R. Roman, J. Lopez, and P. Najera, “A Cross-layer Approach for Integrating Security Mechanisms in Sensor Networks Architectures”, Wireless
Communications and Mobile Computing, vol. 11, pp. 267-276, 2011.

http://doi.org/10.1002/wcm. 1006

NICS Lab. Publications: https://wuw.nics.uma.es/publications

A Cross-layer Approach for Integrating Security
Mechanisms in Sensor Networks Architectures

Rodrigo Roman,Javier Lopez, Pablo Najera
Computer Science Department, University of Malaga, Spain
{roman,jlm najera}@lcc.uma.es

May 7, 2010

Abstract

The wireless sensor networks (WSN) paradigm is especially vulnerable
against external and internal attacks. Therefore, it is necessary to develop
security mechanisms and protocols to protect them. These mechanisms
must become an integral part of the software architecture and network
stack of a sensor node. A question that remains is how to achieve this
integration. In this paper we check how both academic and industrial
solutions tackle this issue, and we present the concept of a transversal
layer, where all the different security mechanisms could be contained.
This way, all the elements of the architecture can interact with the security
mechanisms, and the security mechanisms can have a holistic point of view
of the whole architecture. We discuss the advantages of this approach,
and also present how the transversal layer concept was applied to a real
middleware architecture.

Keywords. Sensor Networks, Security, Cross-Layer, Middleware, Architec-
ture.

1 Introduction

A wireless sensor network (WSN) can be abstracted as the “skin” of a computer
system, an independent “sensory system” capable of obtaining and processing
physical information (e.g. temperature, soil mosture) through its “sensory cells”
(i.e. sensor nodes). With commercial applications ranging from precision agri-
culture [1] to healthcare [2], sensor networks are slowly leaving the laboratories
and reaching the real world. Nevertheless, the evolution of this paradigm is far
from over: there are still advances in this area in terms of complexity, hetero-
geneity and integration. The elements of a wireless sensor network, the sensor
nodes, can be able to interact with complex devices (i.e. actors) that take deci-
sions according to the data received and perform appropriate actions upon the
physical world [3]. Sensor nodes can also work in unconventional environments,

such as underwater [4], where their unique characteristics have a great influence
over the architecture and the protocols of the network. Finally, sensor nodes
can become an integral part of other complex systems, such as embedded peer
to peer systems (EP2P) [5], where nodes need to interact with other wireless
devices in an ad hoc fashion.

One of the challenges that needs to be closely addressed in these evolved
sensor networks is security. As sensor networks are specially vulnerable against
external and internal attacks, it is necessary to implement certain security mech-
anisms and protocols that will either minimize or prevent the malicious effects
caused by such attacks. These security mechanisms should be, in most cases,
adapted for every specific application, because the requirements of the applica-
tion and its context will influence over their nature. For example, due to the
limited bandwidth efficiency of the sea water medium [4], it is desirable to use
protocols that exchange as less bits as possible.

Aside from the development of security mechanisms, there is another impor-
tant security-related aspect that must be also taken into account: the integration
of those mechanisms inside a software architecture and network stack. The com-
ponents and different layers of a software architecture need of the mechanisms
as tools that will help to enforce the security requirements. However, a single
type of architecture may not fit the needs of every kind of application. For
example, cross-layer architectures seem to suit the specific needs of underwater
sensor networks (UWSN), while certain environments (e.g. home automation)
with heterogeneous devices can make use of the (non-strict) layered architecture
of ZigBee.

The purpose of this article is to analyze how the security mechanisms could
be integrated with the existing architecture paradigms (cross-layer and layered),
allowing the possibility of adapting or including new security mechanisms with-
out breaking the design. As all these mechanisms share the same goal, which
is providing security to other logical parts of the architecture, they could be
regarded as a single logical unit within the architecture. Thus, the creation
of a transversal layer for security that can be accessed by all the elements of
the architecture is considered. Besides, we will explain how the concept of a
transversal layer has been successfully applied to a middleware architecture.

The paper is organized as follows. Section 2 reviews the advantages and
disadvantages of the existing architecture paradigms (layered and cross-layer)
in sensor networks, and section 3 discusses the relationship between these ar-
chitectures and the security mechanisms. Section 4 introduces the concept of
a transversal layer for security, and explains how the different advantages of
both layered and cross-layer architectures are retained. Section 5 illustrates the
applicability of the transversal layer using the SMEPP middleware architecture
as an example. Finally, section 6 concludes the paper.

2 Wireless Sensor Networks Architectures

2.1 Layered and Cross-Layer Approaches

The architecture and protocols of any kind of sensor network are highly depen-
dant on the requirements of the application where it is deployed. For example, in
scenarios where the location of the nodes is significant, routing protocols may
route the packets using geographical information, while other scenarios (e.g.
fire detection) may require protocols that route the packets based on the data
obtained from the sensors. Therefore, any software architecture and network
stack designed for sensor networks should be flexible and extensible in order
to support different types of protocols in different contexts. Whether this kind
of architecture should be designed as a rigid layered system or as a completely
component-based system with cross-layer interactions is yet to be specified.

Traditionally, network design has followed a layered communication architec-
ture. In this architecture, communication tasks are separated into several layers,
with a clear definition of the functionality of each layer. In a layered commu-
nication stack, the interaction amongst layers occurs through well-defined stan-
dardized interfaces that connect only the neighbouring layers in the stack. By
using this approach, it can be possible to provide a high degree of modularity
and interoperability amongst heterogeneous networks.

The benefits of using a well-defined layered architecture are numerous. Due
to its modularity, designers can easily understand the behaviour of the overall
system. It also accelerates the development the design and implementation
phases by enabling parallelization of effort. Designers can focus their effort on a
particular subsystem with the assurance that the entire system will interoperate.
Moreover, individual modules can be upgraded without requiring of a complete
system redesign, increasing the longevity of the system. Widely used in wired
networks (e.g. the Internet TCP/IP model), this kind of architecture can be
also applied to wireless networks, including sensor networks.

However, is precisely in the field of wireless networks where this traditional
network stack point of view is being challenged. The unique problems and op-
portunities created by wireless links, the resource constraints inherent to sensor
nodes, and many other design challenges, are enabling the development of novel
cross-layer designs [7]. Cross-layer design enables different layers of the com-
munication stack to share state information or to coordinate their actions. For
example, supplying information on a node’s remaining battery energy to all of
the nodes’ communication layers.

The use of a cross-layer approach in a sensor network environment yields
many advantages. Nodes could be able to manage several performance aspects,
such as power management and error notification, that cut across traditional
layers. Also, nodes could have access to their current resources and processes
(e.g. wireless channel link properties), which contributes favorably to the au-
tonomy and self-configurability of the node (e.g. adapting its behaviour to the
local state of the transmission medium). Besides, the inherent constraints of
the nodes requires of fine-grained optimization techniques between layers.

There are some aspects that have to be taken into account when designing
cross-layer architectures. Cross-layer design opens the floodgate of information
flow across layers, raising concerns on multiple, sometimes subtle, interactions
amongst existing layers. This makes the architecture more difficult to develop
and maintain, as there may be some new dependencies that must be taken into
account. Also, the introduction of excessive and uncontrolled interactions can
break the design of the system, hindering its usefulness and longevity [6]. As
a result, cross-layer designers must consider the impact of their design with
a holistic view that includes the long-term development and innovation con-
siderations. The benefits of the different cross-layer design proposals and its
possible coexistence should be studied in more deep [7]. Still, as of today, there
have been both academic and standard network stacks that implement some
cross-layer optimizations in sensor networks.

2.2 Prototypes and Industrial Stacks

The use of cross-layer optimizations and architectures has been widely consid-
ered in sensor networks designs and prototypes developed in the academia. In
fact, in his seminal paper of 2002, Akyildiz considered the existence of transver-
sal management planes interacting with the layered architecture [8]. Later,
he even changed his initial point of view regarding sensor networks architec-
tures and considered that the best solution is to use a unified cross-layer mod-
ule [9]. Other architectural examples for wireless sensor networks include Tiny-
Cubus [10], The “Sensor Protocol” [11], SensorStack [12] and many others. Even
more, the “de-facto” standard O.S for sensor networks environments, TinyOS,
introduces cross-layer optimizations as a part of its core design [14].

The aspects of a network layer that should be included into a cross-layer
design for sensor networks are outlined by all these architectures. First, there
are some services that should be accessed by all the layers of the network:
power management, network discovery, localization, synchronization, and se-
curity. Second, the network architecture should follow a component-based ap-
proach, where the functionality that is used by two or more layers (e.g. symmet-
ric key algorithms) should not be replicated. Third, there should exist mecha-
nisms that allow one layer of the network to access the services of non-adjacent
layers, for optimization purposes (e.g. an application accessing directly to the
hardware services). Finally, it should be required to have certain mediators that
provide system information and internal information from other layers through
well-defined interfaces.

As for industrial standards, one of the suites of high level communication
protocols that have been standardized and applied to some sensor networks
deployments is the ZigBee stack [15]. Created in 2004 by the ZigBee Alliance,
the major purpose of the ZigBee stack is to enable broad-based deployment of
low cost, low power wireless networks that addresses the needs of remote sensing,
monitoring and control. In particular, the ZigBee stack is targeting the following
applications: Advanced Metering Infrastructure (AMI), Commercial Building
Automation (CBA), Home Automation (HA), Personal, Home and Hospital

Application Framework

ZigBee Device Object
(ZDO)

Agpplication Support Sublayer (APS) 2

]

APS Secunty APS Mazzage | Reflector | o

Security Managemant Biroker Managsment E
Service ?Bi
Provider | —— Network (NWK) Layer s
=

{ Secuity Message Routing Wetwork o
Ifanzzement Broker Manazement Manazement g

| MLDE-5AP |

Medinm Access Control (MAC) Layer

[epsap | JEEEES
o

Phiysical (PHY) Layer
| 24GHzRagio | 368915 MHz Radic |

Figure 1: Outline of the ZigBee stack architecture

Care (PHHC), Telecom Applications (TA), and Wireless Sensor Applications
(WSA). For wireless sensor networks, as of 2009 the ZigBee Alliance is still
defining the profile specification that will allow the creation of sensor networks
applications through ZigBee.

Figure 1 shows an overview of the ZigBee network stack, which operates over
the IEEE 802.15.4 standard. The network stack is organized into two distinct
layers: Network (NWK) layer, and Application (APL) layer. The Network layer
allows end-to-end communication and multi-hop capabilities. The Application
layer is partitioned into several subcomponents: the Application Support Sub-
layer, which combines the functionality of a traditional transport layer and of an
application layer, the ZigBee Device Object, in charge of storing design param-
eters and management commands, and the Application Framework, containing
the application profiles.

While the ZigBee network stack follows a layered approach, there are some
cross-layer interactions. For example, the ZDO Management Plane allows all
the ZigBee layers to access the design information and management commands
included inside the ZigBee Device Object. Besides from specific optimizations,
the ZigBee stack does not consider the existence of certain transversal services
that should be used by all layers, such as power management. Also, aside from
the management planes, the ZigBee stack follows a strict layered approach,
where the application layer cannot have access to the services provided by the
link layer.

3 Security and Integrability

3.1 Security Mechanisms for Sensor Networks

In any environment, either physical or logical, there exists the need of maintain-
ing someone or something safe, away from harm. This is the role of security.
On any computer-related environment, security can be considered as a non-
functional requirement that maintains the overall system usable and reliable,
protecting the information and information systems. In fact, in any kind of
sensor network, security is of paramount importance: the network must be ad-
equately protected against malicious threats that can affect its functionality.
Also, due to the role of sensor networks as “sensory systems” and “actuator
systems”, any disturbance in a sensor network may have consequences in the
real world.

However, achieving this goal is not an easy task, because sensor networks are
specially vulnerable against external and internal attacks due to their peculiar
characteristics. The devices of the network (i.e. sensor nodes) are highly con-
strained in terms of computational capabilities, memory, communication band-
width and battery power. Additionally, it is easy to physically access such
nodes: either they must be located near the physical source of the events, or
their mobility allows an attacker to easily locate and subvert them. Further-
more, any internal or external device can access to the information exchange
because the communication channel is public.

As a result, sensor networks have to face multiple threats that may easily
hinder its functionality and nullify the benefits of using its services: communica-
tion channel attacks, denial of service, node compromise, impersonation attacks,
protocol-specific attacks, etc. It is clear that there is the need of using security
mechanisms either to prevent the attacks from influencing over the functionality
of the network or to minimize the adverse effects of such attacks [16].

The communication channel can be adequately protected against external
attacks by using security primitives, although the security credentials (i.e. secret
keys) need to be distributed using key distribution protocols. Support proto-
cols, such as situation awareness mechanisms and intrusion detection systems,
can offer a basic level of protection to “core protocols” (routing, aggregation,
time synchronization). Note that these “core protocols” also can, and should,
implement protection mechanisms of their own. Besides, there are other specific
protocols, such as code distribution, that must be able to withstand specific at-
tacks. Finally, it is possible to include other security protocols, such as code
attestation (i.e. check whether the code of a node is valid and not tampered),
that may help to maintain the overall security of the network.

3.2 Integrating the Security Mechanisms

By means of the security mechanisms, it is possible to create and implement
secure services and protocols that fulfill essential security properties such as
confidentiality, integrity and authentication. For example, by using security

primitives such as block ciphers and message authentication codes, we can cre-
ate secure protocols that are able to protect the communication channel between
nodes or between peers. Also, as survivability is an important issue in sensor
networks, any situation awareness mechanism in charge of monitoring the be-
haviour of the nodes and their neighbourhoods will provide crucial information
for allowing self-configurability in presence of possible problems (e.g. nodes
“dying”, broken links).

The components and different layers of a software architecture need of these
security mechanisms as tools that will help to enforce the security requirements
of an application. Therefore, the security mechanisms themselves must become
an integral part of the software architecture. A question that remains is where
and how to integrate them inside the architecture. It is necessary to maintain the
logical coherence in the design of the architecture, while allowing the possibility
of either adapting or including certain security mechanisms in order to comply
with the requirements of the applications. Besides, due to the limited resources
available to most sensor nodes, there should exist certain optimizations such as
different services sharing the same primitive.

By including the security services as a well-defined layer within a layered
architecture, we can benefit from the advantages of this approach: modularity,
interoperability assurance, and localized design and upgrading. Still, there are
situations where the functionality of a layer would need to be replicated within
the architecture. For example, an end-to-end secure channel located at the ap-
plication layer [17] can use the same cryptographic mechanisms of a secure link
layer communication channel [18]. Besides, there are other situations where a
service need to access information contained in other layers in order to work
correctly. For example, in order to know the actual state of a node and its
neighbourhood, it is necessary to analyze variables such as actual battery lev-
els, packet signal strength, and packet headers. Moreover, a radio fingerprint
mechanism in the physical layer [19] can be used by other layers to authenticate
the source of a message and detect attacks such as replication attacks.

All these concerns have been considered by prototypes from the academia
and industrial standards, and most of them suggest some cross-layer optimiza-
tions for integrating the security mechanisms as part of an architecture. It was
already pointed out by Srivastava [7] that security related issues need to be
handled across the layers in a holistic manner. This point of view is shared
by most designs coming from the academia, such as the “sensor protocol” [11]
and SensorStack [12]. In particular, the “sensor protocol” considers that secu-
rity should be encapsulated in a single layer, not distributed amongst layers.
However, that architecture provides few discussions about this particular issue.

Regarding the ZigBee stack, the need to optimize the resource usage in the
implementation of the security mechanisms is acknowledged by the definition of
a specific component, the Security Service Provider. This component is shared
by the Network Layer and the Application Support Sublayer, and its main task
is to provide security mechanisms for data encryption. However, the archi-
tecture does not provide support for other security services, such as intrusion
detection and self-healing systems, that need a holistic point of view of the

Cross-Layer Transversal Sec. Layer Layered Architecture

E E 4 E Application Layer E
E X\ E E Transport Layer E
E D E E Network Layer E
E]:[E E Link Layer E
E E _ E Physical Layer E

Figure 2: Security as a transversal layer

whole architecture.

From the previous discussions, it would seem clear that in a sensor network
context the security mechanisms and services need to interact with the exist-
ing layers of an architecture in unconventional ways, by considering cross-layer
approaches. Nevertheless, as both cross-layer architectures and layered archi-
tectures are to be found in the real world, it is necessary to evaluate how the
security mechanisms could be satisfactorily integrated with any type of archi-
tecture without endangering the consistency of its design.

4 Security as a Transversal Layer

The major purpose of the security mechanisms is usually not to implement the
logic of the application, but to offer support for the creation of secure applica-
tions. We can see then the security mechanisms as tools, used either by other
elements of the architecture or by other security mechanisms. As they share the
same goal, they can be considered as a single logical unit inside the architec-
ture, thus we could group all the security mechanisms within a single layer. By
using this approach, we can have a better management of all the mechanisms,
delimiting their functionality and controlling their interdependencies. As for
the relationship between the mechanisms and the rest of the architecture, the
mechanisms should be able to access all the elements of the architecture in order
to obtain information, and the architecture itself should be able to access any
of the security services when needed.

Therefore, security should be considered as a transversal layer (cf. Figure 2),
that in both layered and cross-layer architectures will be able to provide infor-
mation and services to the other elements of the architecture. Security services
and primitives (e.g. protocols, algorithms) are located inside that transversal
layer, and they interact between them and between the other elements of the
architecture through well-defined interfaces. Besides, the transversal layer only

provides security-related services, invokes the services of other layers in order
to obtain information, and signals specific events to warn other layers about a
specific situation. Therefore, any layer cannot access the functionality of other
layers through the transversal layer in an indirect way.

From a technical point of view, the interfaces provided by the transversal
layer must follow these two principles: independence and extensibility. The spe-
cific implementation details of the algorithms and protocols should not affect
the definition of the interfaces, so the components that use the transversal layer
do not need to change their implementation whenever a existing primitive is
upgraded or changed. This can be achieved by defining a common interface for
services and primitives of the same type (e.g. symmetric cryptography primi-
tives), and also by using mechanisms such as the “factory” design pattern (in a
similar fashion to the Java Security API [13]). As similar primitives and services
will use the same type of interface, it is simple to add a new element whenever
it is needed.

Precisely, the specific security elements that are contained within the transver-
sal layer can be chosen according to the necessities of the applications and the
capabilities of the devices. For example, if a specific application employs of
digital signatures, the transversal layer can provide an interface for accessing
a signature service. Such service can be implemented by using lightweight al-
gorithms (e.g. signature algorithms based on Elliptic Curve Cryptography) if
the devices are constrained in terms of resources. More powerful devices can
implement more algorithms (e.g. identity-based signatures) inside the transver-
sal layer. The transversal layer should also provide the services and primitives
it contains whenever it is queried, so it is possible for two devices to negotiate
security elements that they have in common.

Note that the definition of wrappers that allow any component of the transver-
sal layer to access the functionality of elements located outside it is also im-
portant. Any change in the interface of the architecture will impact on the
wrapper, but not on the implementation of the security elements located inside
the transversal layer. In addition, if we do not define interfaces that access
functional parts of the elements of the architecture (such as sending messages
through a communication channel), then it will not be possible to bypass the
layered structure of an architecture through the transversal layer.

4.1 Benefits and Applicability of Transversal Layers

By using the transversal layer approach, it can be possible to retain most of
the benefits of a layered architecture. All the security mechanisms and services
are contained within the transversal layer, thus the modularity of the system
is preserved. Besides, the transversal layer should only be accessed through
well-defined interfaces, thus any component/layer of the system, located either
inside or outside the transversal layer, will know how to interoperate with them
in advance. In addition, since the transversal layer is isolated from the other
layers, and even the internal components of the transversal layer can only access
other components through their interfaces, it can be possible to either modify

of upgrade the internal design of the layer without interfering with the other
elements of the architecture. Note also that a layer cannot use the transversal
layer as a bridge to access the services of unconnected layers, thus there is no
risk of hidden dependencies.

The benefits of cross-layer architectures are also maintained by the transver-
sal layer. The services contained within the transversal layer can access infor-
mation published by the services of other layers, thus can have a holistic point
of view of the state of the device. For example, a situation awareness service,
in charge of monitoring the actual state of a node and its neighbourhood, can
retrieve node status information from other layers. The external layers can also
benefit from this transversal approach in many ways. First, since there is just
one instance of a security mechanism (e.g. a cryptographic primitive), there is
no need to replicate its functionality in order to implement different protection
mechanisms (e.g. link layer protection and end to end protection). Second, all
security mechanisms and services can be accessed by all the layers of the archi-
tecture. As a result, it can be possible to implement more effective protection
procedures. For example, if an intrusion detection system is included in the ar-
chitecture, both applications and communication protocols can use its outputs
to limit any interaction with rogue nodes.

Finally, the possible disadvantages that may exist whenever cross-layer rela-
tionships are included in an architecture are reduced when using the transversal
layer. The information flow between the transversal layer and other layers is
delimited by well-defined interfaces, thus interactions amongst existing layers
are no longer subtle. Any change inside the elements of the transversal layer
must adhere to the definition of the interfaces, thus the chances of breaking
the design of the whole architecture are slim. This level of isolation also limits
the possible dependencies that may appear between layers after a change takes
place.

Not only the transversal layer retains the benefits of both layered and cross-
layer architectures, but also it can be integrated within both types. In layered
communication architectures, the existence of a transversal layer containing the
security services will allow the modification of those services according to the
requirements of the applications (e.g. choose a different security primitive)
without causing collateral effects that may negatively affect the other layers.
In addition, it can be possible to add new security services derived from the
necessities of the applications and / or long-term academic research.

On the other hand, in cross-layer architectures, the security layer behaves
as another component of the architecture that can be accessed from any other
component, proving security-related services and information. By centralizing
all security services inside one single component, we can improve the overall
stability and maintainability of the architecture, and also we can provide a
better control over the possible interactions and dependencies that may arise.

10

Extensions I Service Model Support

| Streaming || | NW Browsing | SMEPP API II Languages / Tools ||

Service Management I” Group Management I” Overlay Network Mgmt. ||

Group

Extension M: Event M:
| II | || Security

SMEPP Common Services |

SMEPP Enabling Services (SMEPP distribution MW)

| Secure High Level Peer Communication (SHLPC) II

Cryptographic
Services

| Topology Management
Infrastructure
| Adaptation Layer Security

Figure 3: An Overview of the SMEPP functional structure

5 Implementing transversal layers: The SMEPP
Architecture

We have applied the concept of a transversal layer containing security mech-
anisms to a complex middleware architecture, developed under the European
project SMEPP (Secure Middleware for Embedded Peer-to-Peer systems, FP6-
IST-033563) [20]. The main purpose of this middleware is to allow the devel-
opment of secure applications for different types of embedded devices interact-
ing in a P2P fashion without any pre-existing infrastructures. This particular
paradigm is known as Embedded Peer-to-Peer (EP2P) system.

The general SMEPP Middleware architecture is shown in Figure 3. It is
divided into three functional layers. The top layer consists of the Domain-
specific Middleware services and the Service Model Support that provide the
actual API for application developers for using the SMEPP Middleware. The
second layer from the top is the Common Middleware Services that provides the
actual functionality of the Middleware defined by the service model. Finally,
the bottom layer is the distribution middleware that contains all the framework
implementations needed by the Middleware services for providing the required
functionalities. On sensor networks, the architecture is simplified to contain only
those components that are useful to obtaining and processing data in a local
environment, and it is known as SMEPPLight. This lightweight architecture
retains the components related to Groups, Events, Topology, and Security.

11

Regarding security, in both SMEPP and its lightweight implementation
SMEPPLight it is considered as a transversal layer that can be accessed by all
the services of the middleware. This point of view coincides with the approach
presented in section 4. The principal security components in this architecture
contained within the transversal layer are the following:

e Group Security is concerned with the security related aspects of group
establishment and maintenance. In SMEPP, the members of the network
can join certain groups, and they can access to the services of other peers
only if they belong to the same group. This component is responsible
for both the authentication of peers which want to join these groups and
the secure communication amongst group members. As this component is
isolated from the actual component that manages the groups, it is possible
to implement different levels of security (e.g. joining a group using either
symmetric keys or public/private key pairs) without modifying the entire
architecture, and different groups can have a different level of protection
according to their own security requirements. Besides,this component does
not send any information through the network, thus there is no hidden
interdependencies with the lower layers.

o Cryptographic Services provide common functionality which is required by
other components (e.g. Secure Topology Management, Group Security).
This includes cryptographic primitives (encryption/decryption, digital sig-
natures, Message Authentication Codes, unkeyed hash functions) as well
as supporting functions (random number generation, key storage, certifi-
cate management). As there is one single instance of every primitive,
located within this component, there is no need to replicate their func-
tionality over all the architecture. Besides, since the services offered by
this component are provided through well-defined interfaces, it is a simple
task to replace the primitives located within the component.

e Infrastructure Security encompasses device-specific support for security
functionality which facilitates the implementation of the security-related
components. An important example are secure instruction sets (instruc-
tion set extensions for cryptography), which speed up cryptographic pro-
cessing. These features can be used to realize the Cryptographic Services
more efficiently, which in turn reduces the overhead incurred in all security-
related components. This component needs to be rewritten for every spe-
cific device where the middleware is implemented, but any changes will
not affect the other components of the architecture.

As an example of the relationship between this security layer and other ser-
vices, we can mention the Group Security component. Its services are used by
the SMEPP Common Services layer (Group Management component, authen-
ticates a certain peer) and by the SMEPP Distribution MW layer (Secure High
Level Peer Communication component, protects the messages of a group). Re-
garding the interaction between components inside the same security layer, the

12

Cryptographic Services component will use the cryptography extensions located
in the Infrastructure Security component if available. If the design is changed
and new cryptographic extensions are available, there is no need to change the
whole architecture: the Cryptographic Services component will simply use the
new extensions.

5.1 Implementation and Prototypes

The SMEPP middleware has been successfully implemented and tested by the
SMEPP consortium in both high-end devices (PCs), PDA-like devices, and
sensor devices. For high-end devices we have used Java SE technology, while
for PDA-like devices we have used Java ME technology with the Connected
Device Configuration (CDC) framework. On sensor networks, we have used
nesC over TinyOS, and the memory footprint of the SMEPPLight middleware
(56KB RAM, 2944B ROM) is good enough to implement secure applications
for MICAz-class nodes (128KB RAM, 4-8KB ROM).

Both the Java implementation (through the UM-RTCOM component model [21])
and the nesC implementation use component-oriented programming, thus the
interfaces of the transversal layer can be appropriately defined. The inter-
faces of the different primitives and protocols of the transversal layer are de-
fined independently of their specific implementations, allowing extensibility and
reusability. For example, all the different security levels (no security, authenti-
cation through shared keys, authentication through public key cryptography) of
the Group Security component are implemented using different protocols (the
ISO/IEC 9798-2 standard [22] and a modified Needham-Schroeder-Lowe proto-
col [23]), but are provided through a single negotiationStep () method. This
way, in order to join a group, the Group Management component can choose a
certain security level without changing its implementation logic.

The mechanisms that are located inside the transversal layer are also adapted
to the capabilities of the different devices. For example, the SMEPP middle-
ware includes all the different security levels and primitives implemented, while
the SMEPPLight version of the middleware only support group authentication
through shared keys and support for public key cryptography can be excluded.
Note that if a specific application does not need to use a security level, such level
can be deleted at design time, thus reducing the size of the overall middleware.

The consortium have also created various prototypes to test the viability of
the SMEPP middleware as a framework for the development of secure EP2P
applications. Those prototypes are digital home services with mobile devices
and nuclear power plant monitoring [24]. Our digital home prototype is focused
on elderly care, where either the user or the system itself can raise an alarm
when an exceptional situation arises. Using the group capabilities of SMEPP, it
is possible to discover an user (e.g. a member of the family) that can accept the
alarm. Once a communication channel is established, both users can securely
exchange text messages, images, and/or video streams.

As for nuclear power plant monitoring, we concentrate on Dosimetric Con-
trol and Environmental Radiological Control. A network of operators wearing

13

SMEPP-enabled dosimeters can provide real-time information on the radiation
levels of the power plant, and the EP2P capabilities of the network allows an
efficient response if any operator gets exposed to harmful levels of radiation.
Besides, in case of an emergency, more devices can be scattered to get an accu-
rate information on the state of the power plant. All the interactions between
the devices are protected by using the security capabilities of the SMEPP mid-
dleware.

6 Conclusions

The integration of security mechanisms and protocols inside the software archi-
tecture and network stack of a sensor network is not a trivial issue. In this arti-
cle, we have presented the concept of a transversal layer, where all the different
security mechanisms are contained. This way, all the elements of an architec-
ture can interact with the security mechanisms, and the security mechanisms
can have a holistic point of view of the whole architecture. In addition, this
concept of a transversal layer has been successfully implemented and tested in
a middleware architecture developed under the European project SMEPP [20].

The transversal layer retains the benefits of layered architectures (modu-
larity, interoperability, design longevity), while the advantages of cross-layer
architectures (optimization, tunable design) are maintained and its disadvan-
tages (hidden dependencies, poor design) are adequately controlled. Note that
the transversal layer approach has all these benefits because the major purpose
of the security mechanisms is to provide services to the different elements of
the architecture, and they only access other elements either to obtain informa-
tion regarding the state of the device or to signal an event. Future research
includes analyzing how this transversal layer concept could help on optimizing
the provisioning of security when using specific sensor network protocols such
as 6lowpan [25].

A Acknowledgements

This work has been partially supported by the European Union through the
SMEPP (EU-FP6-IST 0333563) project and by the Spanish Ministry of Science
and Innovation through the ARES (CSD2007-00004) and SPRINT (TIN2009-
09237) projects. The latter is cofinanced by FEDER (European Regional De-
velopment Fund).

References

[1] Crossbow Technology, Inc. eKo Pro Precision Agriculture.
http://www.xbow.com/eko/. Accessed February 20th, 2009.

14

2]

[3]

[12]

[13]

Cadi Scientific Pte Ltd. CADI SmartSense™.
http://www.cadi.com.sg. Accessed February 20th, 2009.

Melodia T, Pompili D, Gungor VC, Akyildiz IF. Communication and Co-
ordination in Wireless Sensor and Actor Networks. IEEE Transactions on
Mobile Computing 6(10) (2007) 1116-1129.

Lanbo L, Shengli Z, Jun-Hong C. Prospects and problems of wireless com-
munication for underwater sensor networks, Wireless Communications and
Mobile Computing 8(8) (2008) 977-994.

Brogi A, Popescu R, Gutierrez F, Lopez P, Pimentel E. A Service-Oriented
Model for Embedded Peer-to-Peer Systems, Electronic Notes in Theoretical
Computer Science 194(4) (2008) 5-22.

Kawadia V, Kumar PR. A Cautionary Perspective on Cross-layer Design.
IEEE Wireless Communications 12(1) (2005) 3-11.

Srivastava V, Motani M. Cross-Layer Design: A Survey and the Road
Ahead, IEEE Communications Magazine 43(12) (2005) 112-119.

Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor
networks: a survey, Computer Networks: The International Journal of
Computer and Telecommunications Networking 38(4) (2002) 393-422.

Akyildiz IF, Vuran MC, Akan OB. A Cross-Layer Protocol for Wireless
Sensor Networks, Proceedings of the 40th Annual Conference on Informa-
tion Sciences and Systems (2006) 1102-1107.

Marron PJ, Minder D, Lachenmann A, Rothermel K. TinyCubus: An
Adaptive Cross-Layer Framework for Sensor Networks, IT Information
Technology journal 47(2) (2005) 87-97.

Culler D, Dutta P, Tien Ee C, Fonseca R, Hui J, Levis P, Polastre J, Shenker
S, Stoica I, Tolle G, Zhao G. Towards a Sensor Network Architecture:
Lowering the Waistline, Proceedings of the 10th Workshop on Hot Topics
in Operating Systems - HotOS X (2005) 139-144.

Kumar R. Adaptable Protocol Stack Architecture for Future Sensor Net-
works, PhD Thesis, Georgia Institute of Technology (2006).

Java Cryptography Architecture (JCA) Reference Guide. http:
//java.sun.com/javase/6/docs/technotes/guides/security/
crypto/CryptoSpec.html. Accessed February 20th, 2009.

Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, Gay
D, Hill J, Welsh M, Brewer E, Culler D. TinyOS: An Operating System for
Sensor Networks, in: W. Weber, J. Rabaey and E. Aarts (Eds.), Ambient
Intelligence, Springer Berlin Heidelberg, 2005, pp. 115-148.

15

[15]

[16]

[18]

ZigBee Alliance. ZigBee Specification.
http://wuw.zigbee.org/. Accessed February 20th, 2009.

Walters JP, Liang Z, Shi W, Chaudhary V. Wireless Sensor Network Se-
curity: A Survey, in: Y. Xiao (Ed.), Security in Distributed, Grid, and
Pervasive Computing, Auerbach Publications, CRC Press, 2006, pp. 367-
410.

Chung A, Roedig U, DHB-KEY: An Efficient Key Distribution Scheme
for Wireless Sensor Networks, Proceedings of the 4th IEEE International
Workshop on Wireless and Sensor Networks Security - WSNS2008 (2008)
840-846.

Luk M, Mezzour G, Perrig A, Gligor V. MiniSec: a secure sensor network
communication architecture, Proceedings of the 6th International Confer-
ence on Information Processing in Sensor Networks - IPSN’07 (2007) 479-
488.

Bonne Rasmussen K, Capkun S. Implications of radio fingerprinting on the
security of sensor networks, Proceedings of the 3rd International Conference
on Security and Privacy in Communications Networks - SecureComm’07
(2007) 331-340.

SMEPP Consortium. Secure Middleware for Embedded Peer-to-Peer Sys-
tems, FP6-IST-033563.
http://www.smepp.org/. Accessed February 20th, 2009.

Diaz M, Garrido D, Llopis L, Rus F, Troya JM. UM-RTCOM: An analyz-
able component model for real-time distributed systems, Journal of Systems
and Software 81(5) (2008) 709-726.

International Organization for Standardization, ISO/TEC 9798-2:2008
(Mechanisms using symmetric encipherment algorithms), 2008.

Lowe G. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR, Proceedings of the 2nd Intern. Conf. Tools and Algorithms for
the Construction and Analysis of Systems - TACAS (1996), 147-166.

Crossbow Solutions Blog. RadMote - Mobile Framework for Radiation
Monitoring.
http://blog.xbow.com/xblog/2007/12/radmote---mobil.html.
Accessed February 20th, 2009.

Kushalnagar N, Montenegro G, Schumacher C. IPv6 over Low-Power Wire-
less Personal Area Networks (6LoWPANSs), RFC 4919, August 2007.

16

