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Abstract—Key Management Schemes (KMS) are a very
important security mechanism for Wireless Sensor Networks
(WSN), as they are used to manage the credentials (i.e. secret
keys) that are needed by the security primitives. There is a
large number of available KMS protocols in the literature, but
it is not clear what should network designers do to choose the
most suitable protocol for the needs of their applications. In
this paper, we consider that given a certain set of application
requirements, the network designer can check which properties
comply with those requirements and select the KMS protocols
that contains those particular properties. Therefore, we study
the relationship between requirements and properties, and we
provide a web tool, the SenseKey tool, that can be used to
automatically obtain an optimal set of KMS protocols.
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I. INTRODUCTION
Wireless sensor networks (WSN) can be considered as a

sort of virtual skin, as they are able to provide information
from the physical world (e.g. humidity, temperature, radia-
tion) to any computer system. The core hardware elements of
a WSN, the sensor nodes, are small computers with limited
capabilities that are able to “feel” (sense their surroundings),
“think” (make use of their computational capabilities), “talk”
(communicate with each other using wireless transceivers),
and “subsist” (power themselves using batteries or other
energy sources). The information retrieved by these sensor
nodes is collected by interface devices known as base sta-
tions, and provided to any user interested in the information,
human or machine.

Research on WSN has been very active these last years.
In fact, not only there are already some standards that can
provide support for WSN applications in home or industrial
environments (e.g. ZigBee [4], WirelessHART [5]), but also
WSN are seen as one of the foundational blocks for the
future Internet of Things [6]. Still, there are some challenges
that must be considered on the deployment of any WSN, and
one of those challenges is Security. In fact, due to its im-
portance for the bootstrapping of a secure link-layer channel
(i.e., based on pairwise key) amongst neighboring nodes,
one of the most important security mechanisms that must
be implemented in all applications is the Key Management

Scheme (KMS). However, many KMS protocols have been
proposed in the literature. As they provide different features
or properties, it is not an easy task for a network designer to
pinpoint the right scheme or protocol for WSN applications
without resorting to an exhaustive search.

In this paper, we consider that the requirements of a WSN
application are tightly linked with the properties offered by
KMS protocols. As a result, we provide an enumeration of
the different KMS properties and their relationship with the
application requirements. We also use such information as
one of the cornerstones of a web-based tool called SenseKey,
whose main purpose is to allow network designers to select
an optimal KMS protocol in a simple way.

The rest of the paper is organized as follows. In Section
II we further explain the importance of the KMS protocols,
highlighting the research and industrial efforts to obtain a
set of useful protocols. In section III, we enumerate the
most important KMS protocol properties, describing how
they are linked with the application requirements. Section IV
introduces the SenseKey tool, explaining both its underlying
algorithms and the design and usage of the web tool itself.
Finally, Section V concludes the paper.

II. KMS PROTOCOLS

Every system must be properly secured against malicious
threats that can affect its functionality, and WSNs are not an
exception. In fact, WSNs are especially vulnerable against
external and internal attacks due to their peculiar character-
istics. The devices of the network are usually constrained,
thus it is challenging to implement the necessary security
protocols. It is usually easy to physically access the sensor
nodes, allowing any experienced attacker to extract infor-
mation from the node. Finally, the wireless communication
channel can be easily accessed and attacked, and in fact due
to its distributed nature a WSN can be attacked at any point.
Therefore, it is necessary to develop lightweight security
mechanisms which can provide a basic layer of protection
for WSN applications.
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Figure 1. KMS Protocols Evolution.

One of the most important security mechanisms that
must be implemented in any WSN deployment is the Key
Management Scheme, or KMS. As most sensor networks
communicate through a wireless channel with other nodes,
it is necessary to protect this channel from attacks such as
message injection, eavesdropping, and packet relaying. This
protection is mainly provided by the security primitives, such
as symmetric key cryptography (SKC) and public key cryp-
tography (PKC). However, these primitives need of certain
security credentials (e.g. secret keys shared between nodes,
public key certificates) in order to be able to open a secure
channel. Precisely, the main tasks of a KMS protocol is to
create, distribute, and maintain such security credentials.

Due to its importance as one of the foundations for the
development of secure WSNs, the design of KMS protocols
has been one of the priorities of the research community
these last years. One example of this claim can be found
in Figure 1, which shows the number of unfiltered articles
whose title contains the words “Key Management” and
“Sensor Networks” in both Google Scholar and Scopus 1.
From the figure we can deduce that the number of KMS
protocols presented every year has been constantly growing,
although as of 2010 we already reached a peak point.
Another example of the previous claim is the high number
of KMS surveys that have been produced by the research
community (cf. [2], [3]). These surveys have studied the
different types of KMS protocols that are available in the
literature, providing in certain cases a detailed overview of
some KMS properties and features.

In fact, by analyzing the previous surveys, it is possible
to classify most KMS protocols into four categories. The
“Key Pool” Framework, whose first protocol was introduced
by Eschenauer and Gligor [9], considers that a node stores
a small subset of keys retrieved from a global key pool.

1http://scholar.google.com/,http://www.scopus.com/

If two nodes find a common key, they can use them to
establish a session key. In the Mathematical Framework,
certain KMS protocols (such as [10]–[12]) use mathematical
concepts (Linear Algebra, Combinatorics, and Algebraic
Geometry) for calculating the pairwise keys of the nodes.
The Negotiation Framework has a more simplistic approach,
where nodes negotiate all shared keys after the deployment
(cf. [13], [14], [18]). Finally, the Public Key Framework
relies on PKC to securely bootstrap the pairwise key of two
nodes over a public communication channel.

All the previous frameworks make use of somewhat com-
plex approaches and different strategies to provide desirable
properties such as network resilience (i.e. the ability to cope
with stolen credentials and rogue nodes). However, existing
WSN standards such as ZigBee [4] and WirelessHART [5]
use simple negotiation-based KMS protocols. ZigBee PRO
makes use of a network-wide ‘network key’, which protects
all communications at the network level and is shared by all
the nodes of the network, and a ‘link key’, which is used
to protect the communication channel between the node and
the central server. As for the key deployment mechanism, a
key known as ‘master key’, preconfigured in all devices, is
used to generate the link key by means of a Symmetric-Key-
Key-Exchange (SKKE) algorithm. Afterwards, the network
key is transmitted encrypted with the link key. As for
WirelessHART, it manages four different types of security
keys. There are two preconfigured keys, ‘public key’ and
‘join key’, which are used to bootstrap a link-layer pairwise
key shared between two nodes (‘session key’) and a key
shared by all network devices (‘network key’).

By using simple KMS protocols, these standards can
provide a general solution that fulfills the requirements of
many applications while consuming as less resources as
possible. Still, there are other scenarios that need of different
KMS protocols with specific properties in order to fulfill
their particular requirements. For example, one property that
has been widely considered in all KMS surveys is network
resilience. If we have a very critical environment where
a subverted node must cause as less damage as possible
to the network, the use of network-wide keys that can be
used by anyone to obtain the global session key of the
network should be discouraged. Another example is the
communication overhead property: some environments (e.g.
Underwater Sensor Networks) should send as less messages
as possible in order to bootstrap the security credentials
due to diverse factors such as energy consumption, channel
constraints [8], security concerns, and others.

III. MAPPING APPLICATION REQUIREMENTS TO
KMS PROPERTIES

It has been shown in the previous section that there are
many KMS protocols, either created by the industry or
developed by the academia, that can be used to distribute
the security credentials. One problem that network designers



face for the creation of a particular WSN application is to
choose the most suitable KMS protocol for their needs. In
fact, some protocols may seem to be better than others,
but it is not exactly clear which one performs the best.
One particular approach that can be effectively used to
solve this problem is to analyze the relationship between
the application requirements and the properties of the KMS
protocols: Given a certain set of application requirements
(e.g. the network contains thousands of nodes), the network
designer can check which properties comply with those
requirements (scalability), and select the KMS protocols that
contains those particular properties.

In order to achieve this particular approach, it is necessary
to complete two tasks: i) discover and enumerate the most
important KMS protocol properties, and ii) describe how
they are linked with the application requirements (e.g. the
Scalability property is not important in WSNs whose size is
small). A summary of the results from both tasks is presented
in the following paragraphs. For obtaining these results, we
have studied the security and operational requirements of
sensor networks relevant to the key management, and we
have also analyzed the actual state of the art and the existing
surveys in the area.

1) Memory Footprint (Mm): A sensor node is usually
constrained in terms of memory (e.g., < 16 kB of data
memory and < 256 kB of instruction memory). Therefore, it
is important to know what is the amount of data memory that
a KMS protocol requires for storing the security credentials
used for bootstrapping the entire infrastructure. The amount
of instruction memory that a KMS needs to implement the
whole protocol is also important.

The importance of this property is closely associated with
the complexity of a particular application. In general, the
simpler the application is, the more space can be used for
storing security credentials.

2) Communication Overhead (Cm): In most KMS proto-
cols, the nodes must exchange information with their peers
through communication channels in order to establish their
pairwise keys. While some protocols may require the ex-
change of a small amount of information, the other protocols
may need to undergo complex negotiation processes among
peers.

There are many WSN scenarios where the communication
overhead should be reduced to a minimal level. For instance,
when an application needs to establish the links to provide
its services within a very short period of time.

3) Processing Speed (Sp): Sensor nodes are usually
severely constrained in terms of their computing power.
Fortunately many KMS protocols are not very computation-
ally intensive. As for the communication overhead property,
the time consumed in negotiating the pairwise keys mainly
includes the durations in sending and receiving messages
through the wireless channels. Nevertheless, some protocols
may indeed require some computational-intensive tasks.

The processing times for different key management
schemes are associated closely with the communication
overhead required by the KMS. In particular, some WSN
applications (e.g. mobiles nodes moving at a fast speed) may
require to set up a secure channel between two previously
unknown nodes as fast as possible. Thus, a fast establishment
of the communication link is critical, and a reduction in the
overhead can facilitate to shorten the link establishment time.

4) Network Bootstrapping (Sec): While the whole key
distribution process must be secure by itself, some protocols
do assume that the network is less likely to be in danger
right after its deployment, and choose to exchange some
secret information without any protection whatsoever. Other
protocols provide partial (and usually harmless) information
about the secret key (e.g. the index of the keys from a key
chain), and finally some protocols do not exchange sensitive
information at all (e.g. exchanging their IDs).

For the applications where the deployment environment is
secure enough, confidentiality in the bootstrapping process
is not an issue since there are no attackers in the area that
may steal the security credentials. However, the problems
may arise whenever the deployment area is open to public
or when the information managed by the sensor nodes is
important.

5) Network Resilience (Rs): Network resilience indicates
the ability to cope with stolen credentials and rogue nodes.
The higher the network resilience is, the lower the chance
is for a malicious attacker to control a significant part of the
network using the stolen credentials. The best resilience is
offered by the KMS protocols where nodes share pairwise
keys only with their direct neighborhood.

If the environment where a sensor network is deployed
is heavily protected or the probability of capturing a set of
nodes is extremely low, then the network resilience is not a
critical factor. Consequently, the need for network resilience
increases with the chance of a node being subverted by an
adversary.

6) Connectivity: Connectivity is a property which is
related to the capability for two sensor nodes to share the
same security credentials. There are three main connectivity
properties, as listed below.
● Global connectivity (GC) is the ratio between the

largest size of isolated components in the network and
the size of the whole network. If the GC is 100%, it
means that there is always a key path, i.e., a secure
routing path, between any two nodes in the network.

● Local connectivity (LC) can be defined as the proba-
bility that two neighboring nodes share the same secret
key right after the network starts to operate. If LC is
100%, then any node can securely communicate with
any of its neighbors without negotiation.

● Node connectivity (NC) is the probability of any two
nodes of the network to share one secret key, regardless
of their location in the network. If NC is 100%, then



any node in the network can open a pairwise secure
channel with any other node.

Global connectivity is usually quite important, as in many
scenarios all nodes are equally important for providing the
network services. Local connectivity is also important, as in
most cases the locations of the nodes are unknown and they
must be able to create a pairwise key with their neighbours.
Finally, node connectivity is indispensable in some WSN
application scenarios where nodes are mobile, requiring to
open a secure channel with any node in their vicinity.

7) Scalability (Sc) and Extensibility (Ex): A KMS pro-
tocol offers the scalability if it is able to support a WSN
network with a large number of nodes (at least at an order of
thousands). On the other hand, a KMS protocol is extensible
if it allows the inclusion of new nodes after its initial
deployment.

Scalability is not an important issue for the WSN applica-
tions that require a small number of sensor nodes (i.e., less
than 100). However, as the size of the network increases,
the scalability becomes more important. The extensibility
property is important for those scenarios where there may
exist hostile external entities. It is also important for those
applications which have to provide a service for a relatively
long period of time (where there should exist some mainte-
nance policies).

8) Energy (En): A sensor node usually relies on batteries
for powering itself. Since the establishment of pairwise
security credentials between nodes is an energy-consuming
task (transmitting the security credentials, sending/receiving
data to/from other peers, etc.), it is important to consider
how much energy is consumed during the operation of a
KMS protocol.

On the other hand, there are also some scenarios where
energy saving is not a critical factor. For instance, in WSNs
with a relatively short lifetime or in network configurations
whose nodes can access to unlimited energy sources, such
as solar energy or even normal power lines.

IV. SENSEKEY: CHOOSING A KMS PROTOCOL

In the previous section, we have discussed that network
designers can choose a KMS protocol that suits the needs
of their WSN applications by mapping the requirements of
such applications to the KMS properties. However, this is
actually a cumbersome task if performed manually: network
designers must figure out which are the specific properties
that are provided by the KMS protocols (although some of
the surveys can be used to complete this task, such as [3])
and study the suitability of every KMS protocol given the
application requirements.

As network designers need of an automated tool that
can provide them with the information they need, we have
designed a web tool, SenseKey. The core of SenseKey is a
well-defined algorithm that uses as an input i) the properties
that are essential for a KMS in the context of the WSN

application (main properties), and ii) the properties that
are important but not essential (secondary properties). The
algorithm uses this input to apply a set of filters to a list of
KMS protocols, and provides as an output the most suitable
protocols. Note that a partial version of this algorithm has
been defined before [7], but neither was complete (i.e. it was
not possible to automate its behaviour) nor it considered all
the KMS properties presented in the previous section.

A. KMS SELECTION ALGORITHM

The first step of the algorithm (step 0) consists of con-
structing the table shown in Table I, which provides the
information on how different protocols fit to the properties
introduced in Section III. Due to space restrictions, the table
includes only some of the most relevant KMS protocols in
the literature. Note that this table can be easily extended, just
by inserting an additional row with the properties of a new
protocol. Some properties are labelled as design-dependant,
since there are protocols that can be tweaked in order to
offer better properties. Also, it is indicated whether a certain
protocol requires particular deployment knowledge.

Based on the table generated in step 0, the following series
of well-defined steps take place:

1) The network designer identifies the properties of the
specific WSN scenario or application by analyzing
its requirements, according to the descriptions given
in Section III. Then, he/she decides which of those
properties are essential for a KMS in the context of
the WSN application (main properties), and which are
important but not essential (secondary properties).

2) The network designer selects from Table I all the
KMS protocols that fulfill one or more of the main
properties with the sign “++” or “+”. These protocols
conform the KMS candidate set for the particular
WSN application.

3) From the KMS candidate set, the network designer
discards all the protocols that have one of its main
properties or secondary properties with the sign “−−”
or “−”. Note that if a property is affected by the
variables used in the design of the protocol, it should
be ignored. As a result, the KMS candidate set will
only contain the protocols that are at least good enough
to fit the major properties of the application.

4) From the resultant KMS candidate set, the network
designer discards all the protocols that do not have
every main properties marked with the sign “++” or
“+”. As a result of this step, the KMS candidate set
will contain the protocols that provide the essential
properties required for the WSN application.

5) Finally, the network designer reviews the protocols
still contained in the KMS candidate set and choose
the most suitable one for the application. Note that it is
possible to order the protocols inside KMS candidate
set in terms of their properties. Also, the network



Table I
MAJOR PROPERTIES FOR WIDELY USED KMS

Protocol Cm GC LC NC En Ex Mm Rs Sc Sec Sp
Key Infection [13] − ++ ++ −− + −− ++ ++ ++ −− +

SAKE [14] ++ ++ −− ++ ++ ++ −−

Generalized Quadrangle [11] −− ++ −− −− ++ ++

Symmetric Design [11] ++ ++ ++ ++ −− ++ −− ++

Hybrid Designs - Generalized Quadrangle [11] # # # − ++ # ++

Basic Probabilistic Key Pre-distribution [9] − − − − # − ++

Random Key Pre-distribution [20] + + + −− # − ++

Blom Key Pre-distribution [10] ++ ++ ++ ++ −− # # # +

Multiple Space Key Pre-distribution [10] − − − − −− # ++ ++

Multiple ID-Based one-way Function [15] −− ++ ++ −− −− ++ −− ++ ++

Multiple Space Blom (MBS) [15] ++ −− # # #
Deterministic Multiple Space Blom DMBS [15] − − − − # ++ ++

Robust Continuity Blom [21] + ++ ++ ++ ++ # # + + −

Grid Based Key Pre-distribution [12] ++ ++ ++ −− −− # ++ # −−

Polynomial Based Key Pre-distribution [12] ++ ++ ++ ++ −− ++ # # # ++ −−

Random Subset Assignment [12] − − − − −− # # ++ −−

PIKE [16] − − − − − ++ ++

LEAP+ [17] ++ ++ −− ++ # ++ ++

Panja [18] ++ ++ −− −− ++ −− ++ −−

RPB Scheme [19] ++ ++ ++ ++ ++ − + ++ ++

Public Key Cryptography-based KMS [22] ++ ++ ++ ++ −− ++ ++ ++ + −−

Notation
Advantage ++

Disadvantage −−

Advantage, depending on the design of the protocol +

Disadvantage, depending on the design of the protocol −

Either advantage or disadvantage, depending on the design of the protocol #
Node locations are known before deployment

designer must pay attention to the design parameters
of a protocol if any of the main properties or secondary
properties are dependant on them.

It must be noted that the algorithm may produce an empty
KMS candidate set, meaning that there is no protocol that
can completely fulfill the application requirements. However,
it is important to realize that it is still possible to manually
identify the protocols that partially comply with steps 3 and
4 in the method. Therefore, it is possible to apply one of
those partially suitable protocols for that scenario.

B. SENSEKEY: THE WEB TOOL

As a second step in our goal to facilitate the selection
of a set of KMS protocols, we have implemented the core
of SenseKey as a web tool2. In this tool, the user has
to enter the main properties and secondary properties of
the WSN application, together with other information (e.g.,
the existence of deployment knowledge, etc.). Once the
properties are selected, the SenseKey tool will output a
list of suitable KMS protocols. For every selected protocol,
the tool provides a list of its advantages (i.e. properties
fulfilled by the protocol) and disadvantages (i.e. properties
not fulfilled by the protocol), pointing out the properties
that are considered design-dependant and highlighting the
properties that were required by the network designer. The

2http://www.lcc.uma.es/∼roman/KMSCRISIS

user of the tool can also check anytime the scholarly article
that explains the protocol by clicking its name.

Internally, Sensekey is designed with the purpose of sep-
arating the logic of the application from the presentation of
the information. Whenever the user requires the application
to provide a set of suitable KMS protocols, a controller class
initializes the model (retrieving the database of protocols
from a XML file) and executes the Sensekey algorithm.
After that, a viewer class provides an user-tailored output
(using a printer-friendly css template or a web-oriented one),
generating the user interface by querying the actual state
of the model. The web application is implemented using
JavaServer Pages over tomcat.

Finally, as this tool is meant to be used by a wide range
of users, both WSN experts and non-experts alike, we have
followed certain usability principles in order to make an
user-friendly tool. The tool includes a manual that explains
not only how the tool itself should be used, but also how
to find which properties can be considered main properties
or secondary properties. Besides, the interface of the tool
also offers context-sensitive help for every listed property.
Moreover, the output of the tool show the protocols in order
of relevance, that is, the protocols who comply with more
properties are shown first.



V. CONCLUSIONS
In order to help network designers to decide on a par-

ticular KMS protocol, this paper has described how the
properties characterizing a protocol are related to the re-
quirements of WSN applications. This leads to our proposed
KMS selection algorithm, which is the cornerstone of the
SenseKey web tool. The results provided by this paper can
be used as a foundation for a) creating a similar tool for
cluster-based KMS, and b) analyzing the KMS properties
that need to be fulfilled by the current state of the art.
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