
Agent-Mediated Non-repudiation Protocols

Jose A. Onieva a Jianying Zhou a Javier Lopez b

Mildrey Carbonell b

aInstitute for Infocomm Research, 21 Heng Mui Keng Terrace
Singapore 119613

bComputer Science Department, E.T.S. Ingenieria Informatica
University of Malaga, 29071 - Malaga, Spain

Abstract

Non-repudiation is a security service that provides cryptographic evidence to sup-
port the settlement of disputes in electronic commerce. In commercial transactions,
an intermediary (or agent) might be involved to help transacting parties to con-
duct their business. Nevertheless, such an intermediary may not be fully trusted. In
this paper, we propose agent-mediated non-repudiation protocols, and analyze their
security requirements. We first present a simple scenario with only one recipient,
followed by a more complicated framework where multiple recipients are involved
and collusion between them is possible. We also identify applications that could
take advantage of these agent-mediated non-repudiation protocols.

Key words: electronic commerce, non-repudiation, fair exchange, group
communications, intermediary services

? A preliminary version of this paper was published at IEEE CEC’03 [1]. Contact
author: Jianying Zhou.

Email addresses: onieva@i2r.a-star.edu.sg (Jose A. Onieva),
jyzhou@i2r.a-star.edu.sg (Jianying Zhou), jlm@lcc.uma.es (Javier Lopez),
mildrey@crypto.lcc.uma.es (Mildrey Carbonell).

Preprint submitted to Elsevier Science 13 January 2004

J. A. Onieva, J. Zhou, J. Lopez, and M. Carbonell, “Agent-mediated non-repudiation protocols”, Electronic Commerce Research and Applications,
vol. 3, pp. 152-162, 2004.
NICS Lab. Publications: https://www.nics.uma.es/publications

1 Introduction

In e-commerce, where business cannot be conducted face to face, it is not re-
alistic to expect all parties to trust and to cooperate with one another during
the entire purchasing process. Since various participants, all having differ-
ent requirements, operating in different, distributed and heterogeneous envi-
ronments, are encompassed in an e-commerce interaction, non-repudiation is
identified as a key requirement for designing transaction models and protocols.

During the last years the impressive growth of the Internet and more generally
of open networks has created several security-related problems. Repudiation
is one of them. Non-repudiation is an important requirement in electronic
transactions to protect customers and merchants [2]. It must not be possible
for a merchant to claim that he sent the electronic goods when he did not.
In the same way, it must not be possible for a customer to falsely deny hav-
ing received the goods. Evidence should be collected to resolve these disputes
arisen between participating entities in an electronic commerce scenario. Dig-
ital signature serves as a major type of cryptographic evidence, which links a
message with its originator and also maintains the integrity of the message.

A number of solutions towards fair non-repudiation have been developed [3].
Some of them use a Trusted Third Party (TTP) that plays the role of a trusted
intermediary between the participating entities. The major disadvantage of
this approach is the communication bottleneck created at the TTP. Neverthe-
less, Zhou and Gollmann presented a protocol [4] where the TTP intervenes
during each execution as a “low weight notary” rather than as an intermedi-
ary. Other solutions use an off-line TTP, assuming that participating entities
have no malicious intentions and the TTP need not be involved unless there
is an error in the protocol execution. This is called an optimistic approach.
There are also solutions that eliminate the TTP’s involvement, but based on
a strong requirement: all involved parties must have the same computational
power in gradual exchange protocols, or fairness depends on the number of
protocol rounds in probabilistic protocols.

The research towards a generalization of non-repudiation, where multiple en-
tities may participate in non-repudiation protocols, has been undertaken by
Kremer and Markowitch [5,6]. An extension that allows one originator to send
different messages to many recipients in a non-repudiation protocol appeared
in [7]. Some work about multi-party scenarios in a related topic such as fair
exchange, where entities have to exchange (accorded) items between them
without loss of fairness, also exists [8–10].

The use of an intermediary (or agent) to improve electronic transactions is
not novel and can be found in [11,12]. Nevertheless, no agent-mediated non-

2

repudiation protocol exists to the best of our knowledge. Although two-party
non-repudiation protocols could be used to implement an agent-mediated non-
repudiation protocol, we will propose a new approach to improve the efficiency
of such an implementation. In our new approach, a distrusted intermediary
entity (different from the TTP) is introduced to facilitate the collection, verifi-
cation, and storage of evidence on behalf of the final entities. We demonstrate
that the use of such an intermediary entity satisfies the security requirements
expected in an e-commerce transaction.

The remainder of the paper is organized as follows. In Section 2, we define
our model with a new entity involved, identify the security requirements, and
present an intuitive solution which will be compared later with our new ap-
proach. In Section 3, we present a simple agent-mediated non-repudiation
protocol with one recipient only. In Section 4, we augment this scenario to the
one where multiple recipients are involved. In Section 5, we further extend the
scenario to multiple recipients for exchange of different messages. We identify
some applications for agent-mediated non-repudiation protocols in Section 6
before concluding the paper in Section 7.

The following basic notation is used throughout the paper.

- A → B : X : entity A sends message X to entity B
- A ↔ B : X : A fetches message X from B
- A ⇒ ∏

: X : A multicasts message X to a set
∏

- X, Y : concatenation of messages X and Y
- uP : the public key of user P
- SP (X) : digital signature of user P over message X
- EK(X) : encryption of message X with key K
- h(X) : one-way hash function with input X
- f : a flag indicating the purpose of a message

2 Model and Requirements

In [13], an agent-based commerce system ABECOS is proposed to achieve non-
repudiation over electronic transactions. In this system, three principal entities
are identified: a buyer, a seller, and a directory agent. The directory agent
keeps information about other entities and acts as an intermediary broker that
helps an entity to find other entities or agents that possess certain required
capabilities. In this scenario, the directory agent is not involved in the non-
repudiation activity (see Figure 1).

3

Seller agent Directory agent Buyer agent

non-repudiation service

information service

Fig. 1. E-commerce scenario

2.1 The Model

We could extend the intermediary agent’s role for non-repudiation purposes,
thus liberating the originator of the non-repudiation protocol from part of the
computation load to obtain evidence. In our system, an evidence database is
maintained by the intermediary entity to store securely the evidence for each
transaction. Depending on the application, the evidence records may have an
expiry date (and then, the dispute would not be settled after this date). Our
system is flexible, and if the originator requests, evidence can be transferred to
it during the protocol run (or even afterwards). The security policy defines who
assumes which responsibility. This framework can also be extended to multiple
recipients taking advantage of an intermediary acting as a hub. Figure 2 shows
the model for which our protocol is designed.

Recipients Intermediary Originator

non-repudiation service

DBevidence

Fig. 2. E-commerce scenario with an active intermediary agent

As we will see, fairness of a non-repudiation protocol depends overall on the
behavior of this intermediary agent. The behavior of such an entity is usually
related to its interests in the e-commerce scenario. Thus, we can suppose
this entity wishes to establish business relations with the participants and
earn more profits by providing satisfactory services. Even so, we still do not
treat the intermediary as a fully trusted entity in our model. Evidence of
transactions carried out with this entity will be collected by the originator
and recipients.

4

2.2 Security Requirements

An important requirement of non-repudiation services is fairness with which
neither party can gain an advantage by quitting prematurely or otherwise mis-
behaving during a protocol. In other words, either all of honest participating
entities obtain the expected messages and evidence, or none of the entities ob-
tains them. Another desirable requirement is timeliness, that is, all the honest
parties involved are able to bring a protocol run to the end at any time with-
out breach of fairness. Confidentiality might also be required, with which only
the intended parties are able to disclose the message being transmitted.

Evidence is essential to support non-repudiation services. In typical two-party
non-repudiation protocols, at least two types of evidence must be collected by
the participating entities.

• Non-repudiation of origin: It is intended to protect against the origi-
nator’s false denial of having originated the message. Evidence of origin is
generated by the originator or a trusted third party on its behalf, and will
be held by the recipient.

• Non-repudiation of receipt: It is intended to protect against the re-
cipient’s false denial of having received the message. Evidence of receipt is
generated by the recipient or a trusted third party on its behalf, and will
be held by the originator.

In our model, an intermediary agent is involved in non-repudiation services,
and plays not only the role of originator but also the role of recipient. New
types of evidence are introduced, but they play the same function as the ones
described above.

2.3 The First Solution

An intuitive solution to our agent-mediated non-repudiation model is to use
two-party non-repudiation protocols. It can be described as a three-step sce-
nario, where the originator first runs a fair non-repudiation protocol with the
intermediary agent (IN), then the IN executes the protocol with the recipients,
and finally the originator collects evidence from the IN (see Figure 3). If the
fair non-repudiation protocol of [4] is used for the first and third steps, and its
extended version for the exchange of multiple different messages [7] is used for
the second step, at least 17 messages are required to complete a transaction
(including a continuous use of a TTP service), without even considering the
number of encryption operations and digital signatures.

With the intuitive solution, a fair non-repudiation protocol (5 message flows)

5

Recipients Intermediary Originator

step 1: fair NR protocol
(5 messages)

step 3: fair NR protocol
(5 messages)

key and final evidence

TTP

step 2: MP NR protocol
(5 messages)

Fig. 3. An intuitive solution to non-repudiation

is executed at Step 1 in which the originator requests the intermediary agent
to deliver the messages to the recipients. As a result, the IN obtains evidence
of origin about the service requested by the originator, and the latter obtains
the promise of the IN to do its best to deliver exactly those messages to the
recipients indicated by the originator.

Then, a multi-party non-repudiation protocol (5 message flows) is used at
Step 2 in which the IN delivers the messages to the recipients. As a result,
the recipients receive the service provided by the IN while the IN obtains the
recipients’ confirmation of the service.

Again, as in Step 1, an exchange about the result of the requested service is
carried out between the originator and the IN at Step 3 (5 message flows).
This step permits the originator to obtain evidence about the result, and the
IN to obtain the originator’s agreement about the result.

At least 2 more message flows are needed to complete the transaction. The
originator lodges the keys of the commitments with the TTP, and all the
entities collect the keys and final evidence from the TTP. It is out of the scope
of this paper for a complete analysis of this solution. Further study of the
basic protocols that compose this solution is encouraged.

3 A Simple Agent-Mediated Protocol

In this section, we present our new approach for agent-mediated non-repudiation
by first introducing a simple protocol with an intermediary agent and a single
recipient. In a gradual manner we will extend this approach.

6

3.1 A Simple Protocol

As we noted in Section 2, the intermediary agent plays a critical role in this
scenario, so it is important to analyze its behavior. If the IN has any interest
(any charge with the originator or the recipients) in a transaction, it will
be willing to reach a successful transaction. But occasionally, the IN may
collude with another (external or internal) entity and, for instance, hide some
evidence. Therefore, we assume the intermediary agent is not fully trusted.

Here we presume that the IN, which could be selected by the originator, is not
going to hide the initial messages from the originator to the intended parties.
(In Section 4.4 we will explain how to get rid of this assumption.) The simplest
approach comes when the originator wishes to send a message to a single
recipient. In this scenario, the IN does not play the role of a hub. Nevertheless,
it communicates directly with the recipient, and could help the originator not
only in the non-repudiation protocol itself but also in the preliminary steps,
such as search of a recipient and a product, price agreement, etc. For this
purpose, we introduce a new term request that gives the IN some information
about the service to be provided. The following notation is used in the protocol
description.

- O, R, and IN : originator, recipient, and an intermediary agent
- All = O, IN, R : set of entities that will contact the TTP
- M : message being sent from O to R
- k : key being selected by O
- c = Ek(M) : encrypted message for R with key k
- l = h(O, IN, R, TTP, h(c), h(k)) : label 1 of message M
- t : a timeout chosen by O, before which the TTP has to publish some

information
- EOOc = SO(feoo, IN, R, TTP, l, t, h(request), h(c)) : evidence of origin of

c generated by O
- EOOI = SIN(feooi, R, O, TTP, l, t, h(c)) : evidence of origin of c issued by

the IN for R
- EORc = SR(feor, IN,O, l, t, h(c), uR) : evidence of receipt of c generated

by R
- EORI = SIN(feori, O, R, l, t, h(request), h(c), uR) : evidence of receipt of

c issued by the IN for O
- Subk = SO(fsub, TTP, IN,R, l, t, EuR

(k), EORI) : evidence of submission
of the key to the TTP generated by O

- Conk = STTP (fcon,All, l, t, EuR
(k), uR, EORI) : evidence of confirmation

of the key issued by the TTP

1 Label l constructed as h(m, k) may be subject to attacks [14]. Here we define the
label in a way that is unique in each run and verifiable by any party.

7

The protocol is as follows.

1. O → IN : feoo, IN, R, TTP, l, h(k), t, request, c, EOOc
2. IN → R : feooi, R, O, TTP, l, h(k), t, c, EOOI
3. R → IN : feor, IN, O, l, uR, EORc
4. IN → O : feori, O, R, l, uR, EORI
5. O → TTP : fsub, TTP, IN, R, l, t, EuR

(k), uR, EORI,
h(request), h(c), Subk

6. All ↔ TTP : fcon, All, l, EuR
(k), EORI, Conk

The protocol works in the following way.

Step 1: O sends the IN the request information 2 and evidence of origin
corresponding to the encrypted message c. The encrypted message c may be
some sensitive information, for instance bank account data, that O is not
intended to reveal to the IN. There is no breach of fairness if the protocol
stops.

Step 2: The IN distributes O’s information (maybe after a negotiation or
agreement with R), and sends R evidence of involvement in the transaction.
Again, fairness is maintained if the protocol stops.

Step 3: R replies with evidence of receipt of encrypted message c. R’s public
encryption key uR is included in EORc to make it undeniable when O uses
it at Step 5 to distribute key k. In this way, the originator does not need to
verify or retrieve any public key information about the recipient. The protocol
still remains fair if it stops.

Step 4: The IN replies to O, indicating that R agreed the transaction. At the
same time evidence of receiving request and c is given to O. O will check this
evidence carefully before proceeding to the next step, since this is the only
evidence O will collect from the IN and will be used by O in case of disputes
to prove the IN’s responsibility of the exchange. The IN will store R’s evidence
of receipt in its evidence database, and O can retrieve it later if needed. The
IN cannot claim that it did not store this evidence since EORI demonstrates
it did if a dispute arises. No party is benefited if the protocol stops at this
step.

Step 5: O submits the key (encrypted with R’s public key) to the TTP, such
that only the intended recipient will be able to disclose the message. The
TTP will process it only if the submission is received before deadline t. Before

2 If confidentiality for the request information is needed, an encryption operation
can be performed.

8

going to the next step, the TTP will check that the IN’s signature EORI is
embedded into the message, which helps the IN to demonstrate that O has
been notified about the delivery result in case a dispute arises.

Step 6: The TTP releases the encrypted key. O fetches Conk as evidence that
it submitted the key in time to complete the transaction. The IN fetches Conk

as evidence that O accepted EORI and thus the service offered by the IN. R
obtains the key to decrypt c and fetches Conk as evidence to prove its origin.
EORI is included in this message to permit R to verify the signature Conk.

At the end of the protocol, each party will hold the corresponding evidence.

• The originator should collect EORI and Conk as evidence of receipt.
• The IN should collect EOOc, EORc, and Conk as evidence of origin and

evidence of receipt, respectively, which allows the IN to demonstrate its
good behavior during the protocol.

• The recipient should collect EOOI as evidence of origin of c issued by the
IN. Conk must also be collected as evidence of origin of the key.

Our protocol takes only 6 steps, improving the first intuitive solution we pre-
sented in Section 2.3 on the number of messages sent over the network. In our
protocol, anonymity could be preserved, that is, unless the originator is will-
ing to communicate with a pre-selected recipient, neither the originator nor
the recipient needs any knowledge (i.e., digital certificates) about each other
in order to reach a successful protocol end. As we can see above, only the
IN needs the final entities’ digital certificates in order to verify their digital
signatures while the final entities only need the IN’s digital certificate during
the protocol execution.

3.2 Dispute Resolution

In our model, disputes might arise between any pair of three parties. If the
evidence has an expiry date, the disputes should be settled with the help of
an arbitrator prior to that date.

Disputes between Originator and Recipient

If O denies sending message M , R shows the arbitrator evidence EOOc and
Conk. With EOOc, the arbitrator checks whether O originated c. With Conk,
the arbitrator checks whether EuR

(k) is encrypted with uR and published by
O via the TTP. The arbitrator will also check the validity of label l in EOOc
and Conk. If all checks are positive, the arbitrator settles that message M is

9

from O.

In order to obtain EOOc, the recipient must retrieve this evidence from the
IN’s evidence database. But if the IN precludes the recipient’s access to the
evidence (or it is not valid), the recipient should present EOOI to the arbi-
trator, proving that it received the encrypted message c from the IN and now
the responsibility of submitting EOOc lies on the latter.

If R denies that O published key k, O shows the arbitrator evidence Conk
3 and

EORI. With Conk, the arbitrator checks whether uR is R’s public encryption
key. (O may further retrieve EORc from the IN to support it.) Besides, the
arbitrator checks whether EuR

(k) is encrypted with uR and became available
by the predefined time t. Again, the arbitrator needs to check the validity
of label l in Conk. If all checks are positive, the arbitrator settles that O
published key k.

Disputes between Originator and Intermediary

If the IN denies having received any request labelled l from O, O presents
EORI and the arbitrator checks the IN’s signature on it. If successful, the
arbitrator settles that O sent the request to the IN.

If O denies having received a response from the IN for a labelled transaction
l, the IN presents Conk and the arbitrator checks the TTP’s signature on it.
If successful, the arbitrator settles that O published the key due to receipt of
a response from the IN.

Disputes between Recipient and Intermediary

If the IN denies delivering message c to R, R presents evidence EOOI and the
arbitrator checks the IN’s signature on it. If successful, the arbitrator settles
that c, originated from O, is delivered by the IN to R.

If R denies having received message c, the IN presents EORc and the arbitrator
checks R’s signature on it. If successful, the arbitrator settles that the IN
delivered c to R.

3 Note that the arbitrator has just to verify Conk, since EORI was checked by the
TTP before publishing at Step 6.

10

4 Extension to Multiple Recipients

The intervention of an intermediary becomes more interesting when multiple
parties can be involved in a transaction. In this scenario, the IN acts as a hub.
That is, the originator sends the transaction information to the IN, and the
IN transacts with multiple recipients according to the originator’s request. A
new protocol that combines a simple agent-mediated non-repudiation protocol
presented in Section 3.1 and a multi-party non-repudiation protocol in [5] is
introduced in this section.

In order to release the key only to the honest parties, a group encryption mech-
anism [15] is needed that allows the encryption of a message to be decrypted
by an intended group of recipients using any public-key encryption scheme.

4.1 A Multi-recipient Protocol

Some useful new notation in the protocol description is as follows.

- R : set of intended recipients
- Ri : Each of the intended recipients with i ∈ {1..|R|}
- R′: subset of R that replied to the IN with the evidence of receipt
- All = O, IN, R′ : set of entities that will contact the TTP
- l = h(O, IN, R, TTP, h(c), h(k)) : label of message M
- uR′ : set of public encryption keys of the recipients belonging to R′

- ER′(k) : a group encryption scheme that encrypts k for the group R′

- EOOI = SIN(feooi, R,O, TTP, l, t, EOOc) : evidence of origin of c issued
by the IN for R

- EORci = SRi
(feor, IN,O, l, t, h(c), uRi

) : evidence of receipt of c generated
by Ri

- EORI = SIN(feori, O, R′, l, t, h(request), h(c), uR′) : evidence of receipt of
c issued by the IN for O containing the identities of the recipients who
replied

- Subk = SO(fsub, TTP, IN, R′, l, t, ER′(k), EORI) : evidence of submission
of the key to the TTP generated by O

- Conk = STTP (fcon, All, l, t, ER′(k), uR′ , EORI) : evidence of confirmation
of the key issued by the TTP

11

The protocol is as follows.

1. O → IN : feoo, IN, R, TTP, l, h(k), t, request, c, EOOc
2. IN ⇒ R : feooi, R, O, TTP, l, h(k), t, h(request), c, EOOc, EOOI
3. Ri → IN : feor, IN, O, l, uRi

, EORci

4. IN → O : feori, O, R′, l, uR′ , EORI
5. O → TTP : fsub, TTP, IN, R′, l, t, ER′(k), uR′ , EORI,

h(request), h(c), Subk

6. All ↔ TTP : fcon, All, l, ER′(k), uR′ , EORI,Conk

Minor changes are introduced with respect to the previous protocol. In this
situation, the IN should store all the evidence collected from the honest re-
cipients in the evidence database. In case of disputes, the resolution process
remains unchanged (see Section 3.2). Although the recipients receive evidence
of origin EOOc from O, we assume that they do not store this evidence, even
though they may. We explain why they need this evidence in Section 4.4.
Public encryption keys are included by each recipient to make them undeni-
able when O uses them at the group encryption scheme to distribute key k.
In this way, the originator does not need to verify or retrieve any public key
information about recipients.

In this scenario, we should prevent the IN from sending a R′′ 6= R′ to O. If
R′′ ⊃ R′, then the IN claims that some recipients replied but they actually did
not. Some solutions exist depending on the transaction’s type. If the disclosure
of the message can be brought back or the transaction can be cancelled after
a dispute resolution, O can request to settle the dispute and the IN will not
be able to present all the evidence of receipt. If it is not possible (i.e., for
more critical transactions or exchanges), the IN should send all the evidence
of receipt to O at Step 4. But O only needs to keep EORI, and may not
maintain the evidence of receipt generated by each recipient after verifying
that R′′ = R′. O will terminate the protocol run if R′′ 6= R′.

If R′′ ⊂ R′, then the IN hides some evidence of receipt from some of the honest
recipients. Here, the solution requires a recovery sub-protocol (see Section 4.3)
which allows these honest entities communicate directly to the TTP about
their commitment to the transaction.

4.2 Group Encryption

A group encryption scheme is used to encrypt the key k for the recipients
R′ in our protocol. It is based on a public-key encryption scheme and on the
Chinese Remainder Theorem (CRT). This method is generic as it can use any

12

public-key cryptosystem. Let us instantiate it for our protocol.

- Let uRi
and vRi

be the public and private keys of Ri, respectively. (Ri

corresponds to all parties that belong to R′.)
- Each recipient of R′ receives a random integer Pi > EuRi

(k) such that all
Pi are pair-wise relatively prime. (When choosing randomly large primes or
multiplications of distinct primes for example, the probability of obtaining
two numbers that are not relatively primes is negligible.)

- O computes X ≡ EuRi
(k) mod Pi. As all of Pi are prime integers, using the

CRT, only one solution is obtained from this equation. Hence, ER′(k) ≡ X.
Each recipient Ri can obtain k by computing X ≡ EuRi

(k) mod Pi using
her private key vRi

.

In our protocol, O is required to include Pi in Subk to make the encryption of
k undeniable. (For simplicity, it is omitted.)

4.3 Recovery Sub-protocol

Let t1 < t be a deadline time after which the recovery protocol cannot be
launched by any recipient. The previous notation is modified as follows.

- EOOc = SO(feoo, IN, R, TTP, l, t, t1, h(request), h(c)) : evidence of origin
of c generated by O

- EOOI = SIN(feooi, R, O, TTP, l, t, t1, EOOc) : evidence of origin of c is-
sued by the IN for R

- EORci = SRi
(feor, IN,O, l, t, t1, h(c), uRi

) : evidence of receipt of c gener-
ated by Ri

- EORERi = SIN(feorer, l, EORci) : evidence of receipt of EORci issued
by the IN for Ri

The main protocol is modified as well.

1. O → IN : feoo, IN, R, TTP, l, h(k), t, t1, request, c, EOOc
2. IN ⇒ R : feooi, R, O, TTP, l, h(k), t, t1, h(request), c, EOOc,

EOOI
3. Ri → IN : feor, IN, O, l, uRi

, EORci

4. IN → Ri : feorer, l,EORERi

5. IN → O : feori, O, R′, l, uR′ , EORI
6. O → TTP : fsub, TTP, IN, R′, l, t, ER′(k), uR′ , EORI,

h(request), h(c), Subk

7. All ↔ TTP : fcon, All, l, ER′(k), uR′ , EORI,Conk

13

The recovery sub-protocol is as follows.

5.a. Ri → TTP : frec, IN, O,R, l, h(k), t, t1, h(request),
h(c), uRi

, EOOc,EORci

5.b. If t1 ≥ t : TTP ignores the message
Else

5.c. TTP → O : frec, O, Ri, l, uRi
, EORci

5.d. O : adds Ri into R′

The recovery sub-protocol will be launched only in case of the IN’s misbehavior
or channel failure. A new step has been introduced in the main protocol, such
that the IN must reply to each evidence of receipt (EORci). If Ri receives
EORERi at Step 4 but the IN does not include him in R′, the recipient can
present EORERi to the adjudicator in a dispute resolution.

If Ri does not receive EORERi at Step 4, considerably before t1, Ri should
launch the recovery sub-protocol to contact the TTP directly. The TTP checks
that message 5.a arrives before t1 and that the same t1 is signed by O in EOOc.
Then the TTP sends the recovery information to O and the latter will include
Ri into R′ for the group encryption of key k after validating the evidence and
checking that Ri belongs to R. In such a case, R′ in Subk and R′ in EORI
will not match. Then O may need to contact the IN for a corrected EORI. As
some recipients may launch the recovery sub-protocol before t1, O may wait
until the deadline t1 has passed before proceeding to Step 6.

Ri may launch the recovery sub-protocol (several times) even when the IN
behaves honestly. However, this does not give the recipient any benefit. On
the contrary, the recipient may need to pay more when requesting this service
from the TTP.

4.4 Collaboration among Recipients

A problem might arise if the IN sends the messages to the recipients in a
selective manner. The IN can always claim that some recipients did not reply.
There are two possible scenarios. In one of them, the IN proceeds according to
the information contained in request, choosing by itself the recipients. In this
case, the originator has no other choice but to trust the IN for this service.

In another scenario as we used in the previous protocol description, the orig-
inator will select all the intended recipients prior to the beginning of the
transactions. Usually, the IN would not misbehave in such a way if it has any
interest in bringing a transaction to its end. Nevertheless, the IN may collude
with another internal or external entity and exclude some recipients from the
transaction if it can get more benefits.

14

In this case, the recipients should collaborate in order not to be excluded.
After receiving Step 2 of the protocol, each recipient that did not receive this
step again can distribute this message to the rest of recipients. Otherwise, it
just continues. In order to obtain the group R of recipients before distributing
any message, the recipient Ri should verify that the group R sent by the
IN matches with the one included in EOOc. (In such a case, O will lose its
anonymity). At least one honest entity should receive Step 2 to avoid the IN’s
misbehavior.

The collaboration among recipients could be used depending on the trans-
action type and the network latency since this solution needs more message
flows.

5 Further Extension to Multiple Messages

Frequently, in e-commerce applications, the originator needs to send different
messages to recipients in the same transaction. A modification can be made
to distribute different messages to the intended parties. At the first step, the
originator may send these different messages as well as the request (including
the instructions on how to split them for each recipient) to the IN.

In this extension, the use of the same key for all users creates new problems.
As messages are different, when the same key is used for encryption, and after
the key k is published, any recipient will be able to read the messages destined
to the other recipients (by eavesdropping the messages that are transmitted
between the IN and R). More importantly, a cheating entity could obtain its
message without sending any evidence of receipt, by colluding with a party
who has got the key k. These problems can be solved with the technique
proposed in [7].

Let R be a group of n recipients and Mi the different plain messages that the
IN sends to each Ri, with i ∈ {1..n}. The following notation is used in the
protocol description.

- ni : a random value generated by O for each Ri

- xi = EuRi
(ni) : encryption of ni with Ri’s public key

- ki = k xor ni : a key for each Ri

- ci = Eki
(Mi) : encrypted message with a key ki for each Ri

- li = h(O, IN, Ri, TTP, h(ci), h(k)) : label of message Mi

- L′ : concatenation of labels of the recipients belonging to R′

- EOOci = SO(feoo, IN, Ri, TTP, li, xi, uRi
, t, h(request), h(ci)) : evidence of

origin of ci generated by O
- C = l1c1x1uR1EOOc1...lncnxnuRnEOOcn : concatenation of label, encrypted

15

message, encrypted random number, public encryption key, and evidence of
origin for each recipient in R

- C ′ : subset of C for recipients belonging to R′

- EOOIi = SIN(feooi, Ri, O, TTP, li, xi, uRi
, t, h(ci)) : evidence of origin of ci

issued by the IN for Ri

- EORci = SRi
(feor, IN, O, li, xi, uRi

, t, h(ci)) : evidence of receipt of ci gen-
erated by Ri

- EORI = SIN(feori, O,R′, L′, t, h(request), h(C ′)) : evidence of receipt of
C ′ issued by the IN for O

- Subk = SO(fsub, TTP, IN, R′, L′, t, ER′(k), uR′ , EORI) : evidence of sub-
mission of the key to the TTP generated by O

- Conk = STTP (fcon,All, L′, t, ER′(k), uR′ , EORI) : evidence of confirmation
of the key issued by the TTP

The protocol is as follows.

1. O → IN : feoo, IN, R, TTP, t, h(k), request, C
2. IN → Ri : feooi, Ri, O, TTP, t, h(k), li, ci, xi, uRi

, EOOIi

3. Ri → IN : feor, IN, O, li, EORci

4. IN → O : feori, O, R′, L′, EORI
5. O → TTP : fsub, TTP, IN, R′, L′, t, ER′(k), uR′ , EORI,

h(request), h(C ′), Subk

6. All ↔ TTP : fcon, All, L′, ER′(k), uR′ , EORI,Conk

The originator selects the intended public keys that are going to be used in the
encryption of ni. If the recipient disagrees (e.g., because its digital certificate
has expired or been revoked), it should stop the protocol after receiving Step 2.

This protocol has the same properties as the one in the previous section.
However, if no trust is deposited on the IN, some external mechanism should
be found to ensure this entity will distribute all the messages to the intended
parties. (This problem cannot be addressed by the means of collaboration
among recipients as proposed in Section 4.4, because each recipient will not
receive the same message.)

6 Applications

Our approach fits in any software infrastructure for a large, distributed, agent-
based commerce system, such as digital auctions, virtual shopping, and sup-
plying chains. Let us describe a virtual shopping scenario where a customer
(the originator) is willing to buy some products and for that, it accesses an
intermediary entity (see Figure 4).

16

Recipients NR agent

Purchase agent
Originator

nr inf

DB

request

TTP

Fig. 4. Virtual shopping

Using the request information contained in EOOc, the intermediary software
may search for sellers and products, negotiate price, etc. In this step, the
intermediary could use a mobile code object 4 . Important data of the purchase
(including banking account data if it is required by the application) can be
enclosed in the encrypted message c such that only the intended recipients have
access to it. Then the agent will redirect the purchase request to the sellers
along with the evidence of its participation (EOOI), and the sellers will reply
with the evidence of reception to the agent (EORc). The agent should verify
all the evidence it received and store them in its evidence database. If the
transaction is retrievable, that is, payment can be cancelled, the customer
need not check and keep the sellers’ evidence during the protocol.

After collecting the commitments (EORc) from the sellers, the agent will
notify the customer of the list of sellers that have responded to the purchase
request. The notification (EORI) also proves that the agent has done its work
as expected by the customer, and the list will be used by the customer on the
delivery of the key k to the sellers through the TTP. The TTP will verify the
customer’s request (Subk) and the agent’s notification (EORI) before storing
final evidence (Conk) for downloading by transacting parties of the protocol.

Once the transaction ends, a simple payment protocol can take place, since
each party has got enough evidence for possible dispute resolution.

7 Conclusion

Electronic commerce helps businesses to expand their strategy and market,
and for that, most of them are being shifted to the Internet or taking ad-
vantages of other digital sources. As the number and diversity of e-commerce
participants grows, the complexity of purchasing (supplying, exchanging, . . .)
from a vast and dynamic array of goods and services needs to be hidden from

4 Security issues in roaming agents and mobile code are out of the scope of this
paper. See [16] for further details.

17

end users. Collecting, verifying and storing evidence about the transactions is
required, but might be undesirable for final entities when these transactions
are undertaken with multiple entities and the volume is considerable. Hence,
intermediary entities are useful in such scenarios to help final entities to carry
out their business transactions. In addition, these intermediary entities can
act as ‘hubs’, increasing the market and opportunities for both customers and
merchants.

In this paper, we analyzed a new entity that takes part in the non-repudiation
protocol. This intermediary entity can be just another module in an existing
agent-based system, facilitating the originator to carry out an e-commerce
transaction. We introduced different scenarios that our approach can be eas-
ily fitted into, and demonstrated the advantages for end users in the use of
an intermediary service on reducing the evidence storage requirements and
gathering different recipients. In our agent-mediated non-repudiation proto-
cols, the originator can be kept anonymous to the recipients, and vice versa, as
long as the originator and the recipients do not need to verify each other’s ev-
idence. The intermediary agent can be distrusted and our approach maintains
the security requirements for a non-repudiable e-commerce transaction.

References

[1] J. Onieva, J. Zhou, M. Carbonell, J. Lopez, Intermediary non-repudiation
protocols, in: Proceedings of 2003 IEEE Conference on Electronic Commerce,
IEEE Computer Society Press, Newport Beach, CA, 2003, pp. 207–214.

[2] J. Zhou, Non-repudiation in electronic commerce, Computer Security Series,
Artech House, 2001.

[3] S. Kremer, O. Markowitch, J. Zhou, An intensive survey of fair non-repudiation
protocols, Computer Communications 25 (17): 1606–1621, 2002,

[4] J. Zhou, D. Gollmann, A fair non-repudiation protocol, in: Proceedings of 1996
IEEE Symposium on Security and Privacy, IEEE Computer Society Press,
Oakland, CA, 1996, pp. 55–61.

[5] S. Kremer, O. Markowitch, A multi-party non-repudiation protocol, in:
Proceedings of 15th IFIP International Information Security Conference,
Kluwer, Beijing, China, 2000, pp. 271–280.

[6] O. Markowitch, S. Kremer, A multi-party optimistic non-repudiation protocol,
in: Proceedings of 3rd International Conference on Information Security and
Cryptology, LNCS 2015, Springer, Seoul, Korea, 2000, pp. 109–122.

[7] J. Onieva, J. Zhou, M. Carbonell, J. Lopez, A multi-party non-repudiation
protocol for exchange of different messages, in: Proceedings of 18th IFIP

18

International Information Security Conference, Kluwer, Athens, Greece, 2003,
pp. 37–48.

[8] M. Franklin, G. Tsudik, Secure group barter: Multi-party fair exchange with
semi-trusted neutral parties, in: Proceedings of Financial Cryptography 1998,
LNCS 1465, Springer, 1998, pp. 90–102.

[9] N. González-Deleito, O. Markowitch, An optimistic multi-party fair exchange
protocol with reduced trust requirements, in: Proceedings of 4th International
Conference on Information Security and Cryptology, LNCS 2288, Springer,
Seoul, Korea, 2001, pp. 258–267.

[10] J. Kim, J. Ryou, Multi-party fair exchange protocol using ring architecture
model, in: Proceedings of Japan-Korea Joint Workshop on Information Security
and Cryptology, 2000.

[11] S. Ketchel, H. Garcia-Molina, Distributed commerce transactions, 1997.

[12] T. Mullen, M. Wellman, The auction manager: Market middleware for large-
scale electronic commerce, in: Proceedings of 3rd USENIX Workshop on
Electronic Commerce, Boston, Massachusetts, 1998, pp. 37–48.

[13] C.-C. Liew, W.-K. Ng, E.-P. Lim, B.-S. Tan, K.-L. Ong, Non-repudiation in
an agent-based electronic commerce system, in: Proceedings of 1999 DEXA
International Workshop on Electronic Commerce and Security, Florence, Italy,
1999, pp. 864–868.

[14] S. Gürgens, C. Rudolph, Security analysis of (un-) fair non-repudiation
protocols, in: Proceedings of 1st International Conference on Formal Aspects of
Security, LNCS 2629, Springer, London, UK, 2002, pp. 97–114.

[15] G. Chiou, W. Chen, Secure broadcasting using the secure lock, IEEE
Transaction on Software Engineering 15 (8).

[16] T. Sander, C. F. Tschudin, Protecting mobile agents against malicious hosts,
in: Mobile Agents and Security, LNCS 1419, 1998, pp. 44–60.

19

