paula,pass) ,high)

6.3. Detecting Policy Violations

Once the model has been instantiated and the ruled™]
defined, we can run our framework for detecting policy
violations. Specifically, the analyst will be interested in
detecting problems related to the establishment of trust
and privacy threats.

After running the particular instantiation of the sce-
nario considered in Figure we observe that none of
the trust relationships are established. The reason is that
David is demanding from both Peter and Paula a level of
detail for the Address resource that they are not willing
to offer. This can be easily spotted with the help of the
not_satisfy predicate, as shown next.

not_satisfy(peter,pass,david,driver,
resource_inst (pass_addr,peter,pass))

not_satisfy(paula,pass,david,driver,
resource_inst (pass_addr,paula,pass))

At this point, the analyst must make a decision on
whether to change the trust policy or the privacy policy.
For the purpose of this paper we will consider that the
decision taken is to change the default privacy policy and
instead of assuming that the sensitivity of Address is high,
it is assumed to be of medium sensitivity. Consequently,
the level of detail that the passengers may offer will be
higher and meet the expectations of the driver. Also, the
expectations of the passengers are met by the driver, which
in turn results in the establishment of a trust relationship
between the actors, as shown next:

The establishment of trust between users may result
in privacy violations. However, the evaluation of whether
a privacy threat exists depends on how the data leak is
assessed. In Section we described three different ap-
proaches for determining the privacy leak depending on

1Visit https://www.nics.uma.es/pub/development/privtrust.
zip| for a complete set of rules and predicates

13

establish_trust(david,driver,peter,pass,sharegride)
establish_trust(david,driver,paula,pass,share ride)

the relationships between actors. Here, we focus on the
worst case approach and even though there are very few
relationships, the results may differ between using either
of the proposed approaches. The reader is referred to the
Appendix for interesting results and conclusions drawn
from the application of the three approaches to more com-
plex scenarios.

privacy_threat(david,driver,driver_data,extreme)
privacy_threat(paula,pass,pass_data,medium)

The previous predicates indicate that actors David and
Paula are exposing themselves to an undesired level. This
is true since their privacy requirements were set to low and
high, respectively. There is no privacy threat for Peter
since its desired privacy exposure is not strictly greater
than its actual exposure.

7. Discussion

The framework proposed in this paper is intended for
allowing software engineers to define trust and privacy
policies for systems involving trust negotiations with the
ultimate goal of detecting conflicts between them during
the conception of the system. Certainly, this may raise a
few questions that should be discussed and clarified.

First, trust negotiations are useful mechanisms for over-
coming the uncertainty of interacting with previously un-
known entities. Based on this assertion, one might argue
that when the entities and their requirements are known
in advance it is not necessary to resort to a negotiation.
There might be situations in which the requirements en-
gineer knows, say from a previous interview, the policies
of users of the system. Therefore, it can be reasonable to
think that there is no need to introduce trust negotiation
mechanisms in the system. Notwithstanding, since trust
and privacy are subjective properties that evolve in time
based on the experiences of the users, the policies that
were defined at the conception of the system will certainly
change. In this situation, a software engineer precluding
the use of trust negotiation mechanisms will be forced to
re-engineer the system.

The scenario used for validation in Section [6] may raise
questions about the validity of the framework since it is
virtually impossible to know in advance all the users of
large-scale systems. And even if this is the case, the re-
quirements engineer should not be responsible for defining
the trust and privacy policies of the users of the system.
Since trust and privacy are subjective properties, the de-
cision on the policies correspond to the users. What the
framework is actually offering to the requirements engineer
is not a mechanism for deciding about user policies and for
detecting conflicts between them, but a tool for reasoning

https://www.nics.uma.es/pub/development/privtrust.zip
https://www.nics.uma.es/pub/development/privtrust.zip

and finding the most suitable ones. These policies can be
then used as the default system policies.

Moreover, the framework has been designed to cover
as many situations as possible. There may be applica-
tions where some of the policies are fixed and cannot be
changed, or their values must be within a particular range,
and there will be applications where the user has full con-
trol on how to set up personal policies. Also, it is impor-
tant to highlight that the framework is abstract enough to
cover different trust negotiation strategies and protocols
for exchanging information between actors. In this way,
the requirements engineer can reason about, regardless the
underlying mechanisms. We consider that all these deci-
sions are not to be made during the requirements engineer
phase but later in the software development life cycle.

8. Conclusion

This paper has presented a framework for representing
trust negotiation systems based on the ST* modelling lan-
guage. The proposed framework includes the definition of
a number of rules written in ASP specification, which en-
ables reasoning about the behaviour of the system. Thus,
from a particular model of the system it is possible to auto-
matically extract a set of ASP predicates, which formally
describe it. The rules are triggered with these predicates
and finally a stable model to detect inconsistencies is gen-
erated.

More precisely, the proposed framework is designed to
identify problems derived from trust and privacy policies.
On the one hand, the framework reveals which of the re-
quirements that a user has to establish a trust relationship
have not been satisfied by other users and for what reason,
either because a particular resource is not being offered or
because the level of detail that the other user is offering
is insufficient. On the other hand, the framework also en-
ables the detection of potential privacy threats to users in-
volved in multiple trust negotiations and offering resources
beyond that permitted by their privacy policy. Further-
more, the framework has been successfully validated with
a distributed car-sharing social network scenario.

The framework is specialised in the reasoning about
privacy-respectful trust negotiation systems although it
might be extended to consider more general privacy prob-
lems related to the loss of control over personal data, as
it can be the case in social networks. This is precisely one
of our most prominent lines of future work together with
the definition of more sophisticated mechanisms for mea-
suring the degradation of privacy with every single piece
of data the user publishes or shares with other entities.
This is a promising line of work since the upcoming EU
data protection regulation, GDPR, 2016/679, demands for
mechanisms to enable individuals to control their own per-
sonal data. We are also planning to extend this work to
consider other relevant privacy aspects such purpose and
storage limitation, as well as to consider subsequent phases

14

of the software development life cycle including the ap-
plication of the framework to real systems with its own
privacy policies.

Acknowledgements

This work has been partially funded by the Spanish
Ministry of Economy and Competitiveness through the
SMOG project (TIN2016-79095-C2-1-R) and the PRECISE
project (TIN2014-54427-JIN), co-financed by FEDER.

This work has received funding from the European
Union Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No.
675320. This work reflects only the authors view and the
Research Executive Agency is not responsible for any use
that may be made of the information it contains.

References

Alviano, M., Faber, W., Leone, N., Perri, S., Pfeifer, G., Terracina,
G., 2011. The Disjunctive Datalog System DLV, in: de Moor,
0., Gottlob, G., Furche, T., Sellers, A. (Eds.), Datalog Reloaded:
First International Workshop, Datalog 2010, Oxford, UK, March
16-19, 2010. Revised Selected Papers, Springer Berlin Heidelberg,
Berlin, Heidelberg. pp. 282-301.

Asnar, Y., Li, T., Massacci, F., Paci, F., 2011. Computer Aided
Threat Identification, in: 2011 IEEE 13th Conference on Com-
merce and Enterprise Computing, pp. 145-152.

Bertino, E., Ferrari, E., Squicciarini, A.C., 2004. Trust-X: A Peer-to-
Peer Framework for Trust Establishment. IEEE Trans. on Knowl.
and Data Eng. 16, 827-842.

BlaBlacar, . Share your journey with BlaBlacar - Trusted Rideshar-
ing. https://www.blablacar.com. [Last Access: June 2017].

Bonatti, P., Coi, J.L.D., Olmedilla, D., Sauro, L., 2010. A rule-based
trust negotiation system. IEEE Transactions on Knowledge and
Data Engineering 22, 1507-1520.

Brewka, G., Eiter, T., Truszczynski, M., 2011. Answer Set Program-
ming at a Glance. Commun. ACM 54, 92-103.

Castro, J., Giorgini, P., Kolp, M., Mylopoulos, J., 2005. Tropos: A
Requirements-Driven Methodology for Agent-Oriented Software,
in: Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented
Methodologies, Idea Group.

Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W., 2011.
A privacy threat analysis framework: Supporting the elicitation
and fulfillment of privacy requirements. Requir. Eng. 16, 3-32.

Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N., 2005a. Mod-
eling Security Requirements Through Ownership, Permission and
Delegation, in: 13th IEEE International Conference on Require-
ments Engineering (RE’05), IEEE. pp. 167-176.

Giorgini, P., Massacci, F., Zannone, N., 2005b. Security and Trust
Requirements Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 237-272.

Horkoff, J., Yu, E., 2013. Comparison and evaluation of goal-oriented
satisfaction analysis techniques. Requirements Engineering 18,
199-222.

Kalloniatis, C., Kavakli, E., Gritzalis, S., 2008. Addressing privacy
requirements in system design: the PriS method. Requirements
Engineering 13, 241-255.

van Lamsweerde, A., 2004. Elaborating Security Requirements by
Construction of Intentional Anti-Models, in: Proceedings of the
26th International Conference on Software Engineering, IEEE
Computer Society, Washington, DC, USA. pp. 148-157.

van Lamsweerde, A., Letier, E., 2000. Handling Obstacles in Goal-
Oriented Requirements Engineering. IEEE Transactions on Soft-
ware Engineering 26, 978-1005.

van Lamsweerde; R. Darimont ; E. Letier, A., 1998. Managing Con-
flicts in Goal-Driven Requirements Engineering. IEEE Transac-
tions on Software Engineering 24, 908-926.

Lee, A.J., Winslett, M., Perano, K.J., 2009. TrustBuilder2: A Re-
configurable Framework for Trust Negotiation, in: Proceedings of
the 3rd IFIP WG 11.11 International Conference on Trust Man-
agement, Springer. pp. 176-195.

Massacci, F., Mylopoulos, J., Zannone, N., 2010. Security Require-
ments Engineering: The SI* Modeling Language and the Secure
Tropos Methodology, in: Ras, Z.W., Tsay, L.S. (Eds.), Advances
in Intelligent Information Systems, Springer Berlin Heidelberg,
Berlin, Heidelberg. pp. 147-174.

McDonald, A.M., Cranor, L.F., 2008. The cost of reading privacy
policies. I/S Journal for Law and Policy for the Information So-
ciety. 2008, Privacy Year in Review 4.

McDonald, A.M., Reeder, R.W., Kelley, P.G., Cranor, L.F., 2009.
A Comparative Study of Online Privacy Policies and Formats.
Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 37-55.

Mellado, D., Blanco, C., Sdnchez, L.E., Ferndndez-Medina, E., 2010.
A systematic review of security requirements engineering. Com-
puter Standards & Interfaces 32, 153 — 165.

Milne, G.R., Culnan, M.J., 2004. Strategies for reducing online pri-
vacy risks: Why consumers read (or don’t read) online privacy
notices. Journal of Interactive Marketing 18, 15-29.

Mouratidis, H., Giorginil, P., 2007. Secure Tropos: A Security-
Oriented Extension of the Tropos Methodology. International
Journal of Software Engineering and Knowledge Engineering 17,
285-309.

Notario, N., Crespo, A., Martin, Y., del Alamo, J.M., Métayer, D.L.,
Antignac, T., Kung, A., Kroener, 1., Wright, D., 2015. PRI-
PARE: Integrating Privacy Best Practices into a Privacy Engi-
neering Methodology, in: International Workshop on Privacy En-
gineering Proceedings, pp. 151-158.

Paci, F., Fernandez-Gago, C., Moyano, F., 2013. Detecting Insider
Threats: A Trust-Aware Framework, in: Availability, Reliability
and Security (ARES), 2013 Eighth International Conference on,
pp. 121-130.

Paja, E., Dalpiaz, F., Giorgini, P., 2015. Modelling and Reasoning
about Security Requirements in Socio-Technical Systems. Data
and Knowledge Engineering 98, 123-143.

Rios, R., Fernandez-Gago, C., Lopez, J., 2016. Privacy-aware trust
negotiation, in: 12th International Workshop on Security and
Trust Management (STM), Springer, Heraklion, Crete, Greece.
pp. 98-105.

Squicciarini, A., Bertino, E., Ferrari, E., Paci, F., Thuraisingham,
B., 2007. PP-Trust-X: A System for Privacy Preserving Trust
Negotiations. ACM Trans. Inf. Syst. Secur. 10.

Stavropoulos, V., 2011. Secure Software Engineering Initiatives:
Listing (SEE) Initiatives across Europe and Abroad. Techni-
cal Report. European Network and Information Security Agency
(ENISA).

Sweeney, L., 2002. k-Anonymity: A Model for Protecting Privacy.
Int. Journal on Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 10, 557-570.

Vimercati, S.d.C.d., Foresti, S., 2011. Encyclopedia of Cryptography
and Security. Springer US, Boston, MA. chapter Quasi-Identifier.
pp. 1010-1011.

Winslett, M., Yu, T., Seamons, K.E., Hess, A., Jacobson, J., Jarvis,
R., Smith, B., Yu, L., 2002. Negotiating Trust on the Web. IEEE
Internet Computing 6, 30-37.

Yu, E., 1996. Modelling Strategic Relationships for Process Reengi-
neering. Ph.D. thesis. University of Toronto. Canada.

Appendix A

Monitoring the privacy exposure of actors in the sys-
tem when they have the ability to engage in multiple trust
negotiations is a convoluted issue. In Section [4.5] we pro-
pose three different approaches for dealing with this sit-

15

uation and here we present three basic scenarios to help
demonstrate the differences among them. These scenar-
ios differ in the number of trust relationships that may
be established between the actors of the system. As new
trust relationships appear it also increases the number of
resources being shared between actors and thus their pri-
vacy exposure.

In the first scenario there are only three trust negotia-
tion relationships, while in the second and third scenarios
there are four and five relationships, respectively. These
scenarios are depicted in Figure [[f]and [6] where the left-
hand side of the figures represent, in a very simplified way,
the trust negotiation relationships between the actors of
the system. The right-hand side of each figure indicates
the resources being offered by each actor together with
their granularity level (represented as integers). For ex-
ample, actor B in the first scenario is willing to offer two
resources r4 and r5 up to a Medium and Low granularity,
respectively. Actor A needs a low level of detail from these
two resources in order to trust B.

A B C D
@ offers rl:2 74 r6:3 r7:1
r2:1 51 r8:3
\ / 73:3
B: {r1:2} | A: {rd:1, | A: {r6:2} | A: {r7:1}
C: {r1:1, r5:1}
requested r3:2}
by D: {r1:1,
r2:1,
@ r3:1}
(a) Relationships (b) Resources
Figure 4: Scenario 1
A B C D
@ offers rl:2 rd:2 r6:3 r7:1
r2:1 5l r8:3
\ / 73:3
@ B: {r1:2} | A {rd:1, | A: {r6:2} | A: {r7:1}
C: {r1:1, r5:1} [D: {r6:1} [C: {r8:2}
requested r3:2}
by D: {rl:1,
r2:1,
@ r3:1}
(a) Relationships (b) Resources
Figure 5: Scenario 2
A B C D
@ offers rl:2 rd:2 r6:3 71
r2:1 751 r8:3
\ / r3:3
@ B: {r1:2} | Ar{rd:1, | A: {r6:2} | A: {r7:1}
C:{r1:1, r5:1} [D: {r6:1} | C: {r8:2}
requested r3:2} | D: {rd:2} D: {r7:1,
by D: {rl:1, r8: 3}
r2:1,
r3:1}

(a) Relationships (b) Resources

Figure 6: Scenario 3

The relationships in the first scenario are such that
the various actors are isolated from one another, except
for the relationship with actor A. The second scenario
introduces a new relationship between actors C and D,
which could be used to share information about actor A.

Table 4: Privacy Exposure Results
worst case ideal case realistic
A B C D B C D B C D
scenario 1 11 2 1 2 5 1 2 5
scenario 2 11 2 6 2 5 5 2 5 6
scenario 3 11 6 10 5 5 10 6 5 10

~1| | |

o|o| o 3|

| o o

-
=

This new relationship requires the exchange of additional
resources between actors C' and D, as shown in the table
in Figure |pl Finally, another relationship between D and
B is introduced in the third scenario, which also implies
the disclosure of information between them. In this case,
A releases informational assets to all other three actors,
which may gather each piece of information A shares with
them to better compromise his/her privacy.

The results of applying the three different approaches
to these scenarios are presented in Table[dl Note that the
results are obtained by applying the mechanism described
in Section [{:4] and are presented as integer values rather
than as labels for the sake of clarity.

As expected, the first approach results in the largest
privacy exposure in all three scenarios because if there is
an actor or group of actors receiving an informational asset
to a particular level of detail, this is accounted for by the
worst case approach. Interestingly, the privacy exposure
in the third scenario for the worst case and the realistic ap-
proaches is the same for all actors. The reason is that for
any actor sharing an informational asset, this asset reaches
all other actors since there are relationships between all of
them. In this case, both methods are equivalent because
any actor may know all the resources shared by other ac-
tors up to the maximum granularity level provided.

Moreover, the second approach always results in the
lowest privacy exposure. This is also an expected result
since each of the actors is considered to be independent of
each other, meaning that they are assumed not to share
the information they receive, which is desirable but cannot
be ensured. In Scenario 1, the results for the ideal case
and the realistic approaches coincide because the actors
are independent of each other anyway. However, this is
not the case in Scenario 2 since a new trust negotiation
relationship is introduced that enables actors C' and D to
share information about A.

Finally, note that as the number of interconnections
grow between actors, their privacy degrades (i.e., the pri-
vacy exposure is higher). This is not surprising since more
successful trust negotiations imply an increased number of
resources being shared between the actors involved in the
negotiation. In particular, the privacy exposure of D is
very low in the first scenario but since it becomes involved
in two additional negotiations in Scenario 3, the exposure
of this actor grows dramatically.

16

	Introduction
	Related Work
	The SI* Modelling Language
	Introduction to SI*
	Core Elements
	SI* Extensions

	Trust Negotiation Extension
	Overview
	Trust Negotiaton Relationship
	Privacy Policy Definition
	Privacy Exposure
	Privacy Assessment

	Model Formalisation
	Predicates
	Rules
	Trust Negotiation Rules
	Privacy Rules

	Evaluation
	Scenario Definition
	An Instantiation of the Model
	Detecting Policy Violations

	Discussion
	Conclusion

