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Abstract— The research of Intrusion Detection Systems (IDS)
is a mature area in wired networks, and has also attracted many
attentions in wireless ad hoc networks recently. Nevertheless,
there is no previous work reported in the literature about IDS
architectures in wireless sensor networks. In this paper, we
discuss the general guidelines for applying IDS to static sensor
networks, and introduce a novel technique to optimally watch
over the communications of the sensors’ neighborhood on certain
scenarios.
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I. INTRODUCTION

An intrusion can be defined as a set of actions that can lead
to an unauthorized access or alteration of a certain system.
The task of Intrusion Detection Systems (IDS) is to monitor
computer networks and systems, detecting possible intrusions
in the network, and alerting users after intrusions had been
detected, reconfiguring the network if this is possible [1].

Although there have been some recent developments in
the area of IDS systems for wireless ad hoc networks, there
is no previous work reported in the literature about IDS
architectures for wireless sensor networks. The purpose of this
paper is to show why IDS solutions created for ad hoc wireless
networks cannot be applied directly to sensor networks, and
introduce the general guidelines for applying IDS architectures
in static sensor networks (with no mobile nodes). Also, a novel
technique for optimally monitoring neighbors, that we have
called spontaneous watchdogs, is introduced.

The rest of the paper is organized as follows. Section II
shows and compares the state-of-the-art of Intrusion Detection
Systems for ad hoc networks and sensor networks. Section III
presents the general guidelines of an IDS architecture for
sensor networks. Section IV concludes the paper, discussing
the future work and open research areas.

II. IDS AND WIRELESS NETWORKS

A wireless network consists of a collection of nodes that are
able to maintain a wireless communication channel between
each other without relying on any fixed infrastructure. This and
other factors make wireless networks substantially different
from wired networks: there is no single point of access to

the wireless network, all nodes must cooperate to create the
network and set up its infrastructure (e.g. routing subsystem)
and services (e.g. data collection), and finally, most operations
are carried out in a distributed manner.

Both ad hoc networks and sensor networks can be included
inside the wireless networks category. However, there are some
important differences between them:

• In ad hoc networks, every node is usually held and
managed by a human user. However, in a sensor network,
every node is totally independent, sending data and
receiving control packets from a central system called
base station, usually managed by a human user.

• Computing resources and batteries are more constrained
in sensor nodes than in ad hoc nodes. A typical sensor
node such as MICA2 [6] has a 8Mhz microprocessor with
128Kb of program flash memory and 512Kb of serial
flash memory.

• The purpose of sensor networks is very specific: measure
the physical information (such as temperature, sound, ...)
of its surroundings. As a result, both hardware modules
and communication/configuration protocols are highly
specialized.

• Node density in sensor networks is higher than in ad hoc
networks. However, sensor nodes have more chances to
fail and disappear from the network, due to the battery
constraints and the low physical security.

As a result of these differences, IDS solutions developed for
ad hoc networks [7], [8], [9], [10] cannot be applied directly
to sensor networks. First, it is not possible to have an active
full-powered agent inside every node. Also, an IDS for sensor
networks must send the alerts to the base station in order to
warn the human user. Finally, the IDS must be simple and
highly specialized for reacting against specific sensor network
threats and to the specific protocols used over the network.

Partial solutions exist that allows a node to check the
security of the sensor network, by testing whether a group
of nodes are alive or dead [3], analyzing fluctuations in
sensor readings [4], attesting the integrity of the code inside a
node [5], or watching over the information interchange [11].
Nevertheless, no solution is designed specifically to interact

R. Roman, J. Zhou, and J. Lopez, “Applying Intrusion Detection Systems to Wireless Sensor Networks”, IEEE Consumer Communications &
Networking Conference (CCNC 2006), pp. 640-644, 2006.
http://doi.org/10.1109/CCNC.2006.1593102
NICS Lab. Publications: https://www.nics.uma.es/publications



with other schemes, although they can be used as a part of an
Intrusion Detection System.

III. A GENERAL IDS ARCHITECTURE FOR SENSOR
NETWORKS

A. Detection Entities

The constraints inherent to sensor networks, such as sparse
resources and limited battery life, impose a cautious planning
on how the detection tasks are performed. As in ad hoc
networks, IDS agents must be located in every node. However,
for the sake of performance, the architecture of these agents
must be divided into two parts: local agents and global agents.
• Local agents should monitor the local activities and the

information sent and received by the sensor. This is only
carried out when the sensor is active, and the sensor only
manages its own communications. Thus, the overheads
imposed on the sensor node are low.

• Global agents should watch over the communications of
their neighbors, and can also behave as watchdogs [11].
However, not all nodes can perform this operation at the
same time, because this operation would require sensors
to analyze the contents of all packets in their radio range.
Therefore, only a certain subset of the nodes must watch
over the network communications at a time.

Once any agent, global or local, discovers a possible breach
of security in the network, it must create and send an alert to
the user. The only way the user can be reachable is through
the base station. Hence, all alerts must be sent to the base
station. The mechanism for sending the alerts to the base
station depends on the underlying architecture of the sensor
network, but it must assure that all alerts reach its destination
safely (using mechanisms such as µTesla [12]).

B. Data Structures

Every agent, and hence every node, must store informa-
tion about its surroundings in order to work properly. This
information can be divided into two categories: knowledge
about the security (an alert database that contains information
about alerts and suspicious nodes), and knowledge about
the environment (a list of the neighbors of the immediate
neighbors of the node, which can be updated over the lifetime
of the node using the received messages).

Every node has an internal alert database, which is used
for storing the security information generated by the node
agents. The format and size of that database is implementation-
dependant (i.e., depends on the protocols used in the sensor
network). Nevertheless, it must contain the following fields:
time of creation 1, classification, and source of the alert (cf.
[14]).

This neighbor list can be obtained “a priori”, if any deploy-
ment information is available, or after the deployment, using
the same assumption of the LEAP [15] protocol (the network

1Time synchronization between nodes, albeit an important issue on alert
management, is out of scope of this paper. (It has been discussed in [13].)

will be secure in the first t seconds after the deployment). One
problem of this list is its memory footprint: The list grows as
a quadratic function ((n2) + n) of the number of one-hop
neighbors, hence it is not scalable for high density networks.
However, the size of the list can be reduced using Bloom
filters [16], storing the neighbors’ list of every neighbor as a
bit array. For a configuration of k = 1 (hash functions) and
m/n = 2 (number of bits doubles the number of neighbors),
the size of the list is reduced 75%, at the cost of introducing
a probability between 16% and 40% of false positives.

C. Local Agents

The task of local agents is to discover any attack or threat
that can affect the normal behavior of the sensor nodes by
analyzing only the local sources of information. Those sources
are the actual status of the node, packets received and sent by
the node, the measurements made to the environment, and all
the available information about its neighbors.

What kind of attacks should be detected by the local agent?
First, attacks against the physical or logical safety of sensor
nodes can be discovered if the nodes are able to know whether
they are being manipulated or not. Sensor nodes are able, for
example, to detect whether they are being reprogrammed 2, so
they can raise an alarm before allowing the execution of any
new code.

Node measurements are also vulnerable. Since the primary
task of the sensor nodes is to analyze environmental data, any
adversary can try to influence this process for his own benefit.
Nevertheless, all data being read by the nodes come from the
real world, and follow certain patterns and limits. Therefore,
anomaly detection techniques can be used for monitoring
these measurements. For example, if the node is going to be
deployed in a static place, any variation in the accelerometer
means that the node is being taken by an unknown source, so
it will raise an alarm.

Finally, the local agent also monitors packets which are ad-
dressed directly to the node, although developing a lightweight
detection technique for every existent protocol is out of scope
of this paper because of large number of protocols and packet
formats present in the literature (e.g., routing algorithms [17]).
However, there are some issues related to local-processed
packets that are protocol-independent and can be discussed
here: the incorporation of a new node into the network and
jamming of the signal.

In static scenarios, where few nodes are added after the
initial deployment, every node can take advantage of the list
of known neighbors. Every time a node receives a packet
from a new neighbor, it will add it to the list, and raise an
alarm. If human users of the network know that they didn’t
include any node into the network, they will be aware that the
new node belongs to an adversary. Also, if a node tries many
times to send a packet but the channel is not available, misuse
techniques can be employed to detect if this is an abnormal
situation that must raise an alarm.

2Using, for example, the Xnp component of the TinyOS operative system.



D. Global Agents

As stated before, global agents must be in charge of
analyzing packets that their immediate neighbors send and
receive. They can also behave as watchdogs [11] receiving
and processing the packets relayed by next-hop nodes using
protocol-dependant techniques. Since global agents are able
to receive packets from both the neighbors and relayed by the
next-hop (due to the broadcast nature of the communications),
they can be prepared to detect whether a certain node is
dropping or modifying packets by analyzing those packets.

However, if all global agents are activated and listening to
their neighborhoods at the same time, analyzing the network
would be a costly operation in terms of energy. As a result,
only a certain subset of nodes that cover all communications
in the sensor network should activate their global agents. How
this task is done depends on the underlying architecture of the
sensor network. There are two basic architectures that specify
how the sensors route the information over the network and
how sensors group themselves. These two architectures are
called hierarchical and flat.

In hierarchical configurations, sensors are grouped into
clusters. One of the members of the cluster behaves as server,
or “cluster head” (which can be more powerful than the other
nodes [18] or not [19]), with management and routing tasks.
On the other side, in flat configurations, information is routed
sensor by sensor (every sensor of the network participates in
the routing protocol), and almost all sensors have the same
computational capabilities and constraints.

In hierarchical architectures, global agents are activated in
every cluster head, because the combination of all cluster
heads covers (in most cases) the entire sensor network. Con-
sequently, total network coverage is assured. This approach
helps to preserve the overall energy of the system because
cluster heads are either more powerful than other nodes or are
rotated periodically.

Activation of global agents is more difficult to manage in
flat architectures because it is not possible, a priori, to know
what nodes can cover the entire network. One possible solution
is to use clustering techniques only for the Intrusion Detection
System [20], where more powerful or tamper-protected cluster
heads will be periodically elected with the only purpose of
activating their global agents in order to cover the interchange
of messages over the network.

This clustering solution adds some complexity to the
network in the creation and maintenance of clusters with
maximum global coverage, adding a possible point of attack
and the overhead of periodical control messages. However,
there is an alternative distributed solution that can be applied
to flat architectures without organizing them into clusters or
adding more powerful nodes, which is called spontaneous
watchdogs.

E. Spontaneous Watchdogs

The spontaneous watchdog technique relies on the broadcast
nature of sensor communications, and takes advantage of the

Fig. 1. Possible Spontaneous Watchdogs

high density of sensors being deployed in the field. For every
packet circulating in the network, there are a set of nodes that
are able to receive both that packet and the relayed packet by
the next-hop, as shown in Fig. 1. Hence, all these nodes have
a chance to activate their global agents in order to monitor
those packets. The main goal of our solution is to activate
only one global agent per packet circulating in the network.
The process is as follows:
• Every active node will receive all packets sent inside its

neighborhood, due to the broadcast nature of communi-
cations.

• The node will check if it is the destination of the packet.
If not, it will not drop the packet instantly. Instead,
it will check if the destination of the packet is in its
neighborhood (thus it could receive any packet forwarded
by the destination). This check can be done because all
nodes store a list of neighbors for every node in its
neighborhood.

• If true, the node can be a spontaneous watchdog. Conse-
quently, it will calculate how many nodes in the network
are in its same situation.

• If the number of nodes that fulfill the requirements are n,
a single node will select itself as a global agent for this
packet with a probability of 1

n . This process can resemble
as n people with 1 dice of m sides each, where n = m,
trying to obtain a 1 in the dice to activate the global agent.

It could seem that this technique increases the energy
consumption of the nodes to prohibitive levels by making them
receive and analyze every packet sent inside their neighbor-
hood. However, in the MICA2 radio stack, every node must
receive and process the packets sent by their neighbors - they
cannot know if the packet is addressed or not to them “a priori”
[21]. Therefore, the only overhead imposed to the nodes will
be the decision of being an spontaneous watchdog, and the
energy consumption of activating the global agent will be
distributed over all of them.

The spontaneous watchdog technique, however, does not
assure that one and only one node will activate its global agent
for every packet in the network, due to the independence of the
nodes’ behavior. The probability that α nodes have to activate



Fig. 2. Number of Spontaneous Watchdogs, with (a) Normal Probability, (b) Double Probability

their global agents at the same time is given by the following
equation:

f(α, n,m) =
PRn−α,αn · (m− 1)n−α

V Rm,n
(1)

where PRn−α,αn is the formula of permutation with repeated
elements, V Rm,n is the formula of r-permutations with repeti-
tion, n is the number of nodes that could activate their global
agents (i.e., the number of nodes that are going to throw a
dice), and m is the number of nodes that are going to influence
on the probability of activating the global agents, normally
equal to n (i.e., the number of sides of every dice).

In the assumption that every node has the same probability
of activating its global agent (as shown in Fig. 2a, where
n = m = {3, 5, 10, 25} and α = [0..10]), one of three
packets in the network will go unsupervised, and most packets
will be analyzed by one or two nodes of their neighborhood
independently of the density of the network.

However, it is possible to tweak the behavior of the nodes by
increasing that probability (decreasing m in Eq. (1)), as shown
in Fig. 2b. Therefore, it is possible to decrease the number
of packets left unsupervised by increasing the probability of a
single node being a watchdog, but at the same time the number
of nodes activating their global agents will increase.

F. Agent Cooperation

As stated before, both local and global agents reside in the
same node, thus the results of their observations are stored in
a single alert database. When an agent (local or global) wants
to access information about previous actions of a suspicious
node, it can take advantage of the results obtained by itself and
the other agent. As a result, a collaboration between global and
local agents in the same node is achieved.

However, in most situations (e.g. a global agent in a spon-
taneous watchdog scenario) an agent will have to collaborate
with agents located in other nodes in order to obtain a more
accurate description of a threat, obtain more information about
a certain node, or aggregate their alert databases. Therefore, an
agent must be able to securely communicate and interchange
information with its neighbors using schemes such as majority
voting schemes [7], although this exchange should be reduced
to simple reports (e.g. about the credibility of a node) due to

bandwidth and energy constraints. Secure and authenticated
communications between neighbors are easily achieved in a
sensor network environment using existent key management
schemes [22].

Since any sensor node is prone to be tampered (or its identi-
fication falsified), any report coming from a single node must
be weighted with the information provided by the other nodes.
Local agents must be also aware of nodes that repeatedly ask
for information about other nodes, since they can be rogue
nodes trying to make a sleep deprivation attack.

IV. CONCLUSION

In this paper, we studied and discussed why IDS archi-
tectures for ad hoc networks cannot be applied into a sensor
network scenario. We also proposed a general IDS architecture
for static sensor networks, and introduced a new technique,
the spontaneous watchdogs, where some nodes are able to
choose independently to monitor the communications in their
neighborhood.

Future work will involve the implementation and simulation
of the architecture over a particular group of protocols in order
to study the energy consumption and IDS performance of
this model. There are other factors that must be thoroughly
investigated, such as how a node can deduce the number of
neighbors that can activate their global agents if no additional
information is available (e.g. when nodes cannot store the
complete neighbors list), how real-life radio models can affect
the spontaneous watchdog technique, how to successfully
aggregate alert data in a flat network, and other issues.
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APPENDIX
PROOF OF EQUATION (1)

The main purpose of (1) is to know the probability that α
nodes have to activate their global agents at the same time in a
neighborhood of n possible global agents, when the decision of
a node cannot influence others. This problem can be abstracted
into another one:

We have n players (nodes) in a table, and every
player has a dice with m sides (where m is usually
equal to n). We want to know the probability of α
players obtaining a “1” (i.e., activating the global
agents) when all players have thrown their dices
once.

In this new problem, we want to solve:

f(α, n,m) =
f ′(α, n,m)

f ′′(α, n,m)
(2)

where f ′(α, n,m) are all cases where n dices of m sides are
thrown and α and only α dices have a result of 1; f ′′(α, n,m)
are all cases where n dices of m sides are thrown.

If a player throws a dice, the result can be within one of
these two sets: {1} or {2..m}. The number of possible cases
where α and only α dices fall in the {1} set is the number of
permutations with repetition 3 of n elements (dices) where the
value that α elements fall into the {1} set and n−α elements
fall into the {2..m} set is

PRn−α,αn =
n!

n− α! · α!
(3)

With (3), we have obtained the number of cases where α
and only α dices fall in the {1} set. For example, if we have
n = 2 dices with m = 3 sides each, the number of cases
where one and only one dice (α = 1) falls in the {1} set are
equal to 2, i.e., {(1,[2..3]), ([2..3],1)}.

For every case in the previous example, we have n − α
dices that fall in the {2..m} set, with m− 1 elements inside.
Therefore, it is possible to know the number of cases where
α and only α dices have a result of 1, or f ′(α, n,m), if we
multiply (3) with (m− 1)n−α:

f ′(α, n,m) = PRn−α,αn · (m− 1)n−α (4)

because (m − 1)n−α are the ordered variations of m − 1
elements taken n− α times with repetition. In the previous
example (n = 2, m = 3, α = 1), the number of cases where
one and only one dice has a result of 1 are 2 · 2 = 4, i.e.,
{(1,2), (1,3), (2,1), (3,1)}.

Finally, f ′′(α, n,m), or all cases where n dices of m sides
are thrown, is the r-permutations with repetition of m elements
taken n times:

f ′′(α, n,m) = V Rm,n = mn (5)

We can conclude that both (1) and (2) are equal, and both
solve the same problem.

�

3We use permutations here because the order of the dices is important, since
every dice (node probability) is different and independent from the others.


