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Abstract

In a wireless sensor network environment, a sensor node is extremely constrained in terms
of hardware due to factors such as maximizing lifetime and minimizing physical size and overall
cost. Nevertheless, these nodes must be able to run cryptographic operations based on primitives
such as hash functions, symmetric encryption and public key cryptography in order to allow the
creation of secure services. Our objective in this paper is to survey how the existing research-based
and commercial-based sensor nodes are suitable for this purpose, analyzing how the hardware can
influence the provision of the primitives and how software implementations tackles the task of
implementing instances of those primitives. As a result, it will be possible to evaluate the influence

of provision of security in the protocols and applications/scenarios where sensors can be used.

Keywords - Sensor Networks; Hardware; Cryptography.

1 Introduction

One of the biggest challenges in the field of wireless sensor networks [1] is to provide the adequate
security foundations for protocols and services. For this purpose, it is necessary that the nodes run
cryptographic operations based on primitives such as Symmetric Key Encryption (SKE), Hash func-
tions, and Public Key Cryptography (PKC). Without these primitives, it would not be possible to
provide essential security services such as confidentiality of the communication channel, authentica-
tion of the peers involved in an information exchange, and integrity of the messages, among others.

Although the cryptographic primitives are usually complex, in terms of computational overhead
and memory usage, the hardware resources available in the devices should be able to minimize their
impact on the execution time of the secured services. However, the computing capabilities of a sensor
node are very limited: a typical node has a 8Mhz microcontroller with less than 128kB of instruction
memory and approximately 10kB of RAM memory. Therefore, it would be necessary to analyze how
the existing primitives could perform over these highly-constrained nodes.

In order to explore the suitability of every primitive, that is, the suitability of their building blocks
and internal operations, it is necessary to review the specific platforms of sensor nodes and their

hardware components. With this knowledge, it cpn be possible to deduce which are the primitives
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Figure 1: Overview of the Architecture of WSN

that could be more optimal for securing the network. Nevertheless, such primitives can be implemented
in hardware or in software. It would be interesting to know whether a software implementation of a
primitive is enough or not. Therefore, it is also important to examine the existent hardware and
software implementations, being research work or available products, of the primitives. Achieving
these goals is the purpose of this work.

The rest of this paper is organized as follows: first, an overview of the sensor network technology
is presented, highlighting its vulnerabilities and the required primitives and services needed to assure
the correct behavior of the network (section 2). Then, a description of the principal cryptographic
primitives is introduced, alongside with their characteristics and modes of operation (section 3). Next,
the principal elements of a sensor node, the microcontroller and the transceiver, are discussed, and the
suitability of the primitives in these constrained hardware platforms is studied (section 4). Finally, both
the hardware and software implementations of the primitives are shown (sections 5 and 6, respectively),

comparing and analyzing their results. The conclusions of these analyses are presented in the last
section (section 7).

2 Sensor networks and Security Requirements

2.1 Sensor Networks Overview

A wireless sensor network [1] is, roughly speaking, a group of highly-constrained hardware platforms
called sensor nodes that collaborate towards a set of common goals. More specifically, those goals
are monitoring (continuously monitor certain features of their surroundings), alerting (check whether
certain physical circumstances are occurring, triggering an alarm), and provisioning of information
“on-demand” (answer to a certain query regarding the properties of the environment or the network
itself). Most of the functionality of a sensor network is data-driven, although it is also possible to use
it as a distributed computing platform under specific circumstances.

All the functionality of the sensor network is provided thanks to the individual capabilities of the
sensor nodes. A single sensor node has built-in sensors, limited computational capabilities, and com-

municates through a wireless channel. Therefore, they are able to get the physical information of their



surroundings, process that raw information, and communicate with other nodes in its neighborhood.
Nodes are also small in size, and can unobtrusively provide the physical information of any entity.
Moreover, nodes are battery-powered, thus they can act independently and operate autonomously if
required.

All the data created by the whole network must be accessed by a user, and this is where the base
station operates. The base station is a more powerful and capable device that serves as an interface
between the sensor nodes and the user of the network. Using a real-life metaphor, a sensor node can
be abstracted as the “sensing cells” of a living system and the base station as the “brain” of such
system, the ultimate destination of all signals generated by the cells. There is a difference between the
metaphor and reality, though: It is possible to have more than one base station, or even use a mobile
base station.

The “living system” metaphor can be further extended if the internal architecture of the network,
or how the nodes group themselves to achieve their goals, is taken into account. In hierarchical
architectures, the network is divided into clusters or groups of nodes, where organizational decisions
are made by a single entity called “cluster head”. Such nodes can behave as the “spinal cord” of
the system. On the other hand, it is also possible to combine the previous architecture with a flat
architecture, where all the nodes contribute in the decision-making process. As a result, the system
can be more robust against any internal failure of its elements. A representation of the structure of a

sensor network as a “living system” can be seen in Figure 1.

2.2 Security Problems

Among all the open problems that sensor networks as a paradigm has to face, security is one of the most
important [2]. The sensor nodes, the environment, or the communication channel can be manipulated
by any malicious adversary for its own benefit. The first cause of this problem is the hardware
constraints inherent to the nodes: due to their small size, their energy consumption requirements, and
their limited computational capabilities, it is very difficult to incorporate the mechanisms used as a
foundation for secure protocols. The second cause is the public nature of both the wireless channel
and the sensor nodes: any device can listen to the communication flow, and the nodes can be accessed
and tampered by any external entities. Finally, the third cause is the distributed nature of the sensor
network: all protocols have to cooperate for pursuing a common goal, and any internal or external
problem may hinder the provision of the network services.

Since sensor networks are very vulnerable against attacks, it is necessary to have certain mechanisms
that can protect the network before, during, and after any kind of attack. One of the most important
tools for ensuring the security of the network and its services are the security primitives. As mentioned
in the introduction, we will consider that those primitives are Symmetric Key Encryption (SKE),
Public Key Cryptography (PKC), and Hash functions. Hash and SKE primitives are the building
blocks to offer a basic protection of the information flow, assuring the confidentiality and integrity
of the channel. Moreover, PKC allow the authentication of the peers involved in any information
exchange, thus protecting from the participation of external entities and eliminating the problem of a
malicious insider trying to use more than one identity (sybil attack [3]).

These primitives are not sufficient by themselves for guaranteeing the overall security of the whole
network, since any malicious insider located inside the network can disrupt its behavior regardless

of the protection provided by those primitives. Nevertheless, they are essential for providing basic



security to the core protocols of the network, that is to say, the minimal set of protocols required to
provide services, such as routing, data aggregation and time synchronization. These core protocols
provide packet transmission from one node to another node, grouping a set of sensor readings into one
single piece of data, and synchronizing the clocks of the network, respectively.

Moreover, it is possible to create better network services based on the primitives. For example, if
the authenticity of a code that is being uploaded to the node using the wireless channel can be assured,
it will be possible to update the behavior of the node or to execute a mobile agent. Also, in most
services, sensor nodes have to exchange certain information in order to obtain a global perspective
of a situation from local information. Authenticating the source of such information and assuring its
integrity can lead to the creation of better and more efficient trust management algorithms, intrusion
detection systems, location procedures, and so on.

A final note regarding symmetric security primitives is the need of having a key management system
(KMS) for constructing a secure key infrastructure. In most cases, it is not possible to know beforehand
where the nodes are going to be located inside the network, but a single sensor node needs to know
the keys it shares with its neighbors in order to open a secure channel. This is a well-researched topic,

with many types of protocols that try offer the most adequate properties for a certain context [4].

3 Primitives Analysis and Requirements

Each of the aforementioned primitives, such as SKE, provides a different functionality and has different
requirements in terms of processing power, word size, etc. Therefore, it is important to review the
functionality of the primitives in order to analyze their theoretical suitability to the existent sensor node
hardware. Although there are many algorithms that implements the requirements of the primitives,
only a few of them can fit into the constrained environment of a sensor node (check [5] for a deeper
review on the subject and the other algorithms). Is in these algorithms where this section will focus

on.

3.1 Symmetric Key Encryption Primitives

There are basically two types of SKE primitives: block ciphers and stream ciphers. Block ciphers
operates on fixed-length groups of bits, termed blocks, with an unvarying transformation. Most block
ciphers combine multiple rounds of repeated operations, where the key applied in every round is
obtained from a transformation of the original key using a key schedule. In all block ciphers, it is
necessary to use a mode of operation, such as Counter (CTR), Cipher Block Chaining (CBC), and
Counter with MAC (CCM) for encrypting messages longer than the block size. On the other hand,
a stream cipher operates on individual digits one at a time, and the transformation varies during the
encryption. Note that the distinction between the two types is not always clear-cut: a block cipher,
when used in certain modes of operation like CTR, acts effectively as a stream cipher.

One of the simplest and fastest block cipher algorithms is Skipjack [6]. Skipjack is a 64-bit block
cipher with an 80-bit key, that encrypts 4-word data blocks (16 bits each block) by alternating between
two stepping rules, named A and B. Each rule can be described as a linear feedback shift register with
additional non linear keyed G permutation. Its key schedule is also straightforward: just cyclically
repeating the key enough times to fill the key schedule buffer. A downside of this algorithm is the
small key length.



Another simple algorithm is RC5 [7], which is a block cipher with variable parameters: block size
(64-bit suggested), key size (128-bit suggested) and number of rounds (20 rounds suggested). The
encryption routine consists of three primitive operations over two b/2-bit registers (e.g. if b = 64-bit,
register size = 32): integer addition, bitwise XOR, and variable rotation. Its key schedule is a bit more
complex, though. Based on RC5, RC6 [8] is another block cipher that has two main new features with
respect to RC5: the inclusion of integer multiplication and the use of four b/4-bit working registers
instead of two b/2-bit registers (where b is suggested as 128).

Other complex block ciphers are AES [9], which is based on the Rijndael algorithm [10], and Twofish
[11]. AES uses a fixed block size of 128 bits and a key size of 128, 192 or 256 bits. AES operates on
a 4 x 4 array of bytes, termed the state. For encryption, each round of AES (except the last round)
consists of four stages (ignoring the key schedule): AddRoundKey, where the subkey is combined with
the state using the XOR operation, SubBytes, where each byte in the state is replaced with its entry
in a fixed 8-bit lookup table, ShiftRows, where bytes in each row of the state are shifted cyclically to
the left, and MixColumns, where each column of the state is multiplied with a fixed polynomial ¢(z).
Note that most of AES calculations are done in a special finite field.

Twofish is, like AES, a 128-bit block cipher with key sizes up to 256 bits. Twofish’s distinctive
features are the use of four different, bijective, key-dependent 8-by-8-bit S-boxes, and a relatively
complex key schedule. Other building blocks are a 32-bit pseudo-Hadamard transform (PHT(a,b) =
a, 3, where a = a + b mod 232 and 3 = a + 2b mod 23?), and a single 4-by-4 maximum distance
separable (MDS) matrix over GF(2%).

Regarding stream ciphers, RC4 [12], a XOR-based stream cipher, is notorious for its simplicity.
RC4 generates a pseudorandom stream of bits which, for encryption, is combined with the plaintext
using XOR. It is extremely simple: its building blocks are bitwise ANDs, additions and swappings.
Unlike the block size of other cryptographic algorithms, RC4 uses a 8-bit block size, and it does not
require many memory resources. Note that there is an ongoing process as of 2007 (eSTREAM, the
ECRYPT Stream Cipher Project [13]) that is aiming to identify and standardize new stream ciphers

in hardware and software platforms that might become suitable for widespread adoption.

3.2 Hash Function Primitives

Usually, cryptographic hash functions process the input text in a-bit blocks to generate a (3-bit hash
value. Instances of cryptographic hash functions are the SHA-1 algorithm, with o = 512 and 8 = 160,
the SHA-2 algorithm with digest length of 256 (SHA-256), with @ = 512 and 8 = 256, and the
RIPEMD-160 algorithm, with @« = 512 and 8 = 160. Hash functions are usually used to build
other cryptographic primitives like Message Authentication Codes (MAC), which can protect both
a message’s integrity as well as its authenticity. Note that SKE primitives can also be used for
constructing these MACs using the CBC mode of operation, in a process called CBC-MAC.

SHA-1 [14] is an extended, albeit slightly flawed, hash algorithm. It uses the following operations:
XOR, AND, OR, NOT, additions, and rotations. Since the complexity required for finding a collision
is 263 [15], applications designers should use stronger hash functions from the same family such as
SHA-256. On the other hand, RIPEMD-160 [16] is a hash algorithm with no known flaws that uses
operations such as rotations, permutations, shifts, and others. Both SHA-1 and RIPEMD-160 use a
word size of 32 bits for their internal operations. It is also important to note that, as of 2007, there is

a research effort for creating a new hash function standard [17], which could be resilient against the



known SHA attacks.

3.3 Public Key Cryptography Primitives

The most famous asymmetric algorithm is RSA [18], which was the first algorithm known to be suitable
for signing as well as encrypting, and it is being widely used on many applications such as electronic
commerce. Nonetheless, its operational requirements are known to be very expensive for resource-
constrained microprocessors. As a result, in the context of sensor networks, it is necessary to use new
algorithms based on more optimal approaches, such as Elliptic Curve Cryptography.

Elliptic Curve Cryptography (ECC) [19] is based on the algebraic structure of elliptic curves (i.e.
a plane curve defined by an equation of the form y?> = 2% + ax + b) over finite fields F, (of odd
characteristic) or Fom (of characteristic two). The problem of finding a solution to an equation a® = ¢
given a and c is known as the discrete logarithm problem, and it is the base of the security of these
primitives. ECC includes many different types of primitives, such as ECDSA for signatures and ECDH
for key agreement.

The main primitive operation in any ECC-based algorithm is the scalar point multiplication: A
ECDSA signature is primarily one point multiplication, while a verification is mainly two point mul-
tiplications. At the same time, a point multiplication is achieved by repeated point addition and
doubling, which requires an integer inversion calculated over affine coordinates. These operations are
quite expensive in computational terms, although there are some known optimizations such as Shamir’s
trick for reducing the verification time and the use of projective coordinates to avoid the expensive
inversion operations. Still, these point multiplications are simpler that the main primitive operation
of RSA, exponentiations.

There are other approaches that can be useful for sensor nodes, such as NtruEncrypt [20], Ra-
bin’s scheme [21], and M Q-schemes [22]. NtruEncrypt and its associated signature scheme NtruSign
are relatively new asymmetric crypto algorithms based on arithmetics in a polynomial ring R =
Z(x)/((xN —1),q). Their strength comes from the hardness of the Shortest Vector Problem (SVP)
and the Closest Vector Problem (CVP) in lattices of high dimensions. Both mainly use as primitive
operations simple polynomial multiplications for encryption and signing, thus they claim to be faster
than other asymmetric encryption schemes. However, their security have not been as deeply analyzed
as other asymmetric primitives.

On the other hand, Rabin’s scheme is an old algorithm based on the factorization problem of large
numbers, thus its security is similar to RSA. The main feature of this algorithm is its speed, though:
the encryption operation consists on a simple squaring operation. Aside from the decryption speed, it
has a peculiar disadvantage: each output of the Rabin function generates three false results in addition
to the correct one. Therefore, extra complexity is required to identify which of the four is the true
plaintext.

Finally, the multivariate public-key cryptosystems (or M Q-schemes) are based on the hard problem
of computing w = V=1(2) = (w1, ...,w,) € K" given a quadratic polynomial map V = (71, ..., Ym) :
K™ — K™. In particular, the security of the variant known as the enTTS(20,28) algorithm, which
belongs to the STS-UOV family of M Q-signatures, is comparable to RSA-1024, using 160-bit hashes
and 224-bit signatures. The weakness of this algorithm is the length of the keys: 8680 bytes for the
public key and 879 bytes for the private key.
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4 Sensor Hardware

A sensor node is made up of four basic components: sensing unit, processor unit, transceiver, and power
unit [1], as seen in Figure 2. The sensing unit consists of an array of sensors that can measure the
physical characteristics of its environment, like temperature, light, vibration, and others. The process-
ing unit is, in most cases, a microcontroller, which can be considered as a highly constrained computer
that contains the memory and interfaces required to create simple applications. The transceiver is
able to send and receive messages through a wireless channel. Finally, the power unit provides the
energy required by all components, and such energy may come from either a battery or from renewable
sources. Note that there can be also other components depending on the needs of the application, like
external data storage (e.g. flash memory), location devices (e.g. GPS chips), or cryptographic chips.
We will focus our study on the processing unit and the transceiver because they are the most
important parts of the node from the point of view of implementing cryptographic primitives. The
computational power and other resources located in the microcontroller will influence the capacity of
the node to calculate the basic operations of a primitive, whereas the data throughput capabilities of
the transceiver will influence over the capacity of negotiating secret keys and the overhead of protecting
the packets. Regarding hardware assistance for executing cryptographic operations, at present there
are no sensor nodes that provide this kind of service to the application developer, although some

transceivers do offer symmetric primitives support in their hardware.

4.1 Microcontroller Devices

Microcontrollers are specially suitable for the wireless sensor network environment, due to their cost-
effectiveness: a microcontroller used in a sensor node has enough computational capabilities and
memory for executing simple tasks while consuming as less energy as possible. The selection of a
microcontroller depends on what services has to provide to the node in terms of energy consumption,
program and data memory, storage, speed, and external 10 ports.

Note that a single manufacturer provides a whole array of microcontrollers to the market, but in
most cases only one or two chips from the same manufacturer are used by sensor node companies (e.g.
Atmel and the ATmegal28L). As a side effect, nodes from different companies can share the same
microcontroller (e.g. the BTNode and the Micaz), even if their overall architecture is completely dif-

ferent. Therefore, the impact of these nodes in the protocols and services that have to be implemented



inside it, such as cryptographic algorithms, will be similar.

It is possible to classify the microcontrollers used in sensor nodes by their overall capabilities. Some
of them are extremely constrained, and even unable to support the “de-facto” standard operative
system for sensor nodes, TinyOS. These devices will be called “Weak”. An example of this type of
device is the PIC12F675, which was used by the uPart node [30]. On the other side of the spectrum,
there are microcontrollers that are as powerful as the microprocessors used in PDAs, and can host
complex operative systems or Java-based virtual machines. These devices will be named “Heavy-
Duty”. Examples of these devices are the PXA271 and the ARM920T, which are used in the iMote2
[23] and the SunSPOT ([31], respectively.

Finally, the devices that are resource-constrained but powerful enough to hold a complex application
will be known as “Normal”. This is the most common type of device for sensor nodes, and there are
many microcontrollers that fall into this category. One of them is the ATmegal28L, used in the Micaz
[23], Mica2 [23], BTNode [24], and MeshBean [25]. Another example is the MSP430F1611, which is
integrated in the Tmote Sky [26], telosb [23], EyesIFXv2.1 [27], and Tinynode 584 [28]. Other devices
are the MSP430F14x, which is used by the ESB nodes like ScatterNode [29], and the PIC18F6720,
used as the core of the zPart and pPart nodes [30].

’ H Weak \ Normal \ Heavy-Duty ‘
Model PIC12F675PIC18F6720MSP430F14xMSP430F16xATmegal281) PXA271 |ARM920T
Frequency 4Mhz 20Mhz 4Mhz 8Mhz 8Mhz  [13(416)Mhz 180Mhz
Word size 8bit 8bit 16bit 16bit 8bit 32bit 32bit
RAM memory|| 64B 4kB 2kB 10kB 4kB 256kB 512kB
Inst. memory|| 1.4kB 128kB 60kB 48kB 128kB 32MB 4MB
Power (awake)| 2.5mA 2.2mA 1.5mA 2mA 8mA 31-44mA |40-100mA|
Power (slept) 1nA 1pA 1.6pA 1.1pA 15uA 390pA 40pA

Table 1: Microcontrollers used in the sensor network market.

A summary of the different hardware microcontrollers and their capabilities (such as frequency,
word size, RAM memory, Instruction memory, and so on) is shown in table 4.1. An important point
about these microcontrollers is that there is no hardware support for any kind of primitive, although
the PXA271 does supply the full MMX instruction set and the integer functions from SSE, and both
could be used to optimize some implementations (cf. section 5.1).

It is clear that the “Weak” type of nodes are unable, at present, to execute any block cipher
algorithm such as AES, RC5, Skipjack or ECC, because although it has enough memory size to hold
a private key, there is no room for the primitives required to compute the necessary calculations
(e.g. the code for ECC in a MSP430 is approximately 18.8KB [32], while the code required for using
block ciphers is approximately 7TKB) [33]. The same problem, lack of memory space, is shared by
hash functions (e.g. the code of SHA1 in a MSP430 is approximately 2KB [34]) and stream ciphers
(RCA4 requires an internal state of 256 bytes in RAM). Therefore, encryption in these nodes should be
performed or aided by HW modules.

The “Heavy-Duty” type of nodes are powerful enough to cope with any kind of primitives, either
symmetric or asymmetric, via software. It is in the “Normal” type of nodes, like the Micaz and
the TMote Sky (telosb), where the challenges lie. Thanks to the, albeit limited, memory capacity and
computational power of these nodes, it is possible to create software implementations of the algorithms.

In any case, these software implementations have to be compatible, that is, smaller enough to leave



room for the operative system and for the core protocols and services offered by the node, and also
suitable, that is, faster enough to be usable during the network lifetime.

4.2 Transceivers

One of the major features of sensor nodes are their ability to send and receive messages through a
wireless channel. Thus, it is necessary to integrate a transceiver (i.e. transmitter-receiver) unit in the
node. These transceivers have to offer an adequate balance between a low data rate (e.g. between
19.2Kbps and 250Kbps) and a small energy consumption in low-voltage environments (i.e. around
3V), allowing the node to live for a extended period of time. Because of these reasons, standards such
as 802.11 cannot be used in this kind of networks. The same situation found on the microcontroller
market can be found in this one: only one or two chip models from the same manufacturer are used
by sensor node companies, and some sensors share the same transceiver hardware.

Transceivers in sensor networks can be divided into two categories: narrowband radios and wide-
band radios. Narrowband radios have less throughput and are more susceptible to noise, but they have
less power consumption and faster wakeup times. These advantages and disadvantages of narrowband
are reversed in wideband radios: they are faster and more robust, but also more power-demanding
and slower to wake up. Narrowband radios work at lower frequencies (433Mhz and 868Mhz in Eu-
rope, 915Mhz in USA), while wideband radios usually work at higher frequencies (2.4Ghz). In these
higher frequencies we find two non-compatible standards that fits into the wideband category: Zigbee
and Bluetooth. However, nodes usually just use the 802.15.4 MAC layer below the Zigbee standard,
implementing its own protocol stack.

The most common narrowband transceiver is the CC1000, used by the BTNode [24], Mica2 [23]
and Mica2Dot [23]. A chip with similar characteristics, the CC1020, is used on the MSB [29] nodes.
Other chips are the TR1001, used by the Scatternodes [29], and the XE1205, used by the TinyNode
584 [28]. On the wideband side, the most common chip is the Chipcon CC2420, which implements the
802.15.4 standard and is used by the Micaz [23], TMote Sky [26], SunSpot [31], zPart [30], MeshBean
[30] and IMote2 [23]. Other bluetooth-enabled nodes, like the BTNode [24], use the ZV4002 chip. A

summary of the capabilities of these hardware transceivers can be seen in table 4.2.

] I Narrowband \ Wideband |
Model CC1000 CC1020 XE1205 | TR1001 CC2420 ZV4002
Frequency |300-1000Mhz 402-940Mhz [300-1000Mhz 868Mhz 2.4Ghz 2.4Ghz
Max. Data Rate| 76.8kbps 153.6kbps 152.3kbps |115.2kbps| 250kbps 723.2kbps
Modulation FSK/OOK [FSK/GFSK/OOK| CPFSK |00K/ASKDSSS-O-QPSKFHSS-GFSK
Turn on time < 2ms < 2ms < 2ms < 0.5ms < 1lms —
Power (RX) 9.6mA 19.9mA 14mA 3.1mA 18.8mA 65mA
Power (TX) 16.5mA 20.5mA 33mA 12mA 17.4mA 65mA
Power (slept) < 1pA < 1pA < 1pA < 1pA < 1pA 140uA
Security none none none none AES-128 SC-128

Table 2: Transceivers used in the sensor network market.

Both narrowband and wideband radios have enough data throughput to allow a large number of key

negotiations between neighbors, resulting on the possibility of having a fast setup of the network. Also,
the overhead imposed by the primitives (usually a 10% [33]) leaves enough room for other important

data. Nevertheless, regarding the data rate, it is important to note that the maximum data rate shown



in the table is the maximum theoretical data throughput. About hardware assistance, transceivers
based on the 802.15.4 standard (e.g. CC2420) and on the Bluetooth standard (e.g. ZV4002) provides
support for symmetric cryptography, allowing microcontrollers to spend their modest resources in other
important tasks such as asymmetric cryptography. However, from the current consumption values, it

is clear that Bluetooth was not designed with sensor networks in mind.

4.3 Suitability of the Security and Privacy Primitives

A sensor node needs to incorporate a set of cryptographic algorithms in order to provide the necessary
primitives required by any security service. Nevertheless, the suitability of an algorithm is strongly
dependant on the complexity of its building blocks and its internal operations.

Over all the SKE algorithms, the stream cipher RC4 is the most optimal for sensor nodes, since its
block size (8-bits) and its behavior (only XOR, additions, ANDs, and swappings) makes it suitable for
highly constrained microcontrollers. Skipjack is also a good candidate, since it is very simple in both
its operation and its key schedule, and perfectly fits the architecture of the MSP430 family - 16-bit
words.

RC5 and RC6 are not as appropriate as RC4 and Skipjack due to their register size of 32 bits
and their high number of rounds (20), but their building blocks are extremely simple, resulting on
(possibly) a small code size. Finally, both AES and Twofish are also optimized to work in 32-bit
processors, but their complexity is higher. Nevertheless, the number of rounds is smaller, and some
operations can be done natively over 8-bit registers; hence they are supposed to be faster.

Regarding hash functions, all the algorithms previously presented are optimized for 32-bit micro-
processors. Consequently, the 8-bit and 16-bit microcontrollers used in sensor nodes will have problems
to efficiently implement such functions. Again, the building blocks of these algorithms are quite simple,
so it is possible to make small (code-wise) software implementations that calculate the hash values
fast enough. Nevertheless, it should be interesting to develop secure and lightweight hash functions
specially created for these types of nodes.

All PKC primitives are extremely complex and fairly unsuitable to small general-purpose micro-
controllers. Even though, every primitive has its own advantages. The key size of any ECC-based
algorithm is substantially smaller than the others, e.g. a 160-bit key is equivalent to a 1024-bit RSA
key. Algorithms based on polynomial rings (e.g. NTRUEncrypt) performs only polynomial multi-
plications; thus, they should achieve a good average speed in both encryption and decryption. On
encryption and verification Rabin’s speed is, simply, unbeatable. At last, signatures on M Q-schemes
are very fast, and if the public key could be stored entirely on RAM, verifications could also be

significantly faster than others.

5 Hardware Efficiency for Cryptographic Primitives

In a sensor network environment, the most effective solution in terms of using the cryptographic
primitives would be to have hardware support in the microcontrollers. In this way, the overhead of
the processing units could be lower, and the nodes would be able to execute more complex tasks.
Unluckily, the only hardware support available for application designers in sensor nodes are provided
by the radios implementing the 802.15.4 standard and by the MMX extensions included in the PXA271



microcontroller. Then again, there is an active research community working on the creation of simple

and energy-efficient cryptographic hardware designs.

5.1 Existing hardware

All transceiver chips that implement the 802.15.4 standard can offer a suite of AES-based cryptography
operations for assuring the confidentiality and integrity of the network packets. The available suites are
AES-CTR (Encryption in Counter Mode), AES-CBC-MAC (Message Authentication Code using AES
in Cipher Block Chaining Mode), and AES-CCM (Counter with CBC-MAC). AES-CTR provides only
confidentiality by behaving as a stream cipher, AES-CBC-MAC provides only authentication by using
AES in CBC-MAC mode, and AES-CCM provides both confidentiality and authentication. In order
to use these security suites, the application must create an ACL (access control list) entry consisting
on a source address, a destination address, a suite, and the secret key of 128 bits to be used between
the source and the destination. Once the CC2420 receives a packet with security enabled, it looks up
for an entry in the ACL, and applies the security suite if a match is found. Note that, although there
can be up to 255 ACL entries, the standard does not specify a minimum size. Moreover, the only
mandatory suite that the chip must offer by default is AES-CCM with a 64-bit MAC.

Unfortunately, the 802.15.4 standard, and all the chips that implement it, is not exempt of flaws
[35]. One of the security suites, AES-CTR, is deeply flawed, since it does not properly support replay
detection and it is possible to launch Denial of Service (DoS) attacks sending a single forged packet.
Also, the acknowledgement packets are not protected by a MAC, thus it is possible to forge them.
Other minor problems include deleting the ACL when entering low power mode. As a result, chip
manufacturers and application designers must take into account the inherent problems of the standard.

The most common 802.15.4 chip integrated in sensor nodes, the Chipcon CC2420, implements
all the recommended security suites (including the flawed AES-CTR), and also provides an additional
simple encryption mode where a 128 bit plaintext is encrypted with a 128 bit secret key. The hardware
implementation of these suites is quite fast: the CC2420 is able to apply AES-CCM to a single packet
in 222pus, and the simple encryption mode works in only 14us. However, its ACL has only two entries,
thus the chip only provides “out-of-the-box” support for two neighbors. Therefore, the application
developer has to provide a workaround for taking advantage of the hardware capabilities. An example
would be to implement CBC-MAC in software by using the simple encryption mode [36].

Regarding MMX, this SIMD instruction set was designed by Intel and introduced in 1997 as part
of the Pentium MMX microprocessors. Nowadays, this instruction set is also part of the PXA27X
family of microprocessors as “Wireless MMX”. This extension provides 16 data registers of 64 bits
and 8 control registers of 32 bits, and is able to perform two 32-bit, four 16-bit, or eight 8-bit opera-
tions in a single instruction. These operations range from simple mathematical and logical operations
like rotating, adding and multiplying to other specific operations such as calculating the vector maxi-
mum/minimum.

This level of parallelism can help to the software implementation of block ciphers such as AES or
Twofish [37], which use simple operations such as XOR over a set of 8-bit registers. In the case of
AES, it has a large internal parallelism, thus there is potential for optimization. On the other hand the
internal operations of Twofish, such as the Pseudo-Hadamard Transformation, are not parallel-friendly,

although it is still possible to optimize certain parts of the algorithm.



5.2 Research efforts

Most hardware extensions proposed by the research community for constrained devices such as sensor
nodes aim to improve the execution of asymmetric cryptography primitives, but they only exist as
a mere proof-of-concept. It is then desirable that these extensions are implemented as part of the
microcontrollers or as external chips so that they can be used for leveraging the load of the computing
core.

Nearly all efforts in the research community have been aimed on providing hardware support to
Elliptic Curve Cryptography (ECC). Wolkerstorfer et. al. [38], as well as Kumar et. al. [39] developed
integrated chips that can provide an excellent performance for signing a message using ECDSA, but
at the cost of a high operating frequency. In the case of Wolkerstorfer, the chip has an area of 23000
gates implemented in 0.35pum CMOS technology, operates at 68.5Mhz, and is able to execute a one
point multiplication over Foie1 in only 6.67ms. On the other hand, the chip created by Kumar and
Paar is slower, providing a point multiplication over Foi3:1 in 18ms, but has less gates (almost 12k), and
works at a slower operating frequency (around 13Mhz). These implementations are not applicable to
most sensor nodes, although some microcontrollers, like the PIC18F6720, PXA271, and the ARM920T,
would be able to support them.

The implementation by Gaubatz et. al. [40] is more oriented to highly constrained sensor nodes,
since its operational frequency is only 500kHz. In their ECC scalar point multiplication architecture,

operations are performed over F occupying a chip area equivalent to 18720 gates in 0.13um CMOS

P100>
technology, and consuming just under 400pW in signing and encrypting messages. ECDSA signatures
and ECMYV decryptions are performed at around 410ms, and ECDSA verifications and ECMV encryp-
tions are performed at around 820ms. As for the optimizations, they efficiently implement modular
reduction, achieve a fast inversion algorithm, and implement all arithmetic primitives in a bitserial
fashion.

This implementation was further improved by Batina et. al. [41]. Their Elliptic Curve Processor
(ECP) included a Modular Arithmetic Logic Unit (MALU) capable of computing modular additions
and multiplications, using the same cells for both purposes without having a full-length array of
multiplexors. Moreover, squaring is considered a special case of multiplication, and inversion is avoided
mostly by use of projective coordinates. The results are promising: using 8104 gates (12kgates including
RAM) in 0.13pum CMOS technology, one point multiplication over Fais1 is performed in only 115ms,
consuming less than 30uW in a operational frequency of 500kHz.

ECC is not the only primitive that researchers have considered for implementing PKC in sensor
networks. In [40], Gaubatz et. al. proposed the NtruEncrypt public key cryptosystem as a possible
candidate. This solution employs a small number of gates (3000) and only consumes about 20uW in
an operational frequency of 500kHz. Encryption and verification operations are performed at around
58ms, decryptions are calculated in almost 117ms, and messages are signed in almost 234ms. Another
scheme, Rabin’s scheme, was proposed by the same authors [40]. The design used less than 17000
gates with an average power consumption of 148.18uW, and achieved speeds as lower as 2.88ms for
encrypting and verifying messages. However, the downside comes from the decryption and signature
operations: the processor has to employ 1.089s for executing them.

Finally, the Multivariate public key cryptosystem was also considered due to its benefits regarding
Quantum Computing. The implementation made by Yang et. al. [42] only included signature gener-

ation, since it was mostly oriented to RFID tags. The optimal form, the circulant (LPSQR) form of



enTTS(20,28), uses 17000 gates in 0.25um CMOS technology, and has a signature time of only 44ms
and a energy consumption of 254A in an operational frequency of 100kHz. This speed is achieved

thanks to the substitution of the Lanczos’ method used in the internal operations with the symmetric

Gaussian elimination.

’ H ECC \ NTRU \ Rabin \ MQ ‘
Wolkerstorfer | Kumar & Paar | Gaubatz Batina Gaubatz Gaubatz Yang
Gates 23000 12000 18720 12000 3000 17000 17000
Technology 0.35pm 0.35pum 0.13pm | 0.13pm — — 0.25pum
Frequency 68.5MHz 13.5Mhz 500khz | 500kHz | 500kHz 500kHz | 100kHz
Field F2191 F2131 pro F2131 — - -
Point Mult. 9.98ms 18ms ~ 400ms | 115ms — — —
Encryption — — — — 58ms 2.88ms —
Decryption — — — — 117ms 1.089s —
Signing — — — — 234ms 1.089s 44ms
Verifying — — — — 58ms 2.88ms —
Energy n.a n.a ~ 133uA | ~ 10puA | ~6.6puA | ~49.4uA | 25uA

Table 3: Summary of Hardware prototypes for PKC.

Table 5.2 shows the different hardware prototypes categorized by their underlying primitive, con-
sidering the operating voltage at 3V. Note that the encryption time and other time-related rows are
empty for ECC-based prototypes because the time of completing a scalar point multiplication largely
influences over the operations of the algorithms (cf section 3.3). From the table, it is possible to
notice that Batina et.al. hardware implementation is the best ECC prototype. Comparing it with
other primitives, the prototype consumes slightly less energy, but the time for calculating an internal
operation (a point multiplication for a ECC-based primitive) is a bit larger. The MQ prototype is
really powerful for signing, but the size of its key is too large. Regarding NTRU, it is well-balanced,
but its signature is 1.169 bits, thus it needs at least 5 packets in order to send a message. Lastly,

Rabin is extremely fast on encryption and verifying, although its signatures requires 512 bits.

6 SW Implementations

6.1 Symmetric Key Encryption and Hash Functions

Although the microcontrollers used as the computing core of sensor nodes are highly constrained, it is
possible to execute various instances of SKE and Hash functions only by software means. The main
problem that these software implementations face is achieving an encryption speed smaller than the
“byte time”, i.e. the theoretical duration that it takes to transmit a single byte of data over the radio.
If the encryption process is slower than the byte time, there can be problems in high throughput
scenarios such as the radio waiting for the processor to complete the cryptographic operation. For a
speed of 19.2kbps, e.g. the CC1000, the byte time is approximately 420us. For a speed of 250kbps,
e.g. the CC2420, the byte time is approximately 32us.

In 2003, Ganesan et. al. [43] analyzed the encryption overhead of SKE and Hash function primitives
in highly constrained microcontrollers, such as the ATmegal28. The results were highly promising:
the number of seconds required to encrypt a single byte of plaintext were 26us for RC5, 21us for IDEA,
and 6us for RC4. However, hash functions did not perform as well as the SKE: the SHA-1 algorithm



took 7777us for digesting 64 bytes. Nevertheless, the average code size of a single primitive was quite
good: less than 4000 bytes of ROM.

Symmetric key encryption primitives were finally available to sensor nodes as of 2004 through
the TinySec package [33]. This package implemented a nesC interface to access to the cryptographic
operations: Skipjack (48us per encrypted byte, unoptimized) and RC5 (33us per encrypted byte,
optimized). Also, the package was able to provide link layer security (confidentiality, integrity and
authentication) to the information flow by using these primitives. This particular implementation
did not need any hash function for the integrity process since the message authentication code was
calculated using CBC-MAC. However, TinySec only works with Mica and Mica2 nodes over TinyOS
1.x, thus it does not provide security to other CC2420-based nodes such as the Micaz or the TMote
Sky.

Other instances of software-based SKE primitives were analyzed by Wei Law et. al. [44] and Jun
Chio and Song [45]. SKE algorithms such as Twofish and Rijndael (AES) had an average encryption
time of 50us per byte, while an optimized Skipjack was able to provide an encryption time of 25us per
byte. Skipjack was also the best algorithm in terms of memory requirements, with approximately 2600
bytes of ROM, whereas the other algorithms needed an average ROM size of 8000 bytes. Nevertheless,
the stream cipher RC4 was undoubtly the most optimal algorithm in terms of memory overhead: its

memory footprint is only 428 bytes.

6.2 Public key Cryptography

The use of PKC in sensor nodes using software implementations was usually rejected as “not possible”
in a sensor network environment until 2004, where some studies [46] claimed that Elliptic Curve
Cryptography (ECC) seemed to be a good candidate for implementing PKC over sensor networks due
to its small key sizes, faster computation, as well as memory and energy savings. This claim was finally
proven by Malan et.al. [47] with the introduction of the EccM 2.0 library. This library implemented
ECC primitives over Fyp with a 163-bit key, spending an average running time of approximately 34
seconds for point multiplication and shared secret key generation.

Although these results confirmed the possibility of using PKC in sensor nodes, its running time
was still too high for utilizing it outside research testbeds. At that moment, it was unclear if the
ECC calculations could be further optimized. However, as pointed out by Gura et. al. [46], the
ECC module could have a better performance if implemented over F, rather than over Fo». This
optimization was grounded on the use of projective coordinates rather than affine coordinates, in
order to avoid expensive inversions - an approach also taken by Batina et. al. [41] in their hardware
implementation (cf. Section 5.2). This and other optimizations where implemented by Liu and Ning
(TinyECC [34]) and Wang and Li (WMECC [32]) on TinyOS using the NesC language, obtaining
excellent results with, in most cases, a running time smaller than 2 seconds for signing and verifying.

TinyECC and WMECC have some optimization techniques in common, but they are not completely
equal in their design and have subtle differences. The use of projective coordinates is mandatory in
both implementations, but TinyECC uses the weighted projective (Jacobian) representation (X,Y, Z)
and WMECC use a mixed representation with modified Jacobian coordinates (X,Y, Z,aZ*) and Affine
coordinates (X,Y"). Also, both implementations make use of the sliding window method (i.e. grouping
a scalar k into s-bit clusters) for improving the performance of scalar point multiplications by pre-

computing the point multiplication, and use the Shamir’s trick for reducing the signature verification



time by doing multiple point multiplications simultaneously. However, WMECC use a small window
value for both the sliding window method and Shamir’s trick (s = 4 and w = 1, respectively), thus it
does not require the expensive precomputation phase that TinyECC must perform for initializing the
ECDSA system.

An identical optimization that both implementations include is the consideration of the underlying
field primes p as pseudo-Mersenne primes (i.e. p = 2™ —¢) to allow optimized modular reduction, which
provides a better performance for the modular multiplications and the modular square. On the other
hand, WMECC only implements the secp160rl elliptic curve domain, while TinyECC implements the
sec128rl, secpl28r2; secpl60kl, secpl60rl, secpl60r2, secpl92k1, and secpl92rl elliptic curve domains
recommended by standards for Efficient Cryptography Group (SECG [48]). Since TinyECC has to
support multiple key sizes, it includes a specific optimization, called Hybrid Multiplication, that can

perform modular multiplication of large integers minimizing the number of extra registers.

y [ TinyECC | WMECC | TinyWMECC |
Micaz | Telosb | Micaz | Telosb | Micaz | Telosb
Test - ROM size || 28266 | 26048 | 57982 | 46156 | 29734 | 25774
Test - RAM size 2306 2327 1685 1657 1643 1599

ECC init 1.837s - 1.809s | 1.744s | 1.809s | 1.744s
ECDSA init 3.550s | 5.225s 0s 0Os 0Os 0s
Pub. Key Gen. 1.788s - 1.261s | 1.425s | 1.261s | 1.425s

Signature 1.916s | 4.361s | 1.348s | 1.498s | 1.348s | 1.498s

Verification 2.431s | 5.448s | 2.017s | 2.207 | 2.019s | 2.209s

Table 4: Software implementations of ECC

The results of an experiment conducted with the purpose of analyzing the overhead of both imple-
mentations in the elliptic curve domain secp160r1 are presented in Table 6.2. The “Test - ROM/RAM
size” rows show the ROM and RAM used by the primitive and the test program, and the other rows
show the time spent in executing the various steps of the primitive. These values were obtained after
20 rounds of execution in both Micaz and TMote Sky nodes. Note that the values from TinyECC
in Telosb are obtained from the original source, since the experiment could not be reproduced in our
laboratory. It can be seen that in both implementations the Micaz is slightly faster than the TMote
Sky, mainly due to the extra cycles spent in unsigned multiplications on the MSP430 microcontroller.

Comparing both implementations, the WMECC package yield a better performance than the
TinyECC package: It has no initialization time for the ECDSA, and the signature and verification times
are slightly faster. However, its memory footprint is simply prohibitive, and it would be impossible to
develop any kind of application for a TMote Sky. Fortunately, thanks to the component capabilities
of the TinyOS operating system, it is possible to replace the resource-consuming SHA-1 component
of WMECC with the more optimized version used in TinyECC. This results on a new version of the
WMECC package (deemed TinyWMECC in table 6.2) that is significantly better. Using this new
implementation, it can be perfectly possible to create PKC-based applications on a constrained node
such as the TMote Sky.



7 Conclusions

Wireless sensor networks need cryptographic primitives. At this moment, it is clear that, although
constrained, the existent hardware is able to afford software algorithms that implement these primi-
tives. There exists some exceptions, like the PIC12F675 microcontroller, where sensor node designers
should take into account that a node containing this type of highly constrained processing core requires
a cryptographic chip in order to provide a minimal protection of the information flow.

For high throughput applications, the overhead of some SKE algorithms such as Twofish or AES
may limit the total bandwidth of the network. But most sensor network applications do not use all the
available bandwidth, since they have to waste as less energy as possible in order to monitor a certain
environment for a long period of time. This kind of optimization reduces drastically the bandwidth
of the network, and makes the extra overhead of protecting a packet using this primitives negligible.
The extra operating cost of a secure application will be, then, minimal.

Public Key Cryptography is also a reality in sensor nodes. It is possible to use ECDSA algorithms
for signing and verifying a message in the most common hardware platform used nowadays: the Micaz
and the telosb (TMote sky). A problem of the existent implementations for the telosb was their code
size (too big for the 48kB limit of the MSP430F16x) and its speed (too slow compared with the Micaz).
Nevertheless, the component nature of TinyOS has allowed us to improve one of the existent packages,
combining the performance and the low memory consumption of both implementations.

Nevertheless, in future sensor nodes designs, hardware chips can be used for saving ROM and RAM
space on the microcontroller, thus making possible the execution of more complex applications. For
example, in the field of asymmetric cryptography, it has been shown that very simple designs (less than
15000 gates) are able to efficiently provide ciphering and signing services for any kind of sensor node
hardware. For certain application-driven sensor nodes, it can be also possible to use other asymmetric
primitives instead of ECC. For example, nodes with a high RAM and with the sole purpose of sending
authenticated messages to the base station may use M Q-schemes such as enTTS(20,28) due to its fast
signing algorithm. It is expected that in the future new and optimized hardware designs will appear.

As final thoughts, the implementation of existing standards, such as the AES algorithm in the
802.15.4-enabled chips, should be able to provide the maximum level of security. Failing to do so may
result in suboptimal products in terms of security, such as the CC2420 and its ACL management.
Also, it should be noted that most hash functions are optimized to work with 32-bit microprocessors,
and the average bit size of a sensor node microcontroller is 8-bit and 16-bit. For that reason, it would
be interesting to develop new hash functions specially designed with these constrained environments
in mind. Finally, at present there is no implementation that can provide symmetric key encryption to
sensor nodes other than mica2, although there are some efforts like AMSecure [49] that try to do so

taking advantage of the 802.15.4 hardware resources.
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