
An anti-spam scheme using pre-challenges *

Rodrigo Roman2, Jianying Zhou1, and Javier Lopez2
1Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613;

 2E.T.S. Ingenieria Informatica, University of Malaga, 29071, Malaga, Spain

roman@lcc.uma.es, jyzhou@i2r.a-star.edu.sg, jlm@lcc.uma.es

Abstract. Unsolicited Commercial Email (UCE), or Spam, is nowadays an increasingly serious problem

to email users. A number of anti-spam schemes have been proposed in the literature and some of them

have been deployed in email systems, but the problem has not been well addressed. One of those schemes

is challenge-response, in which a challenge, ranging from a simple mathematical problem to a hard-AI

problem, is imposed on an email sender in order to forbid machine-based spam reaching receivers'

mailboxes. However, such a scheme introduces new problems for the users, e.g., delay of service and

denial of service. In this paper, we propose a pre-challenge scheme, which is based on the challenge-

response mechanism and takes advantage of some features of email systems. It assumes each user has a

challenge that is defined by the user himself/herself and associated with his/her email address, in such a

way that an email sender can simultaneously retrieve a new receiver's email address and challenge before

sending an email in the first contact. Some new mechanisms are employed in our scheme to reach a good

balance between security against spam and convenience to normal email users. Our scheme can be also

used for protecting other messaging systems, like Instant Messaging and Blog comments.

Keywords: Electronic Mail, Anti-Spam, Internet Security

1. Introduction

Email is one of the most valuable tools for Internet users nowadays. Unlike postal mail, email

allows people living at any place of the Earth to communicate and interchange information

almost instantaneously. It can contain and attach any digital information (from plaintext to

complex objects), and the cost of transmission of a single message is minuscule once the

infrastructure costs are paid.

However, the vulnerabilities and flaws in email protocols allow malicious users to send

Unsolicited Commercial Email (UCE), or Spam. It can be defined as advertising messages

(mostly for fraudulent products) neither expected nor desired by the intended receivers. Since it

is very easy to flood users’ mailboxes with little investment, spam is a big threat to email

systems, resulting in the loss of time and money to email users.

A lot of research in the area of anti-spamming has been done in the past years. From statistical

analysis to challenge-response, researchers tried to seek effective solutions to the spam problem.

One of those solutions is challenge-response, which applies an old idea from Internet protocols

to mail systems: when a sender sends an email to a receiver, he/she is given a challenge from

that receiver which must be solved before the email reaches the receiver's mailbox. However,

challenge-response schemes introduce some new problems for the users such as delay of service

(when a sender waits for the arrival of the challenge from a receiver) and denial of service

(when challenges are redirected to a victim's address if spammers use that victim's address as

the source address).

In this paper, we propose a pre-challenge scheme, which is based on challenge-response

mechanisms, preserving their benefits while avoiding their drawbacks (e.g., management of

mailing list and error messages). It assumes that each user has a challenge associated with

his/her email address, in such a way that an email sender can simultaneously retrieve a new

* Part of this work appeared in [31]. The first author's work was done during his attachment to Institute

for Infocomm Research under its sponsorship.

R. Roman, J. Zhou, and J. Lopez, “An Anti-spam Scheme Using Pre-challenges”, Computer Communications, vol. 29, pp. 2739-2749, 2006.
http://doi.org/10.1016/j.comcom.2005.10.037
NICS Lab. Publications: https://www.nics.uma.es/publications

mailto:roman@lcc.uma.es
mailto:jyzhou@i2r.a-star.edu.sg
mailto:jlm@lcc.uma.es

receiver's email address and challenge before sending an email in the first contact. Each user

will define his/her own challenge, which can range from a simple question about the user

himself/herself to a hard-AI problem that only a human can solve.

Our scheme is easy to be integrated into existing email systems as it is a standalone solution,

without changing the other party's software and configuration. In addition, our scheme does not

create obvious inconvenience to normal email users, since they just have to solve a simple

problem before mailing to a protected user for the first time. Our scheme also manages mailing

list messages and processes mail error messages without any problem. Finally, our scheme

offers protection against email harvesting.

The rest of the paper is organized as follows. In section 2 we review the reasons that make email

systems an easy target for spamming, as well as the methods that are used by spammers to hide

their identities. In section 3, we summarize the existing solutions against spam and analyze their

limitations and/or problems. After that, we present our solution in section 4, and further discuss

it in section 5. Finally, we conclude the paper in section 6.

2. Vulnerabilities in Email Systems

The original SMTP protocol was introduced in 1982 [1]. At that time security was not a major

concern [2], mainly because the Internet was limited to a small number of hosts [3], and all

users were trustful. Nowadays the scenario is very different: the Internet has around 170 million

hosts [3], and continuous attacks have made security issues a priority. However, we are

basically using the same email protocol as 20 years ago (with some minor modifications [4]).

An email is just a text message with some headers that transport certain information: (i) source,

(ii) destination, (iii) path through the Internet, (iv) body of the message, and (v) extra headers.

In a typical SMTP email delivery, a client MTA (i.e. a mail server) manages the outgoing

emails from a certain network. This client MTA delivers emails using SMTP to their destination

(server MTAs), each of which stores the incoming emails of its network.

The main problem in SMTP is the lack of authentication. When an email is received, it is not

possible to know whether the source of the email is who claims to be. This is precisely the flaw

that spammers make use of. (They cannot be traced, thus can take advantage of their anonymity

in the network.) If a spammer only controls his own computer (client computer), he/she can

spoof the source and destination headers (e.g., “From:”, “To:”, “Reply-To:”). These headers are

part of the email content, so they are filled by the user who sent the email. The spammer can

spoof these headers, changing them to a nonexistent email address or to another email address.

An bigger problem emerges when a spammer controls a client MTA. In this case the spammer

can build an ISP that provides services to other spammers (spam farm). All the spam is sent

through the ISP MTAs that are configured to provide anonymity to the outgoing emails. This

anonymity is achieved by changing the source/destination headers and erasing all the headers

that contain the path of the email at “Received:” headers.

Additionally, the client MTA of the spammer can try to hide its own identity by using a fake

domain as a parameter inside the SMTP initial command <HELO> or <EHLO> sent to the

server MTA. Although the real IP address of the connection will be recorded by the SMTP

specification and can be used (with a reverse DNS process) to detect the client MTA of the

spammer, the real source of spam is much harder to be discovered.

Before sending their junk, spammers must know the email addresses of their victims. There are

many ways to harvest email addresses from the web (e.g., using web agents to search web sites

or usenet posts). It is also possible to obtain addresses directly from a mail server with a side

attack over the SMTP protocol. The process is simple: automatic programs controlled by

spammers contact a certain mail server, and after the initial messages they send repeatedly the

control message “RCPT TO: <email>”. If the answer of the mail server is “250 OK”, then

<email> belongs to that mail server.

3. Previous Work

Since the SMTP protocol is standard and widely deployed, it's impossible to change the protocol

without changing the entire email infrastructure. That would require a slow migration, just like

the actual deployment of IPv6. Therefore, most of the research in the area of spam control

focuses on avoiding spam while maintaining the actual SMTP protocol and email infrastructure

in order to ensure compatibility. This implies that anti-spamming solutions must be based on the

operation with email headers or on specific implementation approaches.

One of the headers that can provide information regarding an eventual spam of the incoming

email is the “Received:” headers. Since they indicate the path of the email through the Internet,

they give information about the sender. Thus, we can obtain the client MTA from those headers,

and check if that MTA is a source of spam (open relay or spam farm). There are some projects

[5] that try to identify misconfigured email MTAs or major sources of spam. However, it does

not work effectively against individual spammers, and innocent client MTAs might be blocked.

Another header that can be used against spamming is the address of the receiver, with policies

or password-like extensions. In [6], a policy is encoded inside the email address. That policy

can indicate a wide range of actions, from the expiration date to a complex program-like policy.

When an email is received, the policy is checked. Subsequently, the email is discarded if the

policy is not fulfilled. In [7 – 9], the address of the receiver is extended with a sequence of

characters that act like a password. Every password is unique for a pair or group of users, and in

most cases a proof of computational task [12] is needed in order to obtain the password. These

solutions work well in some scenarios (e.g., using mail addresses in computer-based systems

like web forums). However, as the email addresses created in such schemes are very hard to

remember, they may cause problems when used by humans.

There are multiple works dealing with email content analysis based on artificial intelligence (AI)

and statistical techniques [10,11]. They try to distinguish whether an email comes from a

legitimate user or from a spammer by assigning a “spam score” (with a level of sensitivity that

can be adjusted both automatically and by system administrators) to any incoming message.

This approach can lead to false positives, and spammers may actively try to bypass the classifier

algorithms.

Other implementation approaches against spam include micropayments, challenge-response,

and obfuscation schemes. Micropayment schemes [12 – 15] are applied to email systems in

order to prevent spammers sending millions of emails. This requires the user or client MTA to

compute a moderately hard function in order to gain access to the server MTA. If a spammer

wants to send a large number of emails to a certain server MTA, he/she must take substantial

time to finish computation before sending each of the emails, making the business unprofitable.

Such an approach is difficult to be applied to those client devices with very weak computing

capability (e.g., mobile phones).

In challenge-response schemes [16 – 19], whenever an email from an unknown user is received,

a challenge is sent back to that user. The solution to that challenge can be very simple (e.g., just

a reply of the challenge), very complicated (e.g., a hard-AI problem like CAPTCHA [21]), or

time consuming (e.g., using the micropayment schemes seen above). Only when the correct

response is received, the emails of that user are allowed to enter into the receiver's mailbox.

These schemes do not work when a human user is not involved in sending emails (e.g., in the

case of mailing lists). Moreover, these schemes may introduce some new problems such as

delay of service (when a sender waits for the arrival of the challenge from a receiver) and denial

of service (when challenges are redirected to a victim's address if spammers use that victim's

address as the source address), etc.

In the obfuscation scheme, email addresses are displayed in an obfuscated format (e.g., John

HIPHEN Smith AT yahoo DOT com), from which senders can reconstruct the real email

addresses. It does not require any software from the user side or from the server side. However,

the problem with this scheme is the constraints that the human users face when constructing the

obfuscated addresses. As the combinations are limited, it allows AI-based harvest programs to

easily retrieve real addresses. Moreover, once the spammer captures the email, there is no

protection against spam (unless other solutions are utilized).

The technical solutions discussed above have their own limitations or weakness on countering

again spam. Many of email users still receive large amount of junk mails everyday, and the

spam problem has yet been well addressed.

The solution by law enforcement is also being discussed. For example, Korea requires that an ad

mail must be marked with @ in the subject line. But how about junk mails sent from other

countries? The question is that not all countries are enforcing the law. That means the Korean

law cannot punish the junk mail senders in other countries. Another issue is repudiation. A junk

mail can advertise a merchant's product, but the merchant may not be the sender. If the

merchant is sued, he/she may claim that someone else sent it. (There is lack of authentication,

not to say non-repudiation.) That means the solution by law enforcement alone may not work

well. A good technical solution is still necessary to counter against spam.

4. A Pre-Challenge Scheme

We have two guidelines in designing a new scheme to counter against spam.

 The solution should be standalone, no need to change the other party's software and

configuration. Put differently, any potential sender must not install any plug-in in order to

send an email to a protected mailbox.

 The solution should not create obvious inconvenience to normal email users. In other words,

there should be a good balance between convenience and security.

4.1 Overview

As stated, our pre-challenge scheme is based on challenge-response mechanisms in the sense

that both of them impose a challenge that must be solved by a potential sender. However, in the

pre-challenge scheme, the sender retrieves the receiver's email address together with his/her

challenge simultaneously (see Fig. 1). Once the challenge is solved, the answer will be included

inside the email.

When a mail from an unknown sender arrives, the receiver's system tests whether that mail

contains an answer to the challenge. If the test turns out positive, the sender is white-listed. That

means future mails from this sender will get into the receiver's mailbox without being checked

again.

Figure 1. Basics of the Pre-Challenge Scheme.

The goal of our scheme is to check whether there is really a human behind a sender's computer.

The reason is that spammers use automatic programs to send their propaganda, and they feed

these systems with email addresses obtained by searching web sites and mail servers. However,

it is a bit hard for these programs to retrieve a challenge that matches an email address and even

harder to answer each of these challenges. Therefore, whenever a spam arrives to destination, it

will be automatically discarded if no correct answer to the challenge is attached.

In comparison with a challenge-response scheme, our pre-challenge scheme preserves its

benefits while avoiding its drawbacks, as we explain in the following:

 Suppose a sender wants to send an email to a receiver for the first time. In the case of a

challenge-response scheme, the sender's MTA would need to start an off-line three-way

handshake with the receiver's MTA in order to get the receiver's challenge. On the contrary,

in our pre-challenge scheme, because the receiver's challenge could be available in advance,

the sender can directly solve the challenge and send the email to the receiver1. Therefore,

there is no delay even for receiving mails from unknown senders, and there are less

overheads on the MTAs.

 With a challenge-response scheme, if spammers forge a sender's address in their mails, the

challenges will be sent to that address. Thus, if the address belongs to a real user, this user

will be the target of a DDoS attack [20]. Within the pre-challenge scenario, this attack will

not take place because a receiver need not reply an unknown sender's request for a

challenge.

 A challenge-response scheme can work with mailing list only if some rules are manually

introduced. Moreover, it cannot handle mail error messages properly. As we will show in

section 5.1 and section 5.4, the pre-challenge scheme manages mailing list systems and

processes mail error messages without any problem.

Another benefit of the pre-challenge scheme is the continuous protection that the scheme

provides against email harvesting. When a correct email address is retrieved by a spammer,

he/she needs to retrieve the solution of the pre-challenge at the same time to make the address

usable (and sellable in, for example, CD collections). But the user can change the pre-challenge

at any time (see section 4.2), making the combination <email, solution> useless.

The pre-challenge scheme can be easily integrated with the actual email infrastructure, because

it does not require any change to the existing email protocols, like POP3, SMTP and IMAP. It

can be implemented as a “plug-in” to any email server, which must provide and maintain a set

of lists and policy rules (see sections 4.3, 4.4 and 4.5), and must be able to interact with the

email account owners for updating the pre-challenge solution and providing some manual

procedures (as adding new addresses to the white-list). Since in most cases the email servers for

receiving and sending messages are different, both servers must belong to the same sub-domain

to facilitate the secure sharing and management of the required lists and policy rules.

1 The frequency of challenge update is a security parameter decided by the receiver, based on his/her own

experience, to control the risk of replay attacks from spammers.

alice@yahoo.com

Challenge = 3 + 4

Tel: 999-12345 7

bob@hotmail.com alice@yahoo.com

< MAIL2 >

…

< MAIL1, Response = 7 >

4.2 Challenge Retrieval and Update

A challenge associated with an email address is defined by its human owner. Each user has one

challenge at a time to be used by all incoming emails, and the challenge can be updated at any

time at his/her own discretion. The challenge can range from a simple question (e.g., “what is

the name of my dog?” in a pet-related blog) or mathematical operation to a hard-AI problem

that only a human can solve (e.g., CAPTCHA [21]).

Normally a user's challenge is published next to this user's email address. Since any potential

sender must retrieve the email address of the receiver before contacting him/her, challenge and

email address can be accessed at the same time. However, in certain cases, a challenge may not

be accessed directly. Instead, a URI may be provided to retrieve the challenge.

Since the challenge is not restrained to obfuscate a valid email address, which has a fixed

structure (name, domain), the user has more freedom to produce it. When stored inside a

website, the challenge can take advantage of its form and content – personal information, the

theme and visual appeal of the website etc. Static environments (e.g., business cards or

newspapers) can store directly the answer to the challenge, because spammers do not target

them in order to harvest addresses.

The strength of the pre-challenge scheme is related to the strength of the challenge and to the

huge number of email users. An easy challenge can be solved in almost no time by an automatic

program, and advances in the area of artificial intelligence simplify the task of partially solving

certain hard-AI problems [22]. However, since every user chooses his/her own challenge and

the way to publish it in his/her own website, automatic spammer programs must be able to

detect the challenge, identify its type (e.g., “is it an obfuscation problem or a human-recognition

problem?”), understand it, and solve it.

If the challenge is published in a static environment, it may become outdated. If a user's

challenge has been updated but a sender knows neither the latest challenge nor the location of

the challenge, the sender can still email to that user by including the answer of an old challenge.

Then the sender will receive automatically the latest challenge in the reply from that user. We

have more discussions on this problem in section 4.5 and section 5.2.

Finally, another option for retrieving a challenge is using a majordomo style service [25]. In this

service, a potential sender requests to an email server what is or where is located the challenge

of a receiver. To prevent spammers to use this service as a collector of valid email addresses,

the service must return a false challenge for every non-existent user.

4.3 Data Structures

The pre-challenge scheme requires certain data structures to accomplish its tasks. The two most

important structures are the actual challenge (or a URI where the challenge can be found), and

the solution to the challenge. By using these structures it is possible to advertise the actual

challenge and to check whether an incoming mail has solved the challenge. Additionally, the

solutions to old challenges must be stored, as discussed later.

Other structures needed by the scheme are the white-list and the reply-list (both used by some

challenge-response schemes), and the warning-list, that is a structure specifically created for our

new scheme. Each of those structures contains a list of email addresses and, optionally, a

timestamp that indicates the time an email can be in the list.

White-List. The white-list contains email addresses in such a way that emails coming from

those addresses are accepted without being checked. With this list, an email sender who has

already solved the challenge in the past need not solve it again in the future, even if the owner

of the protected account changes the actual challenge. Some email senders may even be white-

listed by a receiver at the set-up phase if they are already known. Those senders are marked in

order to send a confirmation when receiving their first message (see section 4.5). This list could

be manually modified by a human user.

Reply-List. The reply-list contains email addresses of those users to which the local user has

sent email to, and has not replied yet. The use of this list is justified because the local user is the

one who initiated the communication with those users; hence, there is no need to check any

challenge when replies are received. This list will be managed automatically by the local user's

system.

Warning-List. The warning-list contains email addresses of users that have sent an email

containing the answer of an old challenge. The existence of this list is justified because an email

message with an old response will cause a reply from the receiver indicating the new challenge.

With this list, the local user does not need to send that reply more than once. This list will be

reset every time when the challenge is updated, and will be managed automatically by the local

user's system.

Every mail address protected by the pre-challenge scheme must have one unique instance of

these data structures. However, there is an exception to this rule: if a certain user has a group of

different but related email addresses (i.e., mails composed by the user have different addresses

in the “From:” header and the “Reply-to” header), those mail addresses should share the same

data structures (at least the reply-list).

4.4 Security Levels

The pre-challenge scheme can be configured to work at two security levels, high security and

low security (see Fig. 2). The main difference between these two levels is how the reply-list is

queried.

Figure 2. High Security Level and Low Security Level.

The scheme starts working at the high security level of protection. High security means that all

queries in the reply-list are done by looking for a <user, domain> match, and the matched entry

will be erased from the reply-list. For instance, when an email is received from

bob@hotmail.com, the fields “From:” and “Reply-To:” are checked, and the reply-list will be

queried for a <bob, hotmail.com> match.

On the other hand, low security means that all queries in the reply-list are done by looking for a

<*, domain> match. Therefore, when an email is received from bob@hotmail.com, the fields

“From:” and “Reply-To:” are checked too, and the reply-list will be queried for a <*,

hotmail.com> match.

bob@hotmail.com

High

Security

alice@yahoo.com

Low

Security

hotmail.com

1) To bob@hotmail.com

2) From bob@hotmail.com

1) To bob@hotmail.com

2) From *@hotmail.com

The reason why the pre-challenge scheme needs these two levels of security is that some email

accounts have different addresses for receiving and for sending email. This usually happens

with mailing lists, and this issue will be discussed in section 5.1.

4.5 Architecture

Now we explain the design of our pre-challenge scheme. To simplify the explanation, we

assume that user A is using the pre-challenge scheme while user B is not.

(1) When A sends an email to B, B's email address is added to the reply-list if it is not already in

the white-list.

(2) When B sends an email to A, A checks if B's address is listed in the white-list. If this is the

case, the mail reaches A's mailbox. Additionaly, if that email is the first message A received

from B, B receives a confirmation email.

(3) If B is listed in the reply-list, the mail reaches A's mailbox and B is added to the white-list.

We should point out that the query to the reply-list is different according to the level of security

being applied, as seen in section 4.4. In case of using a high security level, B is erased from the

reply-list because A received the reply expected from B.

(4) If B is not listed in any list, the system checks whether the challenge of the email has been

solved. If it is solved, the mail reaches A's mailbox and B is added to the white-list. Additionally,

B receives a confirmation email.

A B: message

 if Not In (B, white-list) then

 Add(B, reply-list)

Endif

B A: message

 if In (B, white-list) then

 A MailBox: message

 if Marked (B, white-list) then

 A B: confirmation

 UnMark (B,white-list)

 endif

 exit

 else

if In (B, reply-list) then

 A MailBox: message

 Add (B, white-list)

 if Security (HIGH) then

 Remove (B, reply-list)

 endif

 exit

(5) If it is not solved but the message has a solution to an old challenge, the system checks if B

is listed in the warning-list2. If that is the case, the mail is discarded. Otherwise, B's address is

added to the warning-list and B gets a reply containing information about the new challenge.

(6) If it is not solved and has no solution, the email is discarded without any reply to B

indicating this fact. The problem of accidental discard of a legitimate email will be addressed in

section 5.3.

It should be noted, however, that discarding the message does not mean that the user cannot

read it. The scheme can be configured for labeling the message with a “spam score” and placing

it in a special fold of the mailbox if the owner of that mailbox desires so.

4.6 Normal Scenarios

When a normal user wants to send his/her email to a receiver in the first contact, the following

scenarios should be considered.

Scenario 1. A wants to send an email to B who is working with the pre-challenge scheme. In

this scenario, A retrieves B's email address along with the challenge. Then A solves the

challenge and includes it in his/her first mail.

 If the challenge is the one actually in use by B, the pre-challenge scheme will accept the

incoming mail and will add A's address into the white-list. Afterwards, whenever A sends

additional emails to B, they will not be checked by the pre-challenge scheme.

 If the challenge that A has retrieved (and solved) is an old one, the pre-challenge scheme

will not accept the incoming mail. However, the scheme will discover that the information

received corresponds to a solution for an old challenge. Thus, a reply will be sent containing

(or pointing to) the actual challenge. Also, A's address will be added into the warning-list in

order to avoid sending the same reply to A.

 If A does not know whether B works with the pre-challenge scheme (either because A is not

used to computers, or because B's challenge is not available when obtaining B's email

2 Note, the warning-list will be reset whenever the challenge is updated.

 else

if Solved(message, challenge) then

 A MailBox: message

 Add (B, white-list)

 A B: confirmation

 exit

 else

if Solved(message, old challenges) then

 if In (B, warning-list) then

 A Trash: message

 Else

 Add (B, warning-list)

 A B: actual challenge

 Endif

 Exit

 else

 A Trash: message

endif

address), then the pre-challenge scheme silently discards A's email because it contains no

solution to any challenge. This may lead to a problem of accessibility. (A does not know

whether the mail reached its destination or whether B ignored the email.) This issue will be

further discussed in section 5.3.

A special case of this scenario is that A and B know each other (their addresses are stored in

their respective address books) before B activates the pre-challenge scheme. In this case, B can

add the addresses stored in his/her address book directly into the white-list, hence A will not

need to solve any challenge (as seen in section 4.3).

Scenario 2. A who is working with the pre-challenge scheme wants to send an email to B that

will reply the former. Since the pre-challenge scheme adds any outgoing email address to the

reply-list, whenever the first reply arrives, it will be automatically accepted and B (that sends

back the reply) is white-listed. Later on, for any incoming email from B will be automatically

accepted.

Scenario 3. A who is working with the pre-challenge scheme wants to interact with a computer-

based receiver (e.g., a mailing list). Because of the complexity of this scenario, it will be

discussed separately in section 5.1.

4.7 Spam Scenarios

When a spammer wants to send his/her advertisements to a final user that operates the pre-

challenge scheme, he/she faces the following scenarios.

Scenario 1. The spammer only retrieves the email address of a target, but not his/her challenge.

When the spam is sent to the target, it will be silently discarded because no solution to a

challenge (old or actual) is included.

Scenario 2. The spammer only retrieves the email address of a target, and impersonates as a

sender that happens to be in the receiver's white-list. Here a problem arises: due to the lack of

authentication in the email infrastructure, it is not possible to distinguish between a message

from a trusted sender and a message from a spammer, hence the message will be accepted.

All schemes that use a white-list share this problem, but this is not a serious issue because

spammers must find the white-listed senders for all the addresses he/she want to spam. And for

millions of addresses to spam, this is unprofitable.

Scenario 3. The spammer can retrieve both the email address and its challenge, and try to solve

the challenge in order to reach the target's mailbox. The spammer can even use hacker's tactics,

intercepting recent emails from legitimate senders to obtain valid answers of challenges. When

a user detects such a spam, he/she can simply update his/her challenge and remove the

spammed email address from the white-list to stop the spam.

It could seem that a spammer, using a little investment (solving one challenge), can send many

pieces of spam to a given email address (a replay attack). It could also seem that a group of

spammers interchange their solved challenges of the corresponding users in order to lessen each

spammer's effort on accessing the victims' mailboxes. However, what spammers want is to send

millions of messages. In addition, as the challenges are different for every user and a challenge

can be a hard-AI problem that only a human can solve, the task of repeatedly solving or sniffing

a new challenge per user, or hiring cheap labor in order to send spam, becomes unprofitable.

5. Further Discussion

Here we further discuss how our scheme works for users in a mailing list, and whether our

scheme can make a challenge easily available to users and make users to be sure on the delivery

status of an email. We also discuss how to manage mail error messages, and the application of

our scheme in other systems like Instant Messaging (IM) systems.

5.1 Mailing Lists

Mailing lists [23 – 25] share a common behavior. Firstly, a user contacts a mailing list in order

to join the list. Then, the mailing list sends a challenge to the user in order to prove that the user

is a real person. When the challenge is solved the user is added into the mailing list, and

receives every message that is sent to the list. Finally, when the user wants to leave the mailing

list, he/she solves another challenge.

If the user is enabled with the pre-challenge scheme, he/she faces a problem: behind the process

of a mailing list there is a computer. This computer manages the subscription and distribution

processes using non-standard automatic methods.

A possible solution would be to add to the system a mail analyzer; so the pre-challenge system

can analyze a reply and adapt its behavior in managing those mails. However, this approach is

not desirable because a specific module must be added for the analysis of the behavior of every

mailing list, thus adding a substantial overload to the system.

Fortunately, there is a better solution to this problem. The core of the solution relies on two

premises. First, all mailing list implementations have a common characteristic: all their mails

come from the same domain (their “From:” line in the header shares the same domain). Second,

a user normally only subscribes to a few mailing lists in a year.

Figure 3. Process of Subscription to a Mailing List.

Therefore, a user can switch to the low security level (see section 4.4) whenever he/she wants to

subscribe to a mailing list. At the low security level, all the incoming mails from the mailing list

domain (including all the challenges and all the messages from the mailing list) that have a

match in the reply-list are accepted into the user's mailbox and their senders are white-listed.

When the user finally receives the first mail of the mailing list, he/she switches to the high

security level (see Fig 3).

The risk of inserting a spammer inside the user's white-list while the user is at the low security

level is very low, because the spammer's email address must have the same domain as the

people in the user's reply-list.

Also, the user can set up the system not for adding the incoming mails to the white-list when

running at the low security level, but for adding to a temporary white-list instead. He/She will

decide later whether to add (manually) them into the final white-list.

alice@yahoo.com list.com Other subscribed
users

1) subscribe to majordomo@list.com

2) negotiate with

majordomo@list.com

3) M From *@user.com 4) M From mailing@list.com

5) Finally, have

mailing@list.com

in white-list

5.2 Availability

A challenge defined by a user might be placed either with the email address or separately, and it

can be published either in a dynamic environment (like a web site) or in a static environment

(e.g., newspaper or business card).

It is clear that some availability problems exist when the challenge is not published along with

the email address. If a sender cannot obtain the challenge of a new receiver and solve it, his/her

email may not be able to reach the receiver's mailbox. This may happen either because the

sender has no access (e.g., via the Internet) to the challenge, or the place (e.g., a web site) that

contains the challenge is under a denial of service attack.

Finally, there is an availability problem that is common for both pre-challenge and challenge-

response schemes: A challenge easy for a normal user might be impossible to solve for a

disabled user. For example, a blind user will find impossible to solve a challenge based on

images without help.

As a conclusion, if the challenge is published along with the email address we have (almost) no

problems of availability. But if the challenge is published in another place, it can be outdated or

may be inaccessible. It might be good to provide both the challenge and a URL that point to the

challenge in static environments for better availability. In case the URL does not work, the

challenge (even if outdated) can still be used by an email sender to get in touch with a new

receiver. (The receiver will reply with the latest challenge on receiving the answer of an old

challenge.)

5.3 Accessibility

One of the main issues in the pre-challenge scheme is that an incoming email from a new sender

without answering a challenge is automatically discarded, and the sender is not notified. This

approach avoids the increment of Internet traffic due to the responses to spammers' mails, but

also introduces a problem: a normal sender is not sure whether a receiver really got the email.

A possible solution is to define a standard prefix in each email address that is enabled with the

pre-challenge scheme. In such a way, the sender knows clearly that a challenge should be

answered in his/her first email to such a receiver and a notification is expected should the email

reach the receiver's mailbox.

There is an alternative solution if the pre-challenge scheme is implemented at the MTA level. In

this solution, the sender is warned of the invalid answer of challenge using the error reporting

mechanism of the SMTP delivery negotiation protocol. This protocol works as follows:

1. The client MTA of the sender side contacts the server MTA of the receiver side. After

exchange of several control messages that indicates who is the sender and who is the

receiver, the client MTA requests permission to start sending the content of the email (using

the “DATA” command). Afterwards, the server MTA allows the operation (replying with a

“354 Enter mail, end with a single ".". ” command).

2. The client MTA sends the content of the email to the server MTA, ending with a single “.”.

Next, the server MTA checks if the email must be accepted or rejected3. If it is accepted, the

server answers with the “250 2.5.0. OK” command. If it is rejected, the server answers with

the “554 Transaction failed ” command.

3 As stated in the SMTP specification: “If the verb is initially accepted and the 354 reply issued, the

DATA command should fail only if [...] the server determines that the message should be rejected for

policy or other reasons” [4].

3. If the negotiation fails, the client MTA creates an email that includes the cause of the error

and the undelivered email. That email is sent to the original sender, if the client MTA does

not manage his/her emails.

When the server MTA checks if the email is valid at step 2, it can search for the answer of the

recipient's challenge in the email. Logically, at that point it has all the information (sender,

receiver, email content) necessary for this task. If the check fails, it returns “554 Transaction

failed: Bad answer of challenge” (indicating where the actual challenge is).

By using this solution, the final user will receive an error message if he/she sends an email with

an invalid answer of a challenge, without increasing the Internet bandwidth in most cases. We

have more discussions on managing error messages in section 5.4.

5.4 Managing Mail Error Messages

During the SMTP delivery negotiation between two MTAs, if an email cannot be delivered to

its recipient, the client MTA has to send the original sender an email containing an error

message. Errors can range from an invalid recipient to over-quota mailboxes, or (as seen in the

previous section) pre-challenge errors.

Figure 4. Problems Dealing with Automatic Messages.

A problem arises when the error message is not created by the MTA of the client that

implements the pre-challenge scheme. An example is shown in Fig. 4. In the example, the error

happens at MTA lvl 2, thus MTA lvl 1 creates and sends an error message back to the original

sender. But MTA is a computer and will not include any answer of a challenge inside the error

message. Therefore, it will not reach client's protected mailbox - a problem of availability.

This problem can be solved based on two premises. First, error messages can be identified with

the “message/delivery-status” header, and have attached the email that caused the problem.

Second, all emails have a unique ID issued by the original client MTA, stored in the “Message-

ID” header.

When an error message arrives, the pre-challenge scheme accepts the email if both address of

the recipient and ID of the original message are inside the reply-list. Thus, it is necessary to add

the ID of outgoing emails to the reply-list. If the pre-challenge scheme is implemented at the

client's machine, every outgoing email must store an identification number in an extra header,

since the “Message-ID” field is added in the client MTA.

A spammer can try to take advantage of this approach, forging both the ID and the recipient of

the original message in an error message, in order to bypass the scheme. He/She can send a fake

error message directly to the user, or create a “real” error message using another MTA and

forging the source address fields. Nevertheless, this attack can be done only once, due to how

the reply-list is managed. Also the spammer must wiretap the communication channel in order

to capture the ID, which is unprofitable for massive spamming.

alice@yahoo.com

1) Send email, OK

4) Send error email,

ERROR

Error in 4) due to “No

answer to pre-challenge”

2) Send email, ERROR

3) MTA lvl 1 creates

error email

MTA lvl 1
hotmail.com

MTA lvl 2
hotmail.com

Error in 2) due to

“Mailbox full”

5.5 Other Applications

The purpose of the pre-challenge scheme is to stop machine-based spam in the email

architecture. However, the scheme can also be applied to other messaging services, like Instant

Messaging (IM) and Blog comments.

5.5.1 IM Spam

IM systems basically provide instant communication services between two peers, and location

services between a group of users or “Buddy List”. These users must first register in the IM

server in order to contact other users, thus avoiding spontaneous machine-based

communications. Moreover, users have mechanisms for reviewing any peer, and can ban any

suspicious user. Due to these features, spam is not a common problem in IM systems.

However, some IM services are not free from the spam problem, like ICQ's World-Wide Pager

[26]. These services allow anonymous users to send an instant message, using an html form, to

any IM user. As no authentication is performed, some programs can use these services for

sending spam directly to IM users in real-time.

Since that type of IM services are embedded in web sites, the pre-challenge scheme can be used,

allowing users to propose a challenge in order to use these IM services. In such a way, machine-

based IM spam will not be profitable, as explained in this paper.

5.5.2 Blog Spam

Weblogs (or simply blogs) [27] are a type of web application where a user or group of users

post bits of information in a common webpage that, in most cases, can be accessed by everyone.

The information provided inside a single blog can cover a wide range of topics, from personal

information to news digests or technical discussions. One inherent feature of blogs allows

visitors to post a written comment into any information included inside the blog. Using this

feature, it is possible to extend, correct or criticise the contents of the blog.

Unfortunately, blogs are also the target of spammers. Blog Spam abuses the comment system by

submitting automatically comments with a link to, in most cases, an advertisement website. The

purpose of blog spam is to cheat search engines into ranking the advertisement websites higher

than others (as search engine classification algorithms give priority to a website when it has a

high number of relevant hyperlinks pointing to it), thus giving them more chances to appear

sooner when users receive the results of their search. As a side effect, blog spam makes relevant

comments more difficult to find and read.

One solution to stop the economics of blog spam has been proposed by the same search engines

that are the target of this threat [28]. The solution is very simple: when a hyperlink has the

“rel=nofollow” tag, a search engine will not use that hyperlink in their classification algorithms,

and the referenced website will not increase its ranking. However, this approach will not stop

spammers to continue posting blog spam. Moreover, the search engines will ignore any link

included in the users’ comments.

Our pre-challenge scheme can be used as a part of the comments system in order to protect

blogs against blog spam. In this approach, users must solve a pre-challenge (defined by the

owner of the blog) before posting any comment. As explained before, machine-based blog spam

will not be able to include their fraudulent hyperlinks.

6. Conclusion

Spam is a serious problem to many email users, and a lot of research on anti-spamming has

been done in the past years. Since the current mail system is based on an unauthenticated

architecture, it is hard to be 100% spammer-proof without introducing significant overheads on

both the system and email users.

In this paper, we presented a pre-challenge scheme for spam controlling, based on challenge-

response systems but avoiding their drawbacks. The purpose of our solution is to reach a good

balance on security against spam and convenience to normal users.

Our scheme assumes that every user has a challenge associated with his/her email address.

Therefore, if a sender wants to send an email to a receiver with no previous contact, he/she must

first solve the challenge, and send both the message and the answer of the challenge. Since the

challenge is defined by every user, and (in most cases) the challenge is a hard-AI problem, the

overheads of harvesting <email address, answer of challenge> pairs will be so high that

spammers' business will be unprofitable.

Our scheme is a standalone solution, since there is no need to install software or change the

configuration in the sender's side. A sender can simply add the answer of a challenge in the

subject line before mailing to a protected user for the first time. Our scheme allows email

senders to have no delay in reaching the receiver's mailbox, and prevents the denial of service

attack if the origin of the email is forged. Our scheme also manages mailing list messages and

error messages properly. Finally, the pre-challenge scheme can be used for protecting other

messaging systems such as Instant Messaging and Blog comments.

This scheme can also be used jointly with other major anti-spam solutions, like micropayments

and artificial intelligence techniques. The reason behind this compatibility is because the type of

protection that the pre-challenge scheme provides is centered in the protection of email against

harvesting, thus leaving the door open to other solutions such as content analysis. This layered

approach can provide a higher level of protection against spam. Moreover, the scheme can be

integrated with authentication solutions like DomainKeys [29] or Identity-Based Encryption [30]

that provides source domain authentication, hence thwarting attacks like using forged senders to

bypass the white-list checking.

As a final note, a prototype of an anti-spam system based on the pre-challenge scheme is being

implemented. The experiment result will help us to better access its security and usability.

References

[1] J. Postel. Simple Mail Transfer Protocol. RFC 821, Internet Engineering Task Force, August 1982.

[2] WBGLinks. The Complete History of Hacking. http://www.wbglinks.net/pages/history/.

[3] R. Zackon. Hobbes' Internet Timeline. http://www.zakon.org/robert/internet/timeline/.

[4] J. Klensin. Simple Mail Transfer Protocol. RFC 2821, Internet Engineering Task Force, April 2001.

[5] SBL. http://spamhaus.org/.

[6] J. Ioannidis. Fighting Spam by Encapsulating Policy in Email Addresses. In Proceedings of NDSS'03

(Network and Distributed System Security), February 2003.

[7] E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. Curbing Junk E-Mail via Secure Classification.

In Proceedings of FC'98 (Financial Cryptography), pages 198--213, February 1998.

[8] R. J. Hall. How to Avoid Unwanted Email. Communications of the ACM, 41(3):88-95, March 1998.

[9] L. F. Cranor and B. A. LaMacchia. Spam!. Communications of the ACM, 41(8):74--83, August 1998.

[10] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian Approach to Filtering Junk Email.

In Proceedings of AAAI'98 Workshop on Learning for Text Categorization, July 1998.

[11] P. Cunningham, N. Nowlan, S. J. Delany, and M. Haahr. A Case-Based Approach to Spam Filtering

that Can Track Concept Drift. In Proceedings of ICCBR'03 Workshop on Long-Lived CBR Systems,

June 2003.

[12] C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail. In Proceedings of

Crypto'92, pages 139--147, August 1992.

[13] C. Dwork, A. Goldberg, and M. Naor. On Memory-Bound Functions for Fighting Spam. In

Proceedings of Crypto'03, pages 426-444, August 2003.

[14] M. Abadi, A. Birrell, M. Burrows, F. Dabek, and T. Wobber. Bankable Postage for Network Services.

Proceedings of the 8th Asian Computing Science Conference, Mumbai, India, December 2003.

[15] Penny Black Project, Microsoft Research. http://research.microsoft.com/research/sv/PennyBlack/.

[16] M. Jakobsson, J. Linn, and J. Algesheimer. How to Protect against a Militant Spammer. Cryptology

ePrint archive, Report 2003/071, 2003.

[17] M. Iwanaga, T. Tabata, and K. Sakurai. Evaluation of Anti-Spam Method Combining Bayesian

Filtering and Strong Challenge and Response. In Proceedings of CNIS'03 (Communication, Network,

and Information Security), December 2003.

[18] SpamArrest. http://spamarrest.com/faq/.

[19] SpamCap. http://www.toyz.org/cgi-bin/wiki.cgi?SpamCap.

[20] J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of DDoS Attacks and DDoS Defense Mechanisms.

University of California, Computer Science Department, Technical Report #020018.

[21] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using Hard AI Problems for

Security. In Proceedings of Eurocrypt'03, pages 294--311, May 2003.

[22] G. Mori and J. Malik. Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA.

IEEE Conference on Computer Vision and Pattern Recognition, Madison, WI, June 2003.

[23] Ezmlm Mailing List. http://www.ezmlm.org/.

[24] Mailman Mailing List. http://www.list.org/.

[25] Majordomo Mailing List. http://www.greatcircle.com/majordomo/.

[26] ICQ Pager. http://www.icq.com/panels/messagepanel/.

[27] R. Blood. The Weblog Handbook: Practical Advice on Creating and Maintaining Your Blog. Perseus

Publications. 2002.

[28] Google Blog. Preventing Blog Spam (January 18,2005).

http://www.google.com/googleblog/2005/01/preventing-comment-spam.html

[29] Yahoo DomainKeys. http://antispam.yahoo.com/domainkeys/.

[30] D. Boneh and M. Franklin. Identity Based Encryption from the Weil Pairing. Crypto'01, pages 213-

229, August 2001.

[31] Rodrigo Roman, Jianying Zhou, and Javier Lopez. Protection against Spam Using Pre-Challenges.

Proceedings of 20th IFIP International Information Security Conference, Chiba, Japan, May 2005.

