
 1

Timeout Estimation using a Simulation Model for
Non-repudiation Protocols

Mildrey Carbonell, Jose A. Onieva, Javier Lopez, Deborah Galpert
Computer Science Department, E.T.S. Ingeniería Informática Uni-

versity of Malaga, Spain
{mildrey,onieva,jlm,galpert}@lcc.uma.es

Jianying Zhou
Institute for Infocomm Research, Singapore

jyzhou@i2r.a-star.edu.sg

Abstract. An essential issue for the best operation of non-repudiation protocols
is to figure out their timeouts. In this paper, we propose a simulation model for
this purpose since timeouts depend on specific scenario features such as net-
work speed, TTP characteristics, number of originators and recipients, etc.
Based on a one-to-many Markowicth's protocol simulation model as a specific
example, we have worked out various simulation experiments.

1 Introduction

Non-repudiation is a security service that is essential for many Internet applica-
tions, especially for e-commerce, where disputes between customers and merchants
should be solved using digital evidences. Non-repudiation service must ensure that no
party involved in a protocol can deny having participated in part or in the whole of it.
An important requirement is fairness with which neither party can gain advantage by
quitting prematurely or otherwise misbehaving during the protocol. .

Most of the non-repudiation solutions have been defined by means of a protocol
using a Trusted Third Party (TTP) that plays the role of an intermediary between the
participating entities. This entity participates in each step of the protocol may cause a
communication bottleneck. Nevertheless, Zhou and Gollmann presented a protocol
[1] where the TTP intervenes during each execution as a “low weight notary” rather
than as an intermediary.

Some works on multi-party scenarios have been developed in similar topics, such
as fair exchange [2,3]. The first effort to generalize non-repudiation protocols was
presented by Markowitch and Kremer in [4,5] to allow one originator to send the
same message to multiple recipients using a single key. An extension of the latter was
presented in [6] where the originators could send different messages with a single
key. In [7], an intermediary non-repudiation multi-party protocol was developed.

So far, most of the non-repudiation protocols (two-party or multi-party scenario)
include diverse timeouts in their specifications. We have no reference about any
proposed values or a procedure to estimate those timeouts. Due to the fact that these

M. Carbonell, et al., “Timeout Estimation using a Simulation Model for Non-repudiation Protocols”, 2nd Workshop on Internet Communications
Security (WICS04), (within Computational Science and its Applications International Conference), LNCS vol. 3043, pp. 903-914, 2004.
NICS Lab. Publications: https://www.nics.uma.es/publications

 2

timeouts depend on real system conditions (e.g., network, involved parties, TTP ca-
pacity etc.), we are proposing the use of a simulation model in order to estimate ap-
proximated values of the timeout variable.

In this paper, we try to demonstrate, by means of a multi-party scenario example,
how event-oriented simulation can be considered as a tool to estimate those timeouts,
which can be adapted to the real conditions of each implementation. We select
Kremer-Markowitch protocol, presented in section 2, because it is the first multi-party
extension and its events are similar to the protocol in [6]. In section 3, we describe the
event-oriented simulation model specifications and entities. The main events are
shown in section 4. Finally, in section 5, we give different examples with this simula-
tion model.

2 Kremer-Markowitch Protocol

In this section, we introduce an extension of the Zhou-Gollmann protocol performed
by Kremer and Markowitch [4]. This extension uses the same key k for each recipient
Ri, such that, an encrypted message c, evidence of origin (EOO), evidence of submis-
sion (Sub) and evidence of confirmation (Con) are generated for each protocol run. To
ensure the fairness, the key is only revealed to those recipients R' that replied with
evidence of receipt. This is achieved with a public-key group encryption scheme [8].
Some useful notation in the protocol description is as follows.

- SA (X) : digital signature of user A over message X
- EK(X) : encryption of message X with key K
- h(X) : hash function
- ↔: fetch operation
- A ⇒ Π : multicast from entity A to the set Π
- O : originator
- R : set of intended recipients
- R’: subset of R that replied to O with evidence of receipt
- M : message being sent from O to R
- k : key being selected by O
- c = Ek (M) : message encrypted with k
- l = h(M, k) : label of message M and key k
- t : a timeout chosen by O, before which the TTP has to publish some information
- ER’(k) : a group encryption scheme that encrypts k for the group R’
- EOO = SO(feoo, R, l, t, c) : evidence of origin
- EORi = SRi(feor, O, l, t, c) : evidence of receipt of each Ri
- Subk = SO (fsub, R’, l, t, ER’(k)) : evidence of submission of k to the TTP
- Conk = STTP (fcon, O, R’, l, t, ER’(k)) : evidence of confirmation of k by the TTP.

The protocol is as follows.

1. O⇒ R : R, l, t, c, EOO
2. Ri O : O, Ri, l, EORi where Ri ∈ R

 3

3. OTTP : R’, l, t, ER’(k), Subk
4. R’i↔TTP : O, R’, l, ER’(k), Conk where R’i ∈ R’
5. O↔TTP : O, R’, l, ER’(k), Conk

The originator O multicasts to all recipients R the evidence of origin corresponding

to the encrypted message c in step 1. Then, some recipients Ri (or all of them) send
evidence of receipt EORi in step 2. In the next step, O sends k and evidence of sub-
mission Subk to the TTP in order to obtain evidence of confirmation Conk in step 5. As
we assume that the communication channel between O and the TTP is not perma-
nently broken, O will be eventually able to send k and Subk to the TTP in exchange
for Conk at any time before timeout t.

In step 4, each recipient R’i fetches ER’(k) and Conk from the TTP at any time be-
fore t and stores it together with EOO as evidence to prove that message m was origi-
nated and sent by O; and the latter fetches Conk from the TTP and stores it as evi-
dence to prove that k is available to R’.

Timeout t constitutes one of the halt conditions in Kremer-Markowicth protocol
due to the fact that the TTP cannot publish the cipher key if it receives k some time t’
after the timeout. On the other hand, timeout t can also be used to stop originator’s
key publication request sent to the TTP if the latter could not be connected before
deadline t. Besides, the recipients should halt the protocol if the key has not been
published after time t. Both halt conditions for O and R would avoid useless loops.

The estimation of this timeout t depends on the real features and conditions of the
implemented scenario including number of originators and recipients, TTP capacity
and the network speed. In the next section we present the simulation model of the
protocol described in this section.

3 Simulation Model

The following model is useful in order to estimate the timeout and to diagnose some
possible problems in the implementation of the protocol, starting from different val-
ues of the critical system variables such as: low connection speed, shortage of TTP
storage capacity and delay in the messages due to firewall protection or other security
schemes. This diagnosis could be used to model further improvements in the real
scenario to find better implementations, shortest waiting time and adequate TTP fea-
tures. The model includes 15 different events:

− Originators send messages to recipients (event 1: Message genera-
tion, event 2: Message arrival to R).

− These originators will wait for EOR and then send a key publication request to the
TTP (event 3: EOR arrival to O). In the simulation model, O will wait
for all EOR in order to estimate the delaying time when all R send EOR to O in a
real execution.

− The TTP publishes the key if it has enough connection and storage capacity
(event 4: Arrival of the publication request to the
TTP, event 6: Disconnection of O’s publication request).

 4

− Otherwise, O should retry the request later (event 5: O’s key publica-
tion request retry).

− Once the key is published, the originator and the recipients can start Con requests
(event 7: O’s Con request, event 8: R’s Con request).

− If allowed by FTP resources, the TTP opens a connection with the involved entity,
verifies the key of the message and outputs an affirmative or negative response to
the request (event 9: Connection for O’s Con request, event
10: Connection for R’s Con request, event 14: O FTP
disconnection, event 15: R FTP disconnection).

− If FTP resources are exhausted, the involved entity should retry the connection
later (event 11: O’s Con request retry, event 12: R’s Con
request retry).

− The key is maintained in the TTP’s database until timeout t (event 13: Key
deletion on the TTP).

− When all involved entities have verified the key, one protocol execution would
have finished.

In the real scenario, the TTP needs to process many protocol executions with simi-

lar or different originators. We could imagine an electronic bookshop, during the
whole day selling books (and thus using a non-repudiation protocol). In this paper, the
stop criteria will be the end time of the simulation event.

Problem: Estimate the timeout t that O sends to R in the first step of the protocol

according to the real scenario.

Goals: To reduce the delay in the entire system while guaranteeing a complete

execution of the protocol steps, we need to find the influence of modifications on:

- number of originators and recipients
- number of messages that the originators send to the recipients
- network speed
- capacity of connection to publish in the TTP
- FTP capacity of connection to the TTP
- storage capacity in the TTP
- key publication time in the TTP
- time between successive retries of connections

We can model the protocol with event-oriented simulation [9] due to the fact that

the generation and the reception of messages are asynchronous processes that evolve
a finite number of events. Following we present the entities of the simulation model
and its variables.

Table 1: Simulator entity

Entity 1: Simulator (S)
Variables Description
Input variables

 5

FinalTime Final simulation time
Recipients Number of Recipients (R)
Originators Number of originators (O)

MsgGenDist List of message generation distributions for each O (step
1)

CommunicationOR Matrix of delay distributions of network messages be-
tween O and R (step 1)

CommunicationOTTP List of delay distributions of network messages between
O and the TTP (step 3)

CommunicationRTTP List of delay distributions of network messages between
R and the TTP (step 4)

EORsendDist Delay distribution of the EOR message (step 2)

PUBConnectionDist Time distribution of O’s connection to publish the key in
the TTP (step 3)

FTPConnectionDist FTP connection time distribution of O and R (steps 4 and
5)

State variables
CurrentTime Current simulation time
Lentity List of entities
Levent List of events

Table 2: Message entity

Entity 2: Message (M): This entity is created by originators. Each originator is able
to create many messages.
Variables Description
State variables
IdM Unique identifier of message m
CreationTime Creation time (step 1)
State States of the message:

St1 : It is being sent to R (step 1)
St2: O is waiting for all EOR (step 2)
St3: O is trying to publish the key in the TTP (step 3)
St4: The key has been published in the TTP (step 3)
St5: The key was deleted from the TTP

Nbr_EOR Number of R that sent EOR (step 2)
Output variables
WaitRTime Total waiting time for all EOR (step 2)
PubDelayTime Key publication delay time (step 3)
Nbr_PUBRetries Number of O’s key publication request retries (step 3)

Table 3: Originator entity

Entity 3: ORIGINATOR (O)
Variables Description
Input variables

 6

Time_btw_PUBRetries Time between successive retries of O’s key publication
requests (step 3)

Time_btw_FTPRetries Time between successive retries of O’s Con requests
(step 5)

State variables
IdO Originator’s unique identifier
LMsg List of messages generated by O (step 1)
Nbr_Msg Number of messages generated by O (step 1)
Output variables
Nbr_PublicMsg Number of published keys (step 3)

Table 4: Recipient entity

Entity 4 : RECIPIENT (R)
Variables Description
Input variables
Time_btw_FTPRetries Time between successive retries of R’s Con requests

(step 4)
State variables
IdR Recipient’s unique identifier
LReceivedMsg List of received messages (step 2)
Output variables
Nbr_ReceivedMsg Number of received messages (step 2)

Table 5: TTP entity

Entity 5: TTP
Variables Description
Input variables
Max_StorageKTime Key storage time in the TTP
CapacPUBConnection Publication connection capacity
CapacFTPConnection FTP connection capacity
CapacStorage Storage capacity measured in number of keys
State variables
Current_ConnectedPUB Current number of publishing connected entities
Current_ConnectedFTP Number of FTP connected entities
CapacOccupied Occupied storage capacity
Output variables
LPublicMsg List of messages whose keys were published
Nbr_PUBMsg Number of messages whose keys were published
Nbr_PUBRetries

Number of retries of O’s key publication request caused
by the lack of TTP connection capacity (step 3)

Nbr_PUBRetries_Str Number of retries of O’s key publication request caused
by the lack of TTP storage capacity (step 3)

 7

Nbr_O_Con_Retries Number of retries of O’s Con request (step 5)
Nbr_R_Con_Retries Number of retries of R’s Con request (step 4)
Nbr_Successful_O_Con Total number of successful O’s Con requests (step 5)
Nbr_Unsuccessful_O_Con Total number of unsuccessful O’s Con requests (step 5)
Nbr_Successful_R_Con Total number of successful R’s Con requests (step 4)
Nbr_Unsuccessful_R_Con Total number of unsuccessful R’s Con requests (step 4)

4 List of Main Model Simulation Events

Following, we describe the main publication key events (1-6). We can use
entity.variable to refer to one variable of the entities (S, M, O, R and TTP).
For each event we describe the name and the input parameters inside the brackets.

Event 1: Message generation (O: originator)
Generate a message at time t=S.CurrentTime

Increase O.Nbr_Msg
M.IdM = O.IdO + O.Nbr_Msg
M.CreationTime = S.CurrentTime
M.State = St1

For i = 1 to S.Recipients do
Add the event Message arrival to R (O,M,Ri) at time

t=S.CurrentTime + Random value generated with
S.CommunicationOR(O,Ri)

Add M to the list O.LMsg
Add the event Message generation (O) at time

t=S.CurrentTime + Random value generated with
S.MsgGenDist(O)

Event 2: Message arrival to R
(O: originator, M: message, R: recipient)
Add the message to the list R.LReceivedMsg
Increase the number of received messages R.Nbr_ReceivedMsg
Add the event EOR arrival to O (M,R) at time

t=S.CurrentTime +
Random value generated with S.CommunicationOR(O,R)
+ Random value generated with S.EORsendDist

Event 3: EOR arrival to O (M: message, R: recipient)
Increase M.Nbr_EOR
Change the state of the message M.State=St2
If M.Nbr_EOR = S.Recipients

M.State=St3
Update M.WaitRTime= S.CurrentTime - M.CreationTime

 8

Add the event Arrival of the publication request to
TTP (O, M, TTP) at time
t=S.CurrentTime + Random value generated with
S.CommunicationOTTP(O)

Event 4: Arrival of the publication request to TTP
(O: originator, M: message, TTP: trusted third party)
If TTP.Current_ConnectedPUB + 1 > TTP.CapacPUBConnection

Increase TTP.Nbr_PUBRetries
 Add the event O’s key publication request retry

(O,M) at time
 t = S.CurrentTime + O.Time_btw_PUBRetries

Else
If TTP.CapacOccupied + 1 >TTP. CapacStorage

Increase TTP.Nbr_PUBRetries_Str
Add the event O’s key publication request retry

(O,M) at time
t = S.CurrentTime + O.Time_btw_PUBRetries

Else
Increase TTP.Current_ConnectedPUB
Add the event Disconnection of O’s publication

request (O,M, TTP) at time
 t = S.CurrentTime + Random value generated
with S.PUBConnectionDist

Event 5: O’s key publication request retry
(O: originator, M: message)
Add the event Arrival of the publication request to TTP

(O, M) at time
t = S.CurrentTime + Random value generated with
S.CommunicationOTTP(O)

Event 6: Disconnection of O’s publication request
(O: originator, M: message, TTP: trusted third party)
Update M.PubDelayTime=S.CurrentTime - M.CreationTime
Increase O.Nbr_PublicMsg
Increase TTP.Nbr_PUBMsg
Add the message to the list TTP.LPublicMsg
Increase TTP.CapacOccupied
Decrease TTP.Current_ConnectedPUB
Change the state of the message M.State=St4
Add the event O’s Con request(M) at time
 t = S.CurrentTime
Add the event R’s Con request(M) at time

 9

 t=S.CurrentTime for each recipient i.
Add the event Key deletion in the TTP (TTP,M) at time
 t = S.CurrentTime + TTP.Max_StorageKTime

Main Program

Initialization of Simulator (S)
- Generate the events of Message Generation(O) for

each O
- Add all entities to the simulator
- Initialize the input variables

While not empty S.LEvent and S.CurrentTime < S.FinalTime do
- E = The minimum time event in S.LEvent
- Delete E from S.LEvent
- S.CurrentTime = time of E
- Execute the procedure that handles the event

Do the report
− For each entity save the report

5 Output Analysis

We implemented an example of the described protocol in a 100Mbits network with
3000 machines. The originators send messages to the recipients with a uniform distri-
bution between ½ hours and 1 hours (S.MsgGenDist). After one hundred executions
of the protocol we calculated the following input distributions of the model:

− The network message delay distribution between originators and recipients, origi-

nators and the TTP, recipients and the TTP is a uniform distribution between
10ms and 17ms. (S.CommunicationOR, S.CommunicationOTTP,
S.CommunicationRTTP)

− The delay distribution of the EOR reply is a uniform distribution between 15ms
and 20ms. (S.EORsendDist)

− The time distribution of O´s connection to publish the key is an uniform distribu-
tion between 30ms and 50ms. (S.PUBConnectionDist)

− The FTP connection time distribution of the originators and the recipients is a
uniform distribution between 25ms and 35ms. (S. FTPConnectionDist)

We estimated the key publication delay time (M.PubDelayTime) and the waiting time
for all evidences of receipt (M.WaitRTime) with fixed initial conditions.

Notation

Input variables
− NO – Number of originators (S.Originators)

 10

− NR – Number of recipients (S.Recipients)
− C – TTP storage capacity measured in number of keys (TTP. CapacStorage)
− FTP – FTP connection capacity (TTP. CapacFTPConnection)
− TS – Key storage time in the TTP (TTP.Max_StorageKTime)
− RO – Time between successive retries of O´s Con request
 (O. Time_btw_FTPRetries)
− RR – Time between successive retries of R´s Con request
 (R. Time_btw_FTPRetries)

Output variables

− NM – Number of generated messages in the experiment

− MP – Number of messages whose keys were published on the TTP
 (TTP.Nbr_PUBMsg)
− CPC – Number of successive retries of O´s key publication request caused by the

lack of TTP connection capacity (TTP. Nbr_PUBRetries)
− CPA – Number of successive retries of O´s key publication request caused by the

lack of TTP storage capacity (TTP.Nbr_PUBRetries_Str)
− CRO – Number of successive retries of O´s Con request
 (TTP.Nbr_O_Con_Retries)
− CRR – Number of successive retries of R´s Con request
 (TTP.Nbr_R_Con_Retries)
− SO – Number of successful O´s Con requests (TTP.Nbr_Successful_O_Con)
− SR – Number of successful R´s Con requests (TTP.Nbr_Successful_R_Con)
− UO – Number of unsuccessful O´s Con requests (TTP.Nbr_UnSuccessful_O_Con)
− UR – Number of unsuccessful R´s Con requests (TTP.Nbr_UnSuccessful_R_Con)
− ERT – Average waiting time of all EOR

− PKT – Average key publication delay time

Result:

 Input variables
 NO NR C FTP TS RO RR
A 300 30 10500 9000 1min 20s 20s
B 5000 30 10500 9000 2min 20s 20s

 11

C 10000 10 10500 9000 1min 20s 20s
Output variables Timeouts
NM MP CPC CPA CRO CRR SO SR UO UR ERT PKT
4672 4669 0 0 0 0 4668 140041 0 0 10.75s 50.85s
76885 76833 0 0 0 0 76816 2304481 0 0 11.93s 51.97s
157850 157775 2000 0 0 0 157739 1577370 0 0 10.50 60.20s

The simulation estimation of the timeout t was:

- (A) 50.85s with 300 originators, 30 recipients. In this implementation of the
protocol the originator would not wait more than 10.75s for the EOR in order
to send the key publication request to the TTP.

- (B) 51.97s with 5000 originators, 30 recipients. The originator would not wait
more than 11.93s for the EOR in order to send the key publication request to
the TTP.

- (C) 60.20s with 10000 originators, 10 recipients. The originator would not
wait more than 10.50s for the EOR in order to send the key publication request
to the TTP.

An increase in the number of originators (example C) resulted in a slight increase in
the PKT. The TTP need to publish more keys.

We can do others experiments with this simulation model like:

- The estimation of efficient initial conditions (C, FTP, TS, RO, RR) so that

the protocol would operate without unsuccessful Con searches with a fixed
number of originators and recipients. Obviously, these adjustments can help in
the decision-making of a TTP investment process.

- The estimation of the larger number of originators combined with the fixed
number of recipients and the fixed conditions in the TTP (storage and connec-
tion capacities).

In a future work we will develop those experiment.

The equipment used for the simulation was an Intel(R) Pentium(R) 4CPU,

1.60GHz, 224MB of RAM. The experiments proved the simulation model’s effec-
tiveness. The simulation model was implemented with Delphi 6.

6 Conclusion

An essential issue for the best operation of non-repudiation protocols is to figure out
their timeouts. In this paper, we proposed a simulation model for this purpose since
timeouts depend on specific scenario features such as network speed, TTP character-

 12

istics, number of originators and recipients, etc. This simulation would be very useful
for a reliable and adequate implementation.

This simulation model could be extended to other security protocols in two-party
and multi-party scenarios. In some future work, further simulation models could be
carried out for more complex multi-party protocols like the intermediary non-
repudiation protocol [7].

The model was proved with some experiments presented in this paper. We have
not used a significant number of originators and recipients but now we are on the
pursue of distributed simulation implementations to achieve the simulation of bigger
scenarios with around 1000000 originators.

References

1. J. Zhou and D. Gollmann. “A fair non-repudiation protocol”. Proceedings of 1996 IEEE
Symposium on Research in Security and Privacy, pages 55-61, Oakland, CA, May 1996.

2. N. Gonzalez-Deleito and O. Markowitch. “An optimistic multi-party fair exchange proto-
col with reduced trust requirements”. Proceedings of 4th International Conference on In-
formation Security and Cryptology, pages 258–267, Seoul, Korea, December 2001.

3. J. Kim and J. Ryou. “Multi-party fair exchange protocol using ring architecture model”.
Proceedings of Japan-Korea Joint Workshop on Information Security and Cryptology,
January 2000.

4. O. Markowitch and S. Kremer. “A multi-party non-repudiation protocol”. Proceedings of
15th IFIP International Information Security Conference, pages 271-280, Beijing, China,
August 2000.

5. O. Markowitch and S. Kremer. “A multi-party optimistic non-repudiation protocol”. Pro-
ceedings of 3rd International Conference on Information Security and Cryptology, pages
109-122, Seoul, Korea, December, 2000.

6. J. Onieva, J. Zhou, M. Carbonell, and J. Lopez. “A multi-party non-repudiation protocol
for exchange of different messages”. Proceedings of 18th IFIP International Information
Security Conference, Athens, Greece, May 2003.

7. J. Onieva, J. Zhou, M. Carbonell, and J. Lopez. “Intermediary non-repudiation proto-
cols”. Proceedings of IEEE Conference on Electronic Commerce, Newport Beach, CA,
June 2003.

8. G . Chiou and W. Chen. “Secure broadcasting using the secure lock”. IEEE Transaction
on Software Engineering, Vol. 15, No. 8, August 1989.

9. J. Banks, J. Carson, and B. Nelson. “Discrete-event system simulation”. Prentice Hall,
2000.

