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Abstract Non-repudiation is a security service that provides cryptographic evi-
dence to support the settlement of disputes. In this paper, we introduce
the state-of-the-art of multi-party non-repudiation protocols, and ana-
lyze the previous work where one originator is able to send the same mes-
sage to many recipients. We propose a new multi-party non-repudiation
protocol for sending different messages to many recipients. We also dis-
cuss the improvements achieved with respect to the multiple instances
of a two-party non-repudiation protocol, and present some applications
that would benefit from them.
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1. Introduction
During the last years the impressive growth of the Internet and more

generally of open networks has created several security-related problems.
Non-repudiation is one of them. Non-repudiation must ensure that no
party involved in a protocol can deny having participated in a part or
the whole of the protocol. Therefore, a non-repudiation protocol must
generate cryptographic evidence to support dispute resolution. In case a
dispute arises, an arbitrator must be able to resolve it using the evidence
generated and transferred during the non-repudiation protocol.

Non-repudiation is especially important in electronic commerce to
protect customers and merchants. It must not be possible for the mer-
chant to claim that he sent the electronic goods when he did not. In
the same way, it must not be possible for the customer to deny having
received the goods. Evidence should be collected to resolve this type of
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disputes arisen between participating entities in an electronic commerce
scenario.

An important requirement of non-repudiation services is fairness with
which neither party can gain an advantage by quitting prematurely or
otherwise misbehaving during a protocol [10]. In other words, either all
participating entities obtain all the messages and the evidence needed, or
none of them obtains items expected (i.e., the messages for the recipients
and evidence of receipt for the originators).

Several solutions to fair non-repudiation have been developed [6].
Some of them use a Trusted Third Party (TTP) that plays the role
of an intermediary between the participating entities. The major dis-
advantage of this approach is the communication bottleneck created at
the TTP. Nevertheless, Zhou and Gollmann presented a protocol [9]
where the TTP intervenes during each execution as a “low weight no-
tary” rather than as an intermediary. Other solutions use an off-line
TTP, assuming that participating entities have no malicious intentions
and the TTP does not need to be involved unless there is an error in
the protocol execution. This is called the optimistic approach. There
are also solutions that eliminate the TTP’s involvement. However, they
need a strong requirement: all involved parties must have the same com-
putational power.

Some work about multi-party scenarios in a related topic, such as fair
exchange, where entities have to exchange items between them without
loss of fairness, exists [3, 2, 4, 8]. The research towards a generaliza-
tion of non-repudiation, where multiple entities may participate in the
consecutive non-repudiation protocols, has not been sufficiently under-
taken. Markowitch and Kremer extended the non-repudiation scenarios
to allow one originator to send the same message to multiple recipients
in a general non-repudiation protocol [5, 7]. In this paper, we extend
their multi-party non-repudiation protocols by allowing one originator
to send different messages to multiple recipients.

In this paper we classify the multi-party scenarios into two types.
The first is called SOMR-M (simple origin, with many recipients, for
exchange of the same message). The second is called SOMR-Mi (simple
origin, with many recipients, for exchange of different messages). The
two-party non-repudiation approaches could be used to provide solutions
to both types of scenarios, thus creating multiple encrypted messages
with different keys. However, as we will see in this paper, it is a better
solution for a transaction scenario with a low-weight TTP to store only
one key k by the TTP for every protocol run.

The remainder of the paper is organized as follows: In section 2 we
describe the first multi-party non-repudiation protocol designed by Kre-
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mer and Markowitch. In section 3 we present a new protocol which
allows different messages to be transferred to the intended recipients.
In section 4 we compare the complexity between our new multi-party
protocol and n-instance of a two-party protocol. In section 5 we show
typical application scenarios of our approach as well as a specific adap-
tation of our protocol. The following basic notation is used throughout
the paper.

- x, y : concatenation of messages x and y
- uP : the public key of user P
- SP (X) : digital signature of user P over message X
- EK(X) : encryption of message X with key K
- h(X) : hash function
- f : a flag indicating the purpose of a message
- ↔ : fetch operation

2. A Fair Multi-Party Non-repudiation Protocol
with Same Message

In this section, we review the extension by Kremer et al. [5] of a
low weight notary protocol [9] for multi-party purposes. This SOMR-M
protocol supports a one-to-many scenario with the same message.

2.1 Additional Notation
Some useful notation in the protocol description is:

- X ⇒ ∏
: multicast from entity X to the set

∏
- M : message being sent from the originator to the recipients
- k : key being selected by the originator O
- c = Ek(M) : message encrypted with k
- l = h(M, k) : label of message M and key k
- t : a timeout chosen by O, before which the TTP has to publish

some information
- R : set of intended recipients
- R′ : set of recipients that replied to the originator with the evidence

of receipt
- ER′(k) : a group encryption scheme that encrypts k for the group

R’
- EOO = SO(feoo,R, l, t, c) : evidence of origin
- EORi = SRi(feor,O, l, t, c) : evidence of receipt of each Ri

- Subk = SO(fsub, R′, l, t, ER′(k)) : evidence of submission of the
key to the TTP

- Conk = STTP (fcon, O, R′, l, t, ER′(k)) : evidence of confirmation
of the key by the TTP



4

2.2 Group Encryption
Group encryption [1] is used to encrypt the message k for the recipi-

ents R’ in the Kremer-Markowitch protocol. It is based on a public-key
encryption scheme and on the Chinese remainder theorem. This method
is generic as it can use any public-key cryptosystem.

- Let uRi and vRi be the public and private keys of Ri, respectively
(i corresponds with all parties that belong to R’).

- Each recipient of R’ receives a random integer Pi < EuRi
(k) such

that all Pi are pair-wise relatively prime (when choosing randomly
large primes or multiplications of distinct primes for example, the
probability of obtaining two numbers that are not relatively primes
is negligible).

- O computes X ≡ EuRi
(k) mod Pi. As all of Pi are prime integers,

using the Chinese remainder theorem, only one solution is obtained
from this equation. Hence, ER′(k) ≡ X. Each recipient Ri can
obtain k by computing X ≡ EuRi

(k) mod Pi using her private key
vRi .

2.3 The Protocol
The Kremer-Markowitch protocol is as follows.

1. O ⇒ R : feoo, R, l, t, c, EOO
2. Ri → O : feor,O, Ri, l, EORi where each Ri ∈ R
3. O → TTP : fsub, R′, l, t, ER′(k), Subk

4. R′
i ↔ TTP : fcon, O,R′, l, ER′(k), Conk where each R′

i ∈ R′
5. O ↔ TTP : fcon, O,R′, l, ER′(k), Conk
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Figure 1. Protocol SOMR-M

The protocol in figure 1 uses the same key k for each recipient Ri, such
that, an encrypted message c, evidence EOO, Conk, Subk are generated
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for each protocol run. This solution claims to disclose the key only to
those recipients (R’ ∈ R) that send evidence of receipt in order to achieve
fairness. The solution uses a public-key group encryption scheme ER′(k),
such that only those included in R’ will be able to access to the key k.

This protocol broadcasts a message among several entities. Neverthe-
less, it is not possible to send different messages to different recipients.
In that way no personal and confidential messages can be sent to these
parties without loss of privacy.

3. A Fair Multi-Party Non-repudiation Protocol
with Different Messages

To the best of our knowledge, the SOMR-Mi scenario (Simple Origin
Multiple Recipients with i different messages) has not been reported in
the literature yet. We propose a new protocol that extends the Kremer-
Markowitch SOMR-M protocol to eliminate the restriction on the ex-
change of the “same-message”. In other words, personal and confidential
messages could be sent to multiple entities.

It is important to realize that the use of the same key by multiple
recipients could be justified in several ways. Basically, this depends on
the application, which is specifically discussed in section 5. Sending
messages (same or different) to several recipients could mean a single
transaction in a specific application. Therefore, it would be better to
store the same key and evidence in the TTP record for every protocol
run. In those types of applications, the storage and computation re-
quirements of the TTP are reduced and it will be easy to distinguish
between different transactions, regardless of how many entities involved.

In this extension, the use of the same key for all users creates a new
problem that did not appear in the SOMR-M protocol. As messages are
different, when the same key is used for encryption, and after the key k
is published, any recipient will be able to read the messages destined to
the other recipients (by eavesdropping the messages that are transmitted
between O and R). In this section we propose a solution to this problem.

Let R be the group of recipients and Mi the different plain messages
that O wants to send to each Ri, with i ∈ {1..|R|}. A random value ni

is generated for each recipient Ri. Let
vi = EuRi

(ni) be the encryption of ni with Ri’s public key
ki = k xor ni be a key for each Ri

ci = Eki(Mi) be the encrypted message with a key ki for each Ri

3.1 Additional Notation
Some useful notation in the protocol description is:
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- X ⇒ ∏
: multicast from entity X to the set

∏
- Mi : message being sent from the originator O to the recipient Ri

- k : key being selected by O
- ci = Eki(Mi) : encrypted message for Ri

- li = h(Mi, k) : label of message Mi

- t : a timeout chosen by O, before which the TTP has to publish
some information

- R : set of intended recipients
- R′ : set of recipients that replied to the originator with the evidence

of receipt
- L′ : labels of all the messages being sent to R’
- ER′(k) : a group encryption scheme that encrypts k for the group

R’
- EOOi = SO(feoo, Ri, li, t, vi, uRi , ci) : evidence of origin
- EORi = SRi(feor,O, li, t, vi, uRi , ci) : evidence of receipt of each

Ri

- Subk = SO(fsub,R′, L′, t, ER′(k)) : evidence of submission of the
key to the TTP. In this case (R’,L’) denotes concatenation of Ri

with corresponding li
- Conk = STTP (fcon, O, R′, L′, t, ER′(k)) : evidence of confirmation

of the key by the TTP

3.2 The Protocol
Here, we describe the protocol:

1. O ⇒ Ri : feoo, Ri, li, t, vi, ci, EOOi

2. Ri → O : feor,O, li, EORi where each Ri ∈ R
3. O → TTP : fsub, R′, L′, t, ER′(k), Subk

4. R′
i ↔ TTP : fcon, O, R′, L′, ER′(k), Conk where each R′

i ∈ R′
5. O ↔ TTP : fcon, O, R′, L′, ER′(k), Conk

The protocol works in the following way.
Step 1: O sends to Ri the evidence of origin corresponding to the

encrypted message ci, together with vi. In this way, Ri has the encrypted
message as well as ni. There is no breach of fairness if the protocol stops
at step 1 because ci cannot be obtained without key k.

Step 2: Some entities (or all of them) send evidence of receipt of ci

back to O. Again, there is no breach of fairness if the protocol stops.
Step 3: O sends k and Subk to the TTP in order to obtain Conk

from the TTP at step 5. As we assume that the communication channel
between O and the TTP is not permanently broken, O will be eventually
able to send k and Subk to the TTP in exchange for Conk. The key k
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is encrypted using a group encryption scheme where the group of users
is R’. Hence, only those entities belonging to R’ will be able to decrypt
and extract the key.

Step 4: Each recipient Ri fetches ER′(k) and Conk from the TTP.
They will obtain ki by computing the expression: k xor ni. Also, they
save Conk as the evidence to prove that k originated from O.

Step 5: O fetches ER′(k) and Conk from the TTP and saves it as
the evidence to prove that k is available to R’.

3.3 Dispute Resolution
Two kinds of disputes can arise: repudiation of origin and repudiation

of receipt. Repudiation of origin arises when a recipient Ri claims having
received a message Mi from an originator O who denies having sent it.
Repudiation of receipt arises when the originator O claims having sent
a message Mi to a recipient Ri who denies having received it.

Repudiation of Origin. If O denies sending Mi, Ri can present
evidence EOOi and Conk plus (t, uRi , vi, ci, ni, k, ER′(k),Mi, R

′, L′) to
the arbitrator. The arbitrator will check:

- vi = EuRi
(ni)

- ki = k xor ni

- ci = Eki(Mi)
- li = h(Mi, k)
- O’s signature EOOi

- TTP’s signature Conk

Repudiation of Receipt. If Ri denies receiving Mi, O can present
evidence EORi and Conk plus (t, uRi , vi, ci, ni, k, ER′(k),Mi, R

′, L′) to
the arbitrator. The arbitrator will check:

- Ri belongs to R’
- vi = EuRi

(ni)
- ki = k xor ni

- ci = Eki(Mi)
- li = h(Mi, k)
- Ri’s signature EORi

- TTP’s signature Conk

Hence, all possible disputes can be resolved if any of the entities mis-
behaves during the protocol, using the generated and stored evidence as
well as an arbitrator that checks the validity of the evidence.
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4. Complexity Comparison
We compare our approach with the one where an n-instance of a two-

party protocol [9] is used in order to send messages to the intended
parties. The complexity of the computation of three principal entities
participated in the protocol is analyzed, using an operation comparison.
For this comparison we will use the following basic operations:

- signature generation and verification
- generation of random numbers
- asymmetric encryptions and decryptions
- modular equation computation
- store and fetch operations

Depending on which algorithm is chosen for each of these operations,
the bit complexity (as well as the bandwidth requirements) of each of
the participating entity will change, although the relation going between
them remains.

SOMR-Mi vs. extension of n-instanced two-party protocol.
We denote:

|R| = N
|R′| = N ′ (with N ′ ≤ N)
> greater
À much greater

n-instanced two-party SOMR-Mi
Evidence of origin EOOi = Evidence of origin EOOi
N signatures. N signatures.
Generation of ki ≈ Generation of ni plus k
Evidence of submission Subki � Subk
N’ signatures. 1 signature.
EuRi (ki) Encrypted key ki � ER′(k) Encrypted key k plus

EuRi (ni)
N’ encryption operations with each
public key.

N’ random numbers Pi.
N’ encryption operations with each
public key.
Compute equation X ≡
EuRi

(k) mod Pi → Θ(lg n).
N encrypt operations with each pub-
lic key (vi).

N fetches operations of Conki � One fetch operation

Table 1. ORIGINATOR’S COMPUTATION COMPLEXITY
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n-instanced two-party SOMR-Mi
Evidence of receipt EORi = Evidence of receipt EORi
Fetch k and Conki = Fetch k and Conk
Obtain ki < Obtain k plus ni
Decrypts EuRi

(ki). compute equation X ≡
EuRi

(k) mod Pi.
Decrypt EuRi

(k).
Decrypt EuRi

(ni).

Table 2. R′iS COMPUTATION COMPLEXITY

n-instanced two-party SOMR-Mi
Store N’ keys � Store only one key
Generation of N’ evidences
Conki

� Generation of only one evi-
dence Conk

Table 3. TTP’S COMPUTATION COMPLEXITY

Hence we can see in table 3 the TTP’s computation complexity is re-
duced when it is generalized to multiple entities. This extension can be
used when no overload is possible for the TTP with multiple participat-
ing entities, and in scenarios where it is better that the TTP stores only
one entry per transaction. Since communicating entities will usually pay
for the TTP services, we achieve a more efficient and cheaper TTP ser-
vice. In addition, we can see in tables 1 and 2 that O’s computation
complexity is reduced too while Ri’s is slightly increased.

5. Applications
Our approach fits better in shopping scenarios (i.e. O is a custom and

Ri are merchants). Here we present a possible scenario:

Suppliers and customers. In B2B scenarios, we can usually find
established relations between companies, such that some of them play
the role of suppliers and the others apply for supplies. Frequently, these
companies need to stock up vast amounts of products. For example, an
electronic equipment producer has to apply for cables, metals, sockets,
etc. and send an order to various suppliers. These suppliers do not
mind who of them supplies the order received; in other words, they can
cooperate. Typically, in these scenarios, collusion between suppliers is
not a usual matter.

We can classify the orders destined to N suppliers that supply similar
or different products. Figure 2 shows a scenario with one customer (C1)
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and four suppliers (Si), where C1 sends two requests, one for suppliers
1, 2, and 3, and the other for suppliers 1, 3 and 4.

C1

S1 S4S3S2

req2 = P21,P23
,P24req1 = P11

,P12
,P13

TTP

Figure 2. Customers and suppliers

One-to-many protocols using the same key offer a more efficient so-
lution than the one with an n-instantiated two-party protocol. Each
transaction (order) is registered in the TTP with a key plus the evi-
dence of this key.

Actually, B2B architecture is growing fast on Internet. It can accel-
erate the business process among customers and suppliers, and increase
the participation of suppliers, products, and on-line supplies (i.e. soft-
ware, music files, etc. . . ). Obviously, this architecture has stronger secu-
rity requirements than B2C architecture in that it usually involves high
amounts of money. Some solutions have been developed, most of them
are based on the Virtual Private Network (VPN) that provides secure
connection between customers and suppliers.

We can find a good example in the Automotive Network eXchange1

(ANX) . The ANX network is used for mission critical business transac-
tions by leading international organizations and net markets in aerospace,
automotive, chemical, electronics, financial services, healthcare, logis-
tics, manufacturing, transportation and related industries. Through a
global standard that assures the highest levels of security and quality, the
ANX network offers connected customers the most reliable multi-vendor
extranet and Virtual Private Network services available today.

If SOMR-Mi is designed over a VPN, it may use the secret session
keys managed by the VPN, and there is no need to generate the ran-
dom numbers and send the encrypted random numbers to the recipients.
Thus, we can reduce the operation complexity of the originator and re-
cipients (see table 4 and 5). If it is not possible to use the secret session
keys (due to the limitation on the random numbers being used in the

1http://www.anx.com
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group encryption scheme), the originator only needs to generate ni for
each entity and send them to the recipients through a confidential chan-
nel provided by the VPN. That means ni need not be encrypted with
Ri’s public key, thus the operation complexity of the originator and the
recipients is also reduced.

n-instanced two-party SOMR-Mi
Evidence of origin EOOi = Evidence of origin EOOi
N signatures. N signatures.
Generation of ki � Generation of only one key k
Generation of N random numbers. Generation of only one number.
Evidence of submission Subki � Subk
N’ signatures. 1 signature.
EuRi (ki) Encrypted key ki < ER′(k) Encrypted key k
N’ encryption operations with each
public key.

N’ random numbers Pi.
N’ encryption operations with each
public key.
Compute equation X ≡
EuRi

(k) mod Pi → Θ(lg n).

N fetches operations of Conki � One fetch operation

Table 4. ORIGINATOR’S COMPUTATION COMPLEXITY

n-instanced two-party SOMR-Mi
Evidence of receipt EORi = Evidence of receipt EORi
Fetch k and Conki = Fetch k and Conk
Obtain ki � Obtain k
Decrypts EuRi

(ki). compute equation X ≡
EuRi

(k) mod Pi.
Decrypt EuRi

(k).

Table 5. R′iS COMPUTATION COMPLEXITY

6. Conclusions and Future Work
The research on non-repudiation protocols with multiple entities is

still in its initial stage. Although many two-party solutions that can be
instantiated for multi-party scenarios have been developed, more efficient
and adapted solutions are needed.

In this paper, we analyzed the previous work on multi-party scenar-
ios where one originator sends a message to multiple recipients. We
suggested an improvement that allows the originator to send different
messages to the recipients. This is the further generalization of a two-
party fair non-repudiation protocol, which also reduces the computation
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complexity compared with the n-instanced two-party protocol. We iden-
tified applications for B2B scenarios that could make use of our protocol,
and explained how these applications would benefit from it.

Further reducing the recipient’s operation complexity could be carried
out in a future work. It is also possible to extend our idea of SOMR-
Mi to an optimistic multi-party fair non-repudiation protocol [7]. Other
topologies and scenarios with multiple entities participating in a non-
repudiation protocol will be studied as well.
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