
Non-repudiation protocols for multiple

entities 1

Jose A. Onieva a,2 Jianying Zhou b,3 Javier Lopez a

aComputer Science Department, E.T.S. Ingenieria Informatica
University of Malaga, 29071 - Malaga, Spain

bInstitute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore 119613

Abstract

Non-repudiation is a security service that provides cryptographic evidence to sup-
port the settlement of disputes. In this paper, we introduce the state-of-the-art of
non-repudiation protocols for multiple entities. We extend an existing multi-party
non-repudiation (MPNR) protocol to allow an originator to send different messages
to many recipients in a single transaction. We further propose an optimistic multi-
party non-repudiation protocol for exchange of different messages. The performance
of our protocols with enhanced functionalities is still promising in comparison with
existing multi-party non-repudiation protocols.

Key words: multi-party non-repudiation, fair exchange, security protocol,
electronic commerce

Email addresses: onieva@lcc.uma.es (Jose A. Onieva),
jyzhou@i2r.a-star.edu.sg (Jianying Zhou), jlm@lcc.uma.es (Javier Lopez).
1 Part of the work has been published in [14].
2 The first author’s work was done during his attachment to Institute for Infocomm
Research under its sponsorship.
3 Contact author.

Preprint submitted to Elsevier Science 27 May 2004

J. A. Onieva, J. Zhou, and J. Lopez, “Non-repudiation Protocols for Multiple Entities”, Computer Communications, vol. 27, pp. 1608-1616,
2004.
NICS Lab. Publications: https://www.nics.uma.es/publications



1 Introduction

Electronic commerce could be defined in several ways and it is difficult to
find out which of them is the most appropriate. New concepts like e-payment,
e-banking, e-lottery, e-voting, etc., belong to this area. Nevertheless, we can
define electronic commerce as “commercial transactions carried out with the
assistance of telecommunications” [17]. What seems to be clear is that e-
commerce helps businesses to expand their strategy and market, and for
that, most of them are being shifted to the Internet or taking advantages of
other digital sources. That means traditional paper-based transactions must
be transformed into digital procedures.

But during the last years the impressive growth of the Internet and more gen-
erally of open networks has created several security-related problems. Repudi-
ation is one of them. Non-repudiation must ensure that no party involved in a
protocol can deny having participated in a part or the whole of the protocol.
Therefore, a non-repudiation protocol must generate cryptographic evidence
to support dispute resolution. In a typical non-repudiation protocol, a trusted
third party (TTP) helps entities to accomplish their goals. Non-repudiation
is especially important in electronic commerce to protect customers and mer-
chants. It must not be possible for the merchant to claim that he sent the
electronic goods when he did not. In the same way, it must not be possible for
the customer to deny having received the goods. Other users such as online
tax payers or administration users for a secure paperless office would also need
a non-repudiation service.

In order to achieve a non-repudiation service, some common phases have to
appear in the protocol:

Service request - One or more parties involved must somehow agree, prior
to its origination and delivery, to utilize non-repudiation services and to
generate the necessary evidence for a non-repudiation service.

Evidence generation - Depending on the non-repudiation service being pro-
vided and the non-repudiation protocol being used, evidence could be gener-
ated by the originator, the recipient, or the trusted third party. The elements
of non-repudiation evidence and the algorithms used for evidence generation
are determined by the non-repudiation policy in effect and service request
phase. Namely, evidence can be generated using secure envelopes or digital
signatures. The latter is more widely employed. A digital signature basically
links a message with its originator, and also maintains the integrity of the
message.

Evidence transfer - The evidence generator must transfer the evidence to
the party who may ultimately need to use it. The principal participants
may utilize trusted third parties to receive evidence.
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Evidence verification and storage - Newly received evidence should be
verified to gain confidence that the supplied evidence will indeed be adequate
in the event of a dispute arising. The verification procedure is closely related
to the mechanism of evidence generation. As the loss of evidence could result
in the loss of future possible dispute resolution, the verified evidence needs
to be stored safely. The duration of storage will be defined in the non-
repudiation policy in effect.

Dispute resolution - This phase will not be activated unless disputes related
to a transaction arise. When a dispute arises, an adjudicator will be invoked
to settle the dispute according to the non-repudiation evidence provided by
the disputing parties. The evidence required for dispute resolution and the
means which the adjudicator will use to resolve a dispute are determined
by the non-repudiation policy in effect.

A non-repudiation protocol generates at least the following important evidence
for the participating entities:

Evidence of origin. This evidence is generated by the originator (perhaps
with the assistance of a TTP) for a particular message and intended to the
recipient, such that the originator cannot deny having sent that message.

Evidence of receipt. This evidence is generated by the recipient (perhaps
with the assistance of a TTP) for a received message and intended to the
originator, such that the recipient cannot deny having received that partic-
ular message from the originator.

In a typical two-party non-repudiation service, we identify several require-
ments, some of which could be optional, depending on the application the
non-repudiation service is running over:

Fairness. A non-repudiation protocol provides fairness if neither party can
gain an advantage by quitting prematurely or otherwise misbehaving during
a protocol. At the end of the protocol either the sender gets evidence of
receipt and the recipient receives a message as well as evidence of origin for
that message or none of them gets any valuable item.

Timeliness. A non-repudiation protocol provides timeliness if any of the par-
ticipating entities has the ability to reach the end of the protocol in a finite
amount of time without loss of fairness.

Confidentiality. A non-repudiation protocol provides confidentiality if none
but the intended parties can get access to the (plaintext) message sent
during the non-repudiation protocol.

Several solutions to fair non-repudiation have been developed [12]. Some of
them use a TTP which plays the role of a delivery agent between the partici-
pating entities. The major disadvantage of this approach is the communication
bottleneck created at the TTP. Nevertheless, Zhou and Gollmann presented
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a protocol [20] where the TTP intervenes during each execution as a “low
weight notary” rather than as a delivery agent. Other solutions use an off-line
TTP, assuming that participating entities have no malicious intentions and
the TTP does not need to be involved unless there is an error in the protocol
execution. This is called an optimistic approach. There are also solutions that
completely eliminate the TTP’s involvement. However, they need a strong re-
quirement: all involved parties must have the same computational power in
gradual exchange protocols, or fairness depends on the number of protocol
rounds in probabilistic protocols.

Previous work on non-repudiation in the literature was mostly focused on the
two-party scenario. There has been some work on the multi-party scenario in
the related topics like fair exchange, where multiple entities exchange items
among themselves without loss of fairness [5,8–10]. However, the research to-
wards a generalization of non-repudiation with multi-party involvement has
not been sufficiently undertaken. Markowitch and Kremer extended the two-
party non-repudiation scenario to allow one originator to send the same mes-
sage to multiple recipients in a single protocol run [11,13] 4 . In this paper,
we further generalize their multi-party non-repudiation (MPNR) protocol such
that the originator is able to send different messages to multiple recipients,
and more importantly, in an optimistic approach. We also analyze the per-
formance of our protocols, and discuss the cryptographic primitives for group
encryption as well as possible optimization based on VPN.

The following basic notation is used throughout the paper.

- x, y : concatenation of messages x and y
- uP : the public key of user P
- SP (X) : digital signature of user P over message X
- EK(X) : encryption of message X with key K
- h(X) : one-way hash function
- fp : a flag indicating the purpose of a message
- O → P : entity O sends a message to entity P
- O ↔ P : entity O fetches a message from entity P
- O ⇒ R : entity O broadcasts a message to a set of entities R

4 The use of a semi-trusted intermediary for multi-party non-repudiation was dis-
cussed in [15], which helps final entities to collect, verify, and store evidence in
electronic transactions.
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2 A Fair MPNR Protocol for Exchange of Different Messages

Typically, non-repudiation protocols, as well as fair exchange protocols, have
been studied as a two-party problem, in which Alice and Bob play the roles of
originator and recipient, respectively. Although research has been conducted
toward a multi-party scenario in fair exchange protocols [2,5,8,9] and contract
signing protocols [1,3], non-repudiation protocols have not received such at-
tention. Furthermore, some properties studied in multi-party fair exchange
protocols such as exclusion freeness [5] are not applicable for non-repudiation
protocols.

In a typical fair exchange protocol, each entity possesses an item, usually
known a priori, and is willing to exchange for an item belonging to another en-
tity. Hence, matrix or ring [10] topologies appear to provide solutions to these
scenarios. In a multi-party fair exchange protocol, one can imagine sending an
item to one entity and receiving an item from a different one. However, it does
not make sense in a non-repudiation protocol that one entity receives some
data and a distinct entity sends the corresponding receipt. Thus, in multi-party
non-repudiation protocols, one of the entities plays the role of originator, and
the others behave as recipients. Although other topologies could exist, this
seems to be the most intuitive. As an example we could think in a practical
certified e-mail application in which the sender wants to send a message (or
different messages) to multiple recipients in only one transaction. However,
other possibilities for generalization (e.g., many-to-one and many-to-many)
may also exist.

An extension by Kremer et al. [11] of a low weight notary protocol for two
entities [20] is the first non-repudiation protocol appeared in the literature
dealing with multiple entities. This protocol supports a one-to-many topology
in which the originator aims to send the same message to multiple recipients.
This protocol broadcasts a message among several entities and provides ev-
idence only to those entities who behave honestly during the protocol run,
using the same key k for encryption. Nevertheless, it is not possible to send
different messages to different recipients. In that way no personal and confi-
dential messages can be sent to these parties without loss of privacy.

For such a reason we propose an extension in which customized messages can
be sent to different parties in a confidential way. Sending (same or different)
messages to several recipients could mean a single transaction in a specific
application. Therefore, it would be better to store the same key and evidence
in the TTP record for every protocol run. In those types of applications, the
storage and computation requirements of the TTP are reduced and it will
be easy to distinguish between different transactions, regardless of how many
entities are involved.
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Some useful notation in the protocol description is as follows.

- O : an originator
- R : set of intended recipients
- R′ : subset of R that replied to O with the evidence of receipt
- Mi : message being sent from O to a recipient Ri ∈ R
- ni : random value generated by O
- vi = EuRi

(ni) : encryption of ni with Ri’s public key
- k : key being selected by O
- ki = k xor ni : a key for Ri

- ci = Eki
(Mi) : encrypted message for Ri with key ki

- li = h(O,Ri, TTP, h(ci), h(k)) : label 5 of message Mi

- L′ : labels of all the messages being sent to R′

- t : a timeout chosen by O, before which the TTP has to publish some
information

- ER′(k) : a group encryption scheme that encrypts k for the group R′ (see
section 4.1 for further details)

- EOOi = SO(feoo, Ri, TTP, li, t, vi, uRi
, ci) : evidence of origin for Ri

- EORi = SRi
(feor, O, TTP, li, t, vi, uRi

, ci) : evidence of receipt from Ri

- Subk = SO(fsub, R
′, L′, t, ER′(k)) : evidence of submission of the key to the

TTP
- Conk = STTP (fcon, O, R′, L′, t, ER′(k)) : evidence of confirmation of the key

by the TTP

In this extension, the use of the same key for all users creates a new problem
that did not appear in Kremer’s protocol. As messages are different, when
the same key k is used for encryption, and after the key k is published, any
recipient will be able to read the messages destined to the other recipients (by
eavesdropping the messages that are transmitted between O and R). More
importantly, Ri could get ci in the initial steps of the protocol and quit. Then,
colluding with any other party and getting the unique key k, it could decrypt
ci without providing any evidence of receipt. These problems are solved in our
extended multi-party non-repudiation protocol, introducing some extra cost
for the extended functionality over [11].

2.1 The Protocol

Here, we describe the protocol (see figure 1, where a dotted line indicates a
fetch operation).

5 There might be a potential attack [16] when the label l is constructed as h(m, k)
in the early literature, so we make the label unique in each run and verifiable by
any party.
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Fig. 1. Protocol with different messages

1. O → Ri : feoo, Ri, TTP, li, h(k), t, uRi
, vi, ci, EOOi for each Ri ∈ R

2. Ri → O : feor, O, li, EORi where Ri ∈ R
3. O → TTP : fsub, R

′, L′, t, ER′(k), Subk

4. O ↔ TTP : fcon, O,R′, L′, ER′(k), Conk

5. R′
i ↔ TTP : fcon, O,R′, L′, ER′(k), Conk where R′

i ∈ R′

The protocol works in the following way.

Step 1: O sends to every Ri the evidence of origin corresponding to the
encrypted message ci, together with vi. In this way, O distributes |R| messages
in a batch operation and each Ri gets the encrypted message as well as ni.
O selects the intended public key uRi

being used in the encryption of ni. If
Ri disagrees (i.e., its digital certificate has expired or been revoked), it should
stop the protocol at this step. There is no breach of fairness if the protocol
stops at step 1 because ci cannot be obtained without key k.

Step 2: Some entities (or all of them) send evidence of receipt of ci back to
O after checking evidence and labels. Again, there is no breach of fairness if
the protocol stops.

Step 3: O sends k and Subk to the TTP in exchange for Conk. The key k
is encrypted using a group encryption scheme where the group of users is R′.
Hence, only those entities belonging to R′ will be able to decrypt and extract
the key. Before confirming the key, the TTP checks that |R′| = |L′| holds and
the current time is earlier than t.

Step 4: O fetches ER′(k) and Conk from the TTP and saves it as the evidence
to prove that k is available to R′.

Step 5: Each Ri fetches ER′(k) and Conk from the TTP. They will obtain ki

by computing k xor ni. Also, they save Conk as the evidence to prove that k
originated from O.

We assume that the communication channels between the TTP and O as well
as each Ri are not permanently broken. Therefore, O and R′

i will eventually
be able to retrieve the messages from the TTP at steps 4 and 5, respectively.
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2.2 Dispute Resolution

Two kinds of disputes can arise: repudiation of origin and repudiation of re-
ceipt. Repudiation of origin arises when a recipient Ri claims having received
a message Mi from an originator O who denies having sent it. Repudiation
of receipt arises when the originator O claims having sent a message Mi to a
recipient Ri who denies having received it.

Repudiation of Origin. If O denies sending Mi, Ri can present evidence
EOOi and Conk plus (t, uRi

, vi, ci, ni, k, ER′(k),Mi, R
′, L′) to the arbitrator.

The arbitrator will check

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki
(Mi)

- li = h(O,Ri, TTP, h(ci), h(k))
- O’s signature EOOi

- TTP’s signature Conk

Repudiation of Receipt. If Ri denies receiving Mi, O can present evidence
EORi and Conk plus (t, uRi

, vi, ci, ni, k, ER′(k),Mi, R
′, L′) to the arbitrator.

The arbitrator will check

- Ri ∈ R′

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki
(Mi)

- li = h(O,Ri, TTP, h(ci), h(k))
- Ri’s signature EORi

- TTP’s signature Conk

It is important to note that the verification of vi = EuRi
(ni) can be carried out

by the arbitrator alone only if a deterministic asymmetric public encryption
algorithm is applied. Otherwise, if a non-deterministic algorithm is used (e.g.,
ElGamal cryptosystem [6]), either the recipient should prove vi = EuRi

(ni) to
the arbitrator, or the originator should provide the arbitrator with the random
seed used in encryption.

2.3 Efficiency

We compare our approach with the one where an n-instance of a two-party
protocol [20] is used in order to send messages to the intended parties. The ef-
ficiency of the three principal entities participating in the protocol is analyzed,
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using an operation comparison. For this comparison we will use the following
basic operations:

- signature generation and verification
- generation of random numbers
- asymmetric encryption and decryption
- modular equation computation
- store and fetch operation

Depending on which algorithm is chosen for each of these operations, the bit
complexity (as well as the bandwidth requirements) of each of the participating
entity will change, although the relation going between them remains.

We denote:

|R| = N
|R′| = N ′ (with N ′ ≤ N)
≈ roughly equal
> or < greater or smaller
À or ¿ much greater or smaller

Table 1
O’s Computation Complexity
n-instanced two-party Our approach
Evidence of origin EOOi = EOOi

N signatures. N signatures.
Generation of ki ≈ Generation of ni plus k
Evidence of submission Subki À Subk

N’ signatures. 1 signature.
Encrypted key EuRi

(ki) ¿ Encrypted key ER′(k) plus
EuRi

(ni)
N’ asymmetric encryptions. N’+N asymmetric encryptions.
N fetches operations of Conki À One fetch operation of Conk

Table 2
R′

is Computation Complexity
n-instanced two-party Our approach
Evidence of receipt EORi = EORi

Fetch ki and Conki = Fetch k and Conk

Obtain ki < Obtain k plus ni

Decrypts EuRi
(ki). Decrypt EuRi

(k).
Decrypt EuRi

(ni).

Hence we can see in table 3 the TTP’s efficiency is improved when it is gen-
eralized to multiple entities. Since communicating entities will usually pay for
the TTP services, we achieve a more efficient and cheaper TTP service. In ad-
dition, we can see in tables 1 and 2 that O’s efficiency is improved too, while
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Table 3
TTP’s Computation Complexity
n-instanced two-party Our approach
Store N’ keys À Store only one key
Generation of N’ evidences
Conki

À Generation of only one evi-
dence Conk

Ri’s is slightly increased. However, if the originator and the recipients have
any kind of previous relation between them and they all share a secret, then
the encryption of ni could be avoided in each protocol run though it should
be still included in evidence.

3 An Optimistic MPNR Protocol for Exchange of Different Mes-
sages

As we noted in section 1, there is an optimistic approach in non-repudiation
protocols where the entities are likely to behave honestly, thus giving priority
to the main protocol and running sub-protocols only in case that an exception
arises. Here we present an optimistic multi-party non-repudiation protocol
based on [7] 6 , and use the same solution described in the previous section for
the privacy of different messages.

As defined in [19], new properties for fair exchange (and also desirable in
non-repudiation protocols) are

Effectiveness. If two parties behave correctly, they will receive the expected
evidence without any involvement of the TTP.

Verifiability of Third Party. If the third party misbehaves, resulting in the
loss of fairness for an entity, the victim can prove the fact in a dispute.

In a comparable work [13], Markowitch et al. proposed a protocol for distri-
bution of the same message to several parties with a non-transparent TTP.
In their protocol, four steps are required in the main exchange, which is not
optimized. (As we will see, the main exchange can be reduced to only three
steps in our protocol.) Their protocol also makes use of a pre-defined time
constraint thus does not achieve asynchronous timeliness. In addition, their
protocol employs an inefficient ftp operation with the originator acting as a
server.

We assume that the communication channels to and from the TTP are not

6 The protocol [7] has some problems as being identified in [18]. Those problems
have been corrected in the design of our new protocol.
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permanently broken, which means that messages are delivered after an ar-
bitrary but finite amount of time. Some additional notation in the protocol
description is as follows.

- R′′ = R − R′ : a subset of R (in plaintext) with which O wants to cancel
the exchange

- R′′ finished : a subset of R′′ that have finished the exchange with the finish
sub-protocol

- R′′ cancelled = R′′−R′′ finished : a subset of R′′ with which the exchange
has been cancelled by the TTP

- l = h(c1, c2, .., k) : label 7 that identifies the protocol run computed as the
hash outcome of the concatenation of every encrypted message plus the key
k

- kT = EuTTP
(k) : key k encrypted with the TTP’s public key 8

- EOOi = SO(feoo, Ri, TTP, kT , l, vi, uRi
, h(ci), h(k)) : evidence of origin for

Ri

- EORi = SRi
(feor, O, TTP, kT , l, vi, uRi

, h(ci), h(k)) : evidence of receipt from
each Ri

- Subk = SO(fsub, l, k) : evidence of submission of the key to recipients
- Cancelreq = SO(TTP, R′′, l) : evidence of request of cancellation issued by

the originator to the TTP
- CancelO = STTP (O, l, R′′, R′′ cancelled, Cancelreq) : evidence of cancella-

tion issued by the TTP to the originator
- CancelRi

= STTP (Ri, l, EORi, Cancelreq) : evidence of cancellation issued
by the TTP to Ri

- Conk = STTP (Ri, l, k) : confirmation evidence of k issued by the TTP

3.1 The Protocol

The protocol consists of a main protocol (which will be the only one executed
by the entities in the normal situation) and two sub-protocols: cancel and
finish (see figure 2). The TTP is only involved in the sub-protocols in case of
any participant’s misbehavior or channel failure between the originator and
the recipients. Any participant can initiate the corresponding sub-protocols to
terminate a protocol run at any time without loss of fairness.

The main protocol executed by the final entities is

7 Note that with the reduction to 3 steps in the main protocol, the attack proposed
in [16] does not work in our approach.
8 To prevent attacks on such a ciphertext, the encryption scheme should provide
non-malleability, i.e., it should be impossible to modify this ciphertext to construct
a different meaningful related ciphertext.
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Fig. 2. Optimistic protocol with different messages

1. O → Ri : feoo, Ri, TTP, kT , l, vi, uRi
, ci, h(k), EOOi for each Ri ∈ R

2. Ri → O : feor, O, l, EORi where Ri ∈ R
3. O ⇒ R′ : fsub, l, ER′(k), Subk

In step 1, the originator sends to each recipient its message encrypted with
ki. A recipient can derive ki from k and a random number ni which are also
sent in this step (in a confidential way). Note that the TTP is included in this
step, thus there is no confusion about which TTP to use in case they have
to launch any of the sub-protocols. The originator picks each receiver’s public
key. If any recipient does not want to use such a key (e.g., the correspondent
public key certificate has been revoked), then it stops the protocol. Otherwise,
after verifying the data obtained, the recipient sends to the originator evidence
of receipt at step 2 and the originator sends to the set of recipients who replied
after a reasonable amount of time at step 3, the key and evidence of submission
of that key, as a second part of evidence of origin. If O did not receive a correct
message 2 from some of the recipients R′′, O may initiate the following cancel
sub-protocol:

1′. O → TTP : TTP, R′′, l, Cancelreq

2′. TTP FOR (all Ri ∈ R′′)
IF (Ri ∈ R′′ finished) THEN retrieves EORi

ELSE appends Ri into R′′ cancelled
3′. TTP → O : all retrieved EORi, R′′ cancelled, CancelO

In this case the originator communicates the TTP its intention of revoking
the protocol with entities contained in R′′ and for the protocol run labelled l.
After verifying O’s cancel request, the TTP checks which entities previously
resolved the protocol and gets their proofs of receipt. The TTP generates an
evidence of cancellation for the rest of entities and includes everything in a
message destined to the originator. We do not send any information about
the message, keys and EOO as [7] does because we use a well-defined label for
indexing purposes on the TTP side.

Note that the originator does not have any interest in sending a subset R′′ 6= R′′
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when requesting to the TTP for cancellation. If R′′⊃ R′′, then O will cancel the

exchange with those Ri ⊂R′′ −R′′ that have replied with EORi. If R′′⊂ R′′,
then Ri ⊂ R′′− R′′ may invoke the finish sub-protocol below to get the key k
but O will not obtain EORi from the TTP at the above cancel sub-protocol.

If some recipient Ri did not receive message 3, Ri may initiate the following
finish sub-protocol:

1′. Ri → TTP : TTP, kT , l, vi, uRi
, h(ci), h(k), EOOi, EORi

2′. TTP → Ri : IF (Ri ∈ R′′ cancelled) THEN Ri, l, R
′′, Cancelreq, CancelRi

ELSE {Ri, l, EuRi
(k), Conk

appends Ri into R′′ finished and stores EORi}

The recipient sends to the TTP all the information that it has already got
from the originator along with its evidence of receipt. If this entity does not
belong to the group of entities with which the originator has cancelled the ex-
change, the TTP verifies all the information (digital signatures) and decrypts
kT , getting the key for the recipient. It also stores EORi. Note that if the
protocol has been cancelled, then it should be impossible for the recipient to
cheat the TTP in a way that the TTP reveals the key k for that protocol
run. For such a reason, the TTP must verify O’s signature in the first step
and check that l and kT provided by the recipient fits with the information
contained in EOOi.

Otherwise, the TTP sends a cancellation evidence to the recipient such that
the latter can easily demonstrate to an arbitrator that the exchange was can-
celled in case a dispute arises. This evidence includes the request of cancella-
tion, such that the TTP’s behavior is verifiable while the TTP need not store
all the request evidences from the originator.

3.2 Dispute Resolution

As we have mentioned, two kinds of disputes can arise. Here we further discuss
the rules for their resolution.

Repudiation of Origin. If O denies sending Mi, Ri can present evidence
EOOi and Subk (or Conk) plus (TTP, l, uRi

, vi, ci, ni, k, kT ,Mi) to the arbi-
trator. The arbitrator will check

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki
(Mi)

- O’s signature on EOOi

- O’s signature on Subk, or TTP’s signature on Conk
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- k certified in Subk (or Conk) matches h(k) certified in EOOi

Repudiation of Receipt. If Ri denies receiving Mi, O can present evidence
EORi plus (TTP, l, uRi

, vi, ci, ni, k, kT ,Mi) and (R′′, R′′ cancelled, Cancelreq,
CancelO) if it has. The arbitrator will check

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki
(Mi)

- Ri’s signature on EORi

- k matches h(k) certified in EORi

- TTP’s signature on CancelO and Ri /∈ R′′ cancelled

O will win the dispute if all the above checks are positive. If all the checks, but
the last, are positive and O cannot present evidence CancelO, the arbitrator
must further interrogate Ri. If the latter cannot present CancelRi

(or this
token is not properly constructed including Cancelreq from O), O also wins
the dispute. Otherwise, Ri can repudiate having received the message Mi.

We can also see that evidence provided by the TTP is self-contained, that
is, the TTP need not to be contacted in case a dispute arises regarding the
occurrence or not of the cancel sub-protocol launched by O. Thus, the TTP
is efficiently verifiable.

3.3 Protocol Extensions

Transparent TTP. Our protocol can be modified such that the recipient
can obtain the same evidence of origin even in case it needs to launch the
finish sub-protocol. For this, we only have to make possible for the TTP to
send O’s signature Subk whenever the recipients try to fetch the key. In this
way, external parties will not be able to distinguish if the recipient launched
the finish sub-protocol, since the evidence obtained is the same. It helps to
preserve O’s reputation in case of channel failures. We simply redefine kT as
follows.

kT = EuTTP
(k, Subk)

In the finish sub-protocol, the TTP decrypts kT and additionally checks that
Subk is O’s signature on (fsub, l, k). If the TTP succeeds in all the checks, then
it provides Subk to the recipient instead of Conk.

Message Confidentiality. Our protocol has already fulfilled the confiden-
tiality requirement in respect of external attackers. However, if we also want
to keep the message confidential to the TTP as well, the originator needs to
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transmit ci to the recipients in a private way (e.g., via private channel such as
SSL).

3.4 Efficiency

This protocol is very efficient in case of a good behavior of the participating
entities. (In fact, 3 steps are the minimum number of steps we could reach
without breaking fairness in non-repudiation protocols.) Even with multiple
recipients for exchange of different messages, it manages to use only one key
for evidence distribution, thus decreasing the computation and verification
requirements for the originator and the TTP. For this new feature, public key
encryption and decryption of temporal random numbers are the main extra
cost added.

It is straightforward to see that this protocol is more efficient than any com-
bination of two-party protocols, since it permits to send different messages in
a confidential way to multiple entities as well as to cancel the protocol for a
group of entities R′′ in only one run of the cancel sub-protocol. In addition,
this protocol achieves asynchronous timeliness, as each entity can terminate,
if needed, the protocol at any time at their own discretion while maintaining
fairness.

4 Further Discussions

The proposed approaches for multi-party non-repudiation protocols consid-
erably improve the number of messages exchanged as well as the amount of
evidence collected by the final entities involved. However, they are the first
effort to generalize the non-repudiation service to multiple entities and might
be reviewed to further improve their efficiency.

4.1 Group Encryption

Along the description of the protocols presented in previous sections, we have
been using the notation ER′(k) to define an encryption operation over the
key k intended for a group R′. In the multi-party non-repudiation protocol
proposed in [11], a group encryption scheme [4] is used. It is based on a public
key encryption scheme and on the Chinese Remainder Theorem (CRT). As
the authors explained, it is efficient only when the number of users is small,
since the time to compute the CRT and its length (hence transmission time)
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is proportional to the number of users. This method is generic as it can use
any public key cryptosystem:

- Let uRi
and uRi

be the public and private keys of Ri, respectively (where i
corresponds to all parties that belong to R′).

- Each recipient of R′ receives a random integer Pi > EuRi
(k) such that all

Pi are pair-wise relatively prime. (When choosing randomly large primes or
multiplications of distinct primes for example, the probability of obtaining
two numbers that are not relatively primes is negligible.)

- O computes X ≡ EuRi
(k) mod Pi. As all of Pi are prime integers, using the

CRT, only one solution is obtained from this equation. Hence, ER′(k) ≡ X.
Each recipient Ri can obtain k by computing X ≡ EuRi

(k) mod Pi using
her private key uRi

.

From a computational point of view, we know that the CRT is an additional
effort to the encryption with each user’s public key. Analyzing the CRT prop-
erties we realize that X can be of the same magnitude as

∏m
i=1 Pi with m the

number of users in the group R′. Besides, from the second step above we know
that Pi > EuRi

(k) for every i, so the length of the message distributed to
the recipients is still long. Although it is direct to prove that the length of a
message M such that M = M1M2 · · ·Mn (a simple concatenation of messages)
with Mi of the same length is greater than M ′ such that M ′ = M1∗M2∗· · ·Mn,
it is also true that Pi needs to be much greater than EuRi

(k) to avoid possible
problems in future encryptions, thus making M and M ′ approximately of the
same size.

As a result, the distribution length improvement of message X with the CRT-
based group encryption is not significant. Furthermore, in that scheme, the
authors assume a model in which each recipient Ri has already got the random
numbers Pi. However, if we assume that the originator had no prior contact
with the recipients, the random numbers have to be distributed by the origina-
tor in each protocol run, thus losing any possible advantage. For these reasons
we remove the CRT operations and define the group encryption operation as a
straightforward concatenation of public key encryptions to each final recipient
as follows:

ER′(k) = EuR1
(k), EuR2

(k), · · · , EuRm
(k)

4.2 Optimization based on VPN

As each topology has its own requirements, our protocols should be adapted
to fulfill these requirements, and moreover, adapted to take advantage of the
new features.

16



Basically, a VPN is a private network that uses a public network (usually
the Internet) to connect remote sites or users together. Instead of using a
dedicated connection such as a leased line, a VPN uses “virtual” connections
routed through the Internet. Remote access to VPNs permits secure, encrypted
connections between a private network and remote users through a third-
party service provider (e.g., Virtual Private Dial-up Network) or between more
private networks (e.g., Intranet-based and Extranet-based VPN ).

Inside a VPN, there is typically an AAA (Authentication, Authorization and
Accounting) server that distributes symmetric keys to a user for confidential
communications with other users in the VPN. Therefore a sender can use the
symmetric keys to encrypt the messages for the recipients, and all the encryp-
tion operations with the recipient’s public key used in our previous protocols
can be replaced. For example, vi was defined as vi = EuRi

(ni). Now, ni can be
sent to each recipient without public key encryption since the channel between
a pair of entities is ciphered in a VPN. This improvement on the computa-
tional overheads is applied |R| (number of recipients) times in one protocol run
for each public key encryption that we used. In addition, the group encryption
scheme can also be changed to take advantage of the symmetric keys in the
VPN, i.e., ER′(k) = Esk1(k), Esk2(k), · · · , Eskm(k) where ski is the key shared
between the sender and each recipient. With such an optimization, efficiency
of final entities in our protocols is further improved.

5 Conclusion

The aim of this paper is to extend the traditional two-party non-repudiation
protocols for multiple entities. This is because the two-party instance of this
service in multi-party applications seems to be too heavy considering the num-
ber of network messages as well as the amount of evidence that the final entities
have to manage.

At the beginning of this paper, we clearly defined the properties that a non-
repudiation protocol is required to respect. Following the first research con-
ducted on multi-party non-repudiation protocols proposed in [11,13], we ex-
tended that scenario such that sending different messages to different entities
in only one transaction is possible. This protocol uses a light-weight on-line
TTP in every transaction. However, there are situations in which the final en-
tities could be willing to launch a non-repudiation protocol without the TTP’s
assistance (either because it is expensive for the TTP’s service or because the
entities have some kind of trust to each other) unless an error or channel fail-
ure occurs. For these situations we designed an optimistic protocol that uses
only three steps in its main protocol.
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As any non-repudiation protocol design, we further discussed the dispute res-
olution process and the efficiency matters of each design. We also reviewed
the cryptographic primitives used in the construction of each protocol.
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