
A Synchronous Multi-Party Contract Signing
Protocol Improving Lower Bound of Steps

Jianying Zhou1, Jose A. Onieva2, and Javier Lopez2

1 Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore 119613

jyzhou@i2r.a-star.edu.sg

2 Computer Science Department
University of Malaga
29071 - Malaga, Spain

{onieva,jlm}@lcc.uma.es

Abstract. Contract signing is a fundamental service in doing business.
The Internet has facilitated the electronic commerce, and it is neces-
sary to find appropriate mechanisms for contract signing in the digital
world. A number of two-party contract signing protocols have been pro-
posed with various features. Nevertheless, in some applications, a con-
tract may need to be signed by multiple parties. Less research has been
done on multi-party contract signing. In this paper, we propose a new
synchronous multi-party contract signing protocol that, with n parties,
it reaches a lower bound of 3(n − 1) steps in the all-honest case and
4n− 2 steps in the worst case (i.e., all parties contact the trusted third
party). This is so far the most efficient synchronous multi-party contract
signing protocol in terms of the number of messages required. We further
consider the additional features like timeliness and abuse-freeness in the
improved version.

Keywords: multi-party contract signing, security protocol design, secure elec-
tronic commerce.

1 Introduction

The Internet has facilitated the electronic commerce. Many business transactions
have been shifted to the Internet. The motivation for such a trend is the efficiency
and cost-saving. However, as new risks may arise in the digital world, sufficient
security measures should be taken. This will help users to establish the confidence
for doing business on the Internet.

Contract signing is a fundamental service for business transactions, and has
been well practiced in the traditional paper-based business model. Now, it is nec-
essary to find appropriate mechanisms for contract signing in the digital world.
Consider several parties on a computer network who wish to exchange some
digital items but do not trust each other to behave honestly. Fair exchange is

J. Zhou, J. A. Onieva, and J. Lopez, “A Synchronous Multi-Party Contract Signing Protocol Improving Lower Bound of Steps”, 21st International
Information Security Conference (IFIP SEC06), LNCS, pp. 221-232, 2006.
NICS Lab. Publications: https://www.nics.uma.es/publications



a problem of exchanging data in a way that guarantees either all participants
obtain what they want, or none does. From a designing point of view, contract
signing is a particular form of fair exchange, in which the parties exchange com-
mitments to a contract (typically, a text string spelling out the terms of a deal).
That is, a contract is a non-repudiable agreement on a given text such that after
a contract signing protocol instance, either each signer can prove the agreement
to any verifier or none of them can. If several signers are involved, then it is a
multi-party contract signing (MPCS) protocol.

There are some two-party contract signing protocols in the literature. Nev-
ertheless, less research has been done on multi-party contract signing. In this
paper, we propose a new synchronous multi-party contract signing protocol that,
with n parties, it reaches a lower bound of 3(n− 1) steps in the all-honest case
and 4n − 2 steps in the worst case (i.e., all parties contact the trusted third
party). This is so far the most efficient synchronous multi-party contract signing
protocol in terms of the number of messages required. We further consider the
additional features like timeliness and abuse-freeness in the improved version.

The rest of this paper is organized as follows. In Section 2, we review the
previous work related to contract signing, outline the properties to be satisfied
when designing an optimistic contract signing protocol, and give explicit defini-
tions for some terms used along the descriptions of these protocols. In Section 3,
we describe a simple synchronous protocol for multi-party contract signing, then
improve the simple version to an optimal multi-party contract signing proto-
col. After that, we further consider the additional features like timeliness and
abuse-freeness in Section 4, and conclude the paper in Section 5.

2 Related Work

As contract signing is a particular case of fair exchange, any fair exchange pro-
tocol found in the literature in which digital signatures are exchanged can be
considered as the related work. In all practical schemes, contract signing involves
an additional player, called trusted third party (TTP). This party is (at least to
some extent) trusted to behave correctly, thus playing the role of a notary in
paper-based contract signing and somehow sharing the legal duties the former
ones have. In fact, designing and implementing a contract signing protocol using
an on-line TTP should not be a complicated task. In this case, if Alice and Bob
wish to enter into a contract, they each sign a copy of the contract and send it to
the TTP through a secure channel. The TTP will forward the signed contracts
only when it has received valid signatures from both Alice and Bob.

Nevertheless, in our continuous search for speeding up our daily life activities,
it is desirable not using a TTP in a contract signing protocol. Additionally,
if the TTP is not involved, the notary fee could be avoided. Some protocols
appear in the literature trying to eliminate the TTP’s involvement using gradual
exchange of signatures [9, 10]. But these solutions are not deterministic, thus
may not be accepted by signatories. Our objective is to focus on contract signing
protocols that necessarily use a TTP only in those cases in which an exception



occurs (i.e., a network communication failure or a dishonest party’s misbehavior).
Otherwise (all-honest-case), the TTP will not be contacted, and parties will bring
the protocol to its end by themselves. In the literature, these protocols are called
optimistic contract signing protocols [2–4, 14–17].

Some properties extracted from the different previous work on optimistic
contract signing are summarized as follows.

– Effectiveness - if each party behaves correctly, the TTP will not be involved
in the protocol.

– Fairness - no party will be in an advantageous situation at the end of the
protocol.

– Timeliness - any party can decide when to finish a protocol run without
loosing fairness.

– Non-repudiation - no party can deny its action.
– Verifiability of TTP - if the TTP misbehaves, all harmed parties will be able

to prove it.
– Transparency of TTP - if the TTP is contacted to resolve the protocol, the

resulting contract will be similar to the one obtained in case the TTP is not
involved.

– Abuse-Freeness - it is not possible for an attacker (either a legitimate par-
ticipant or an outsider) to show a third party that the contract final state is
under its control.

In [8], Ben-Or et al. presented an optimistic contract signing protocol based
on a probabilistic approach. Such a contract signing protocol is said to be (ν, ε)-
fair if for any contract C, when signer A follows the protocol properly, if the
probability that signer B is privileged to validate the contract with the TTP’s
help is greater than ν, the conditional probability that “A is not privileged”,
given that “B is privileged”, is at most ε.

Previous work in which several signatories are involved in a contract can
be found in [1, 6, 11, 12]. Only Asokan et al. addressed the MPCS problem in
synchronous networks [1]. As they stated, this solution clearly improves the
efficiency of those asynchronous protocols previously presented with respect to
the number of messages; 4(n − 1) messages in the all-honest-case and 6n − 4
messages in the worst case. This is possible due to a better reliability of the
underlaying network as we can see in Definition 1 below.

Some authors considered the abuse-freeness property in [13, 7]. Baum-Waidner
proposed new protocols in [6] that improve the solutions presented for asyn-
chronous networks in [7] such that the number of rounds is significantly reduced
in the case that the number of dishonest participants t is considerably less than
the total number of participants n - the smaller t is, the better results the new
protocols achieve.

Definition 1. A “synchronous” contract signing protocol is used in syn-
chronous networks in which there is a limited time for a message to reach its
destination (otherwise it has been lost and the appropriate transport layer man-
ages these events) even if an attack occurs. Thus a party can determine that a



message has not been sent by other party if it did not arrive within the limited
time. Users’ clocks are assumed to be synchronized.

Definition 2. An “asynchronous” contract signing protocol is used in asyn-
chronous networks in which there is no limited time for a message to reach its
destination. Loss and unsorted arrival of messages are possible and have to be
managed by the contract signing protocol itself. Clocks are not assumed to be
synchronized among users.

A number of protocols exist in the literature which use an asynchronous
model of network (i.e., messages can be reordered and lost) with deadline param-
eters. But when a deadline is introduced, and thus, synchronized clocks among
users are assumed (at least when the deadline is approaching), these protocols
are converted into synchronous protocols.

In the literature, MPCS protocols make use of either a ring or a matrix
topology. Throughout these solutions, authors use the terms round and step
without clearly defining them, which often brings on confusion with respect to
the metric to be used for its efficiency evaluation. For this reason we explicitly
define these terms as follows:

– Round is understood as the existing time slot in which messages are dis-
tributed in synchronous networks. In asynchronous networks, the entities
need to wait for a local timeout before going to the next round (in case the
round is not completed).

– Step refers to the action of sending or receiving a message. It is the operation
performed by a participating entity. Each round means one step (when all
the messages from all entities are distributed or broadcasted in the same
time slot, usually in matrix topologies) or several steps (when messages from
the same round are distributed from one entity to another, usually in ring
topologies).

Some confusion exists in the literature with respect to the term ‘round’. Some
authors explain that when the next message to be sent depends on the previous
one, that is a different round. But we claim two different cases can be found
(1) message to be sent depends on the previous one because the entity needs to
compute/verify it before sending the next one or (2) message to be sent depends
on the previous one because there is a distribution order to be respected (as in
ring topologies). We consider a round occurs in Case (1).

All of previous solutions to the asynchronous multi-party contract signing
problem reach the lower bound on the number of rounds described in Theorem
3 given in [13]:

Any complete and optimistic asynchronous contract-signing protocol with
n participants requires at least n rounds in an optimistic run.

Describing the theorem, Garay et al. stated that for each party Pi, when it
sends a message that can be used (together with other information) by other
entities to obtain a valid contract, as the protocol is fair, it must have received



in a previous round, a message from the rest of participants in order to be able to
get a valid contract too (probably with the TTP’s help), no matter how others
behave. By an inductive argument, they showed the number of rounds is at least
n.

Ferrer’s asynchronous protocol presented in [11] with only three rounds is an
exception. It claimed to use a number of rounds independent from the number
of participants. However, the protocol is flawed [18].

In our proposal to be presented below, we use a synchronous model, in which
we assume messages sent among participants can be lost in the network, but a
message from a participant reaches the TTP in a finite and known amount of
time. Attackers can insert, delete and modify messages, but it is assumed that
attackers cannot break the clock synchronization of the network and cannot
forge digital signatures. Under this model, the number of rounds can be made
independent of the number of participants.

3 A New Synchronous MPCS Protocol

Here we first present a simple synchronous protocol for multi-party contract
signing. As stated before, the only protocol in a synchronous model that we
can compare with is Asokan’s approach [1]. Our approach is also based on two
differentiated phases: a promise to sign, and a real signature that a party releases
only after receiving all promises from the rest of participants. Again, in the same
manner, we reach a lower bound of 4(n − 1) steps in the all-honest case and
5n− 3 steps in the worst case that all parties contact the TTP. This result will
be further improved in the optimal version by reducing the number of steps to
3(n− 1) in the all-honest case and 4n− 2 in the worst case.

3.1 A Simple Version

Let us consider the following simple solution which uses verifiable encryption of
signatures based on a ring architecture for achieving transparency of the TTP.
Assume that the channel between any participant and the TTP is functional
and not disrupted. The following notation is used in the protocol description.

- C = [M,P, id, t] : a contract text M to be signed by each party Pi ∈ P (i =
1, · · · , n), a unique identifier id for the protocol run, and a deadline t agreed
by all parties to contact the TTP.

- eP (X) : encryption of message X with P ’s public key.
- SP (X) : P ’s digital signature on X.
- Certi : a certificate with which anyone can verify that the ciphertext is the

correct signature of the plaintext, and can be decrypted by the TTP (see
CEMBS - Certificate of an Encrypted Message Being a Signature in [5]).

A simple linear protocol for multi-party contract signing is sketched as fol-
lows:



1. P1 → P2 : m1[= C, eTTP (SP1(C)), Cert1]
2. P2 → P3 : m1,m2[= C, eTTP (SP2(C)), Cert2]
n− 1. Pn−1 → Pn : m1, ..,mn−1[= C, eTTP (SPn−1(C)), Certn−1]
n. Pn → Pn−1 : mn[= C, eTTP (SPn

(C)), Certn]
n + 1. Pn−1 → Pn−2 : mn−1,mn

2(n− 1). P2 → P1 : m2,m3, ..,mn

2n− 1. P1 → P2 : SP1(C)
2n. P2 → P3 : SP1(C), SP2(C)
3(n− 1). Pn−1 → Pn : SP1(C), SP2(C), .., SPn−1(C)
3n− 2. Pn → Pn−1 : SPn

(C)
3n− 1. Pn−1 → Pn−2 : SPn−1(C), SPn

(C)
4(n− 1). P2 → P1 : SP2(C), SP3(C), .., SPn

(C)

The above main protocol is divided into two phases. The parties first ex-
change their commitments in an “in-and-out” manner. Note that P1 can choose
t in the first message (and others can halt if they do not agree). Only after
the first phase is finished at step 2(n − 1), the final signatures are exchanged.
Following this simple approach, only 4(n− 1) steps are needed.

If there is no exception (e.g., network failure or misbehaving party), the
protocol will not need the TTP’s help. Otherwise, the following resolve sub-
protocol helps to drive the contract signing process to its end. Pi can contact
the TTP before the deadline t.

1. Pi → TTP : resolvePi = C,m1, .., mn, SPi(C, m1, .., mn)
2. TTP : IF resolvePi is received before t THEN

decrypts m1..mn

publishes SP1(C), .., SPn(C)

If the main protocol is not completed successfully, some parties may not
hold all the commitments (m1, ..,mn). Then, they just wait until the deadline
t and check with the TTP whether the contract has been resolved by other
parties. If not, the contract is cancelled. Otherwise, they get the valid contract
(SP1(C), .., SPn(C)) from the TTP.

If a party has all the commitments when the main protocol is terminated
abnormally, it could initiate the above sub-protocol. Then the TTP will help
to resolve the contract if the request is received before the deadline t, and the
contract will be available to all the participants (even after the deadline t). After
the deadline, the TTP will not accept such requests any more. In other words,
the status of the contract will be determined the latest by the deadline t.

3.2 Security Analysis

Here we informally analyze our protocol regarding the security properties out-
lined in Section 2.



– Effectiveness: If all parties send all the needed messages correctly, the TTP
will not have to decrypt any commitment since after the 4(n − 1) steps all
parties have the contract signed (with n signatures).

– Fairness: No party will be in an advantageous situation at the end of the
protocol. That is, either all of them possess the contract (or have access to
it), or none of them obtains it.

– Timeliness: The status of a contract will be finalized either at the end of the
main protocol or the latest by a pre-defined deadline t. As the participants
not holding all the commitments cannot determine the status of the contract
before the deadline t, the property of timeliness is not satisfied. We will
further discuss timeliness in Section 4.2.

– Non-repudiation: No party can deny its action since each message it sent
bears its digital signature.

– Transparency of TTP: We use a cryptographic primitive (CEMBS), which
allows the users to verify that a bit string is actually the encryption (with
the TTP’s public key) of the sender’s digital signature over the contract C. If
the TTP is invoked, it only decrypts the digital signatures and makes them
available to all participants. Therefore, after a successful protocol instance,
no evidence of the TTP’s participation exists.

– Verifiability of TTP: Let us identify the possible dishonest behaviors of the
TTP: (1) the TTP simply does not reply to participants’ requests, or replies
with invalid messages; (2) the TTP resolves the protocol but does not publish
the contract.

In the first case, some parties could be beneficiated if they got the con-
tract from the main protocol while others did not. A possible solution is
using multiple TTPs and a secure media storage. TTPs have only the write
privilege over the media storage but do not control it while participants in
the contract signing protocol have only the read privilege over the media
storage. A participant can multi-cast his request to the TTPs before the
deadline t. As long as one of the TTPs does not misbehave, the correct
response will be available from the secure media storage.

In the second case, the TTP could collude with some parties and resolve
the contract for them but does not publish the contract for other parties.
That means some parties not holding all the commitments will not get the
valid contract. To detect the TTP’s cheating, the TTP is required to sign
the contract when it is resolved, but this overrides the TTP’s transparency.
It is difficult to reach a trade-off between transparency and verifiability.

– Abuse-freeness: In our protocol, the last participant (Pn) in the ring can
decide whether to resolve the protocol after receiving all the commitments
from other parties However, as stated in [7] it is not possible to avoid this
participant to control whether the normal flow of the protocol continues or
not, but all we can aim to is to avoid that it is able to provide evidence to an
outsider about its control over the result of the contract. So, for Pn holding
m1, · · · ,mn−1, due to the presence of Certi in mi that anyone can verify, it
is possible for Pn to abuse about the state of the contract. Nevertheless, we
show in Section 4.1 that the property of abuse-freeness can be achieved.



3.3 An Optimal Version

The protocol in Section 3.1 has two clearly differentiated phases: exchange of
commitments and exchange of digital signatures. The number of steps can be
further reduced if we send more available information at each step and thus
merge both phases. This will result in an improvement to the previous simple
version protocol.

Using the same notation, an optimal synchronous protocol for multi-party
contract signing is outlined as follows:

1. P1 → P2 : m1[= C, eTTP (SP1(C)), Cert1]
2. P2 → P3 : m1,m2[= C, eTTP (SP2(C)), Cert2]
n− 1. Pn−1 → Pn : m1, ..,mn−1[= C, eTTP (SPn−1(C)), Certn−1]
n. Pn → Pn−1 : mn[= C, eTTP (SPn(C)), Certn], SPn(C)
n + 1. Pn−1 → Pn−2 : mn−1,mn, SPn−1(C), SPn

(C)
2(n− 1). P2 → P1 : m2,m3, ..,mn, SP2(C), SP3(C), .., SPn(C)
2n− 1. P1 → P2 : SP1(C)
2n. P2 → P3 : SP1(C), SP2(C)
3(n− 1). Pn−1 → Pn : SP1(C), SP2(C), .., SPn−1(C)

The resolve sub-protocol used by participants to request the TTP’s help is
the same as presented in Section 3.1. Note that even though the two phases are
merged, no party releases its plaintext signature of the contract without having
first received all the commitments. If any party decides to quit after releasing
its plaintext signature of the contract, the rest of participants can obtain the
plaintext signatures of the contract with the TTP’s help. As the protocol is
similar to the previous one, the same security properties are fulfilled.

This optimal version permits overlapping the dispatch of promises with real
signatures without loosing fairness. It improves the simple version presented in
Section 3.1 by reducing the number of steps to 3(n − 1) in the all-honest case
and 4n− 2 in the worst case. Note that for n = 2, three messages are sufficient,
as shown in [17].

4 Further Discussions

The MPCS protocol presented in the previous section improved the lower bound
of steps. However, as we pointed out in the security analysis that it does not
satisfy the properties of abuse-freeness and timeliness. Here we further improve
our MPCS protocol to address these properties.

4.1 Achieving Abuse-Freeness

Although it is not possible to force a participant to keep on following the steps
of the protocol, we can design the protocol in such a manner that it has no
way to demonstrate to an outsider the contract is under its control. For this
purpose, we use a blind commitment that only the TTP can verify. With this



concept of design in mind, we modify the previous protocol to eliminate the
illustrative information. The main protocol remains the same, but Certi is not
included in mi. Instead, the evidence of origin of the blind commitment Commiti
is generated:

Commiti = SPi
(h(C), eTTP (SPi

(C)))

where h(C) is the hash value of C to be used to establish a unique link between
Commiti and C.

1. P1 → P2 : m1[= C, eTTP (SP1(C)), Commit1]
2. P2 → P3 : m1,m2[= C, eTTP (SP2(C)), Commit2]
n− 1. Pn−1 → Pn : m1, ..,mn−1[= C, eTTP (SPn−1(C)), Commitn−1]
n. Pn → Pn−1 : mn[= C, eTTP (SPn

(C)), Commitn], SPn
(C)

n + 1. Pn−1 → Pn−2 : mn−1, mn, SPn−1(C), SPn
(C)

2(n− 1). P2 → P1 : m2,m3, ..,mn, SP2(C), SP3(C), .., SPn(C)
2n− 1. P1 → P2 : SP1(C)
2n. P2 → P3 : SP1(C), SP2(C)
3(n− 1). Pn−1 → Pn : SP1(C), SP2(C), .., SPn−1(C)

Note each party needs to check whether all the blind commitments it has
received are valid before releasing its real signature of the contract. A valid
blind commitment Commiti means it is from Pi (by checking its signature),
linked to C (by checking h(C)), but does not guarantee that eTTP (SPi(C)) in
Commiti matches SPi(C). Commiti is correct if it is valid and also matches
SPi(C).

If there is no exception (e.g., network failure or misbehaving party), the
protocol will not need the TTP’s help. Otherwise, a modified resolve sub-protocol
helps to drive the contract signing process to its end. Pi can contact the TTP
before the deadline t.

1. Pi → TTP : resolvePi = C,m1, .., mn, SPi(C,m1, .., mn)
2. TTP : IF resolvePi is received before t

AND all Commiti are valid THEN
decrypts & verifies m1..mn

IF SP1(C), .., SPn(C) ok THEN
publishes SP1(C), .., SPn(C)

ELSE IF Pi /∈ groupf

publishes fail, groupf , STTP (fail, C, groupf )

When a party holding all the valid blind commitments initiates the above
sub-protocol, the TTP will help to resolve the contract if the request is received
before the deadline t. The TTP decrypts and verifies m1, · · · ,mn. If they are
all correct, the TTP will publish SP1(C), · · · , SPn(C). Otherwise, the TTP will
invalidate the contract by publishing a fail token STTP (fail, C, groupf ) where
groupf indicates the parties misbehaved in generating their commitments.

The dispute resolution process is changed when the fail token is introduced. If
a party can show this token, the contract is invalid. Therefore, at the end of the



main protocol, each party needs to check whether eTTP (SPi
(C)) in Commiti

matches SPi(C) for i = 1, · · · , n (assuming the encryption algorithm is deter-
ministic). If not, it should initiate the above sub-protocol to get the fail token.
Note, a party Pi cannot get any advantage by providing different Commiti in
the main protocol and the resolve sub-protocol. If Pi provides correct Commiti
in the main protocol but incorrect Commit′i in the sub-protocol, Pi will not get
the fail token, i.e., cannot cancel a protocol instance whose final state is signed.
On the other hand, if Pi provides incorrect Commiti in the main protocol but
correct Commit′i in the sub-protocol, Pi may get the signed contract if other
parties did not misbehave in generating their commitments, but any other hon-
est party can initiate the resolve sub-protocol to get the fail token, thus the
contract is still invalid.

The blind commitment does not allow a participant to demonstrate that the
protocol state is under its control. In fact, in this case, getting all mi does not
mean being able to solve the protocol as in previous protocols presented in this
paper. Thus it provides an abuse-freeness feature. Proof is straightforward, since
there is no point in the protocol in which an entity can ensure, even to itself, that
the contract is signed till plaintext signatures are obtained. The solution allows
to maintain the same number of steps as the optimal protocol in Section 3.3.
Furthermore, the TTP is still transparent in this sub-protocol as the signed
contract published by the TTP is the same as obtained in the main protocol.

4.2 Achieving Timeliness

In the previous protocols just presented, a deadline t is selected by the first
participant. If other participants disagree with the deadline, they can simply
abort the execution of the protocol. Of course, this deadline could be negotiated
among the participants before the contract signing protocol is initiated.

If the main protocol is not completed successfully, some participants may hold
all the commitments while the others may only hold part of the commitments.
For those holding all the commitments, they have the freedom to either resolve
the contract with the TTP’s help before the deadline t, or take no action and
just let the contract being automatically cancelled after the deadline t.

However, for those only holding part of the commitments, they have no op-
tions but only wait until the deadline t to know the status of the contract.
Obviously, this is unfavorable to these participants in term of timeliness. They
should also have the right to decide the status of the contract before the dead-
line t. As they only hold part of commitments, they are not able to resolve
the contract, so they can only choose to cancel the contract. (Note that in our
“in-and-out” architecture of commitment exchange, for those participants only
holding part of the commitments, even if all of them collaborate, their combined
commitments are still incomplete to resolve the contract.)

Here we present a (j, n)-threshold cancel sub-protocol. As long as there are at
least j out of n participants that wish to cancel the contract before the deadline
t, the contract could be cancelled. The cancel sub-protocol is as follows, where
counter records the number of cancel requests received by the TTP, and groupc



records the participants which made cancel requests. For simplicity of descrip-
tion, it is built based on the main protocol in Section 3.3 without considering
abuse-freeness.

1. Pi → TTP : cancelPi
= C, cancel, SPi

(C, cancel)
2. TTP : IF cancelPi is received before t

AND C is not resolved THEN
stores cancelPi ; groupc = groupc + Pi;
counter + +;
IF counter ≥ j THEN

sets C as cancelled
publishes cancel, groupc, STTP (cancel, C, groupc)

The resolve sub-protocol is modified as follows.

1. Pi → TTP : resolvePi
= C,m1, .., mn, SPi

(C, m1, .., mn)
2. TTP : IF resolvePi is received before t

AND C is not cancelled THEN
decrypts m1..mn

sets C as resolved
publishes SP1(C), .., SPn(C)

With the above cancel and resolve sub-protocols, each participant has at
least one option to determine the status of the contract before deadline t if the
main protocol is not completed successfully. Thus timeliness is achieved, and the
extent of timeliness depends on the threshold value j: strong timeliness when
j = 1, and weak timeliness when j = n.

However, the threshold value j should be selected carefully. If j is too small,
a few parties may collude to invalidate a contract. If j is too big, it might be
hard to establish a valid cancel request among j parties. A possible option is
j = [n/2] + 1, with a weak majority to “vote” for the validity of a contract.

In the dispute resolution, the cancel token issued by the TTP has the top
priority. In other words, if a participant presents the cancel token, then the
contract is invalid. That implies if there are at least j out of n participants who
want to cancel the contract before the deadline, even if they have released their
plaintext signatures in the main protocol, they together can still change their
mind before that deadline. This is a reasonable scenario in the real world because
the situation defined in the contract may change with time, even during the
process of contract signing, and each participant wishes to pursue the maximum
benefit by taking appropriate actions (resolve or cancel).

As the cancel token from the TTP has higher priority than the signed con-
tract, those parties that have got the signed contract in the main protocol may
need to double check with the TTP about the status of the contract by the
deadline t. (Note that the double check does not mean the involvement of the
TTP itself, but just a query to a public file maintained by the TTP.) If they do
not want to wait until that deadline, they can send the resolve request to the
TTP instead, thus blocking other parties to enable the TTP to issue the cancel
token.



5 Conclusions

Contract signing is a fundamental service for business transactions. Previous
work mainly focused on two-party contract signing. In some applications, how-
ever, a contract may need to be signed by multiple parties.

In this paper, we presented a new multi-party contract signing protocol that
reaches a lower bound of 3(n − 1) steps in the all-honest case and 4n − 2 steps
in the worst case (i.e., all parties contact the TTP). The result improves the
lower bound of 4(n − 1) steps for the all-honest case and 6n − 4 steps for the
worst case in Asokan et al.’s protocol [1]. Actually, our protocol is so far the
most efficient synchronous multi-party contract signing protocol in terms of the
number of messages required.

We further considered the additional features like abuse-freeness and timeli-
ness in our protocol. With no special requirements and more importantly with-
out introducing additional steps in the protocol, we achieved the abuse-freeness
property which is very important for contract signing protocols. In addition,
by introducing the concept of threshold cancel sub-protocol, we achieved the
timeliness property. Achieving the TTP’s strong verifiability while keeping its
transparency is an open issue to be further investigated. Future work also in-
cludes formal security analysis of our protocol.

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions
on the improvement of this paper. The second author has been funded by the
Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) under the
III Andalusian Research Plan.

References

1. N. Asokan, Birgit Baum-Waidner, Matthias Schunter, and Michael Waidner. Opti-
mistic synchronous multi-party contract signing. Technical Report RZ 3089, IBM
Zurich Research Lab, 1998.

2. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for
multi-party fair exchange. Technical Report RZ 2892, IBM, Zurich Research Lab-
oratory, 1996.

3. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols for fair
exchange. In Proceedings of 4th ACM Conference on Computer and Communica-
tions Security, pages 7–17. ACM Press, 1997.

4. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. IEEE Journal on Selected Areas in Communications, 18(4):593–610,
2000.

5. Feng Bao, Robert Deng, and Wenbo Mao. Efficient and practical fair exchange
protocols with off-line TTP. In Proceedings of 1998 IEEE Symposium on Security
and Privacy, pages 77–85. IEEE, May 1998.



6. Birgit Baum-Waidner. Optimistic asynchronous multi-party contract signing with
reduced number of rounds. In Proceedings of 28th International Colloquium on
Automata, Languages and Programming, pages 898–911. Springer, 2001.

7. Birgit Baum-Waidner and Michael Waidner. Round-optimal and abuse-free multi-
party contract signing. In Proceedings of 27th International Colloquium on Au-
tomata, Languages and Programming, LNCS 1853, pages 524–535. Springer, 2000.

8. M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing
contracts. IEEE Transactions on Information Theory, volume 36, pages 40–46,
1990.

9. M. Blum. Three applications of the oblivious transfer. Technical Report, Depart-
ment of EECS, University of California, Berkeley, CA, 1981.

10. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, volume 28, pages 637–647, 1985.

11. Josep Llúıs Ferrer-Gomila, Magdalena Payeras-Capellà, and Llorenç Huguet-
Rotger. Efficient optimistic n-party contract signing protocol. In Proceedings of
4th International Conference on Information Security, pages 394–407. Springer,
2001.

12. Josep Llúıs Ferrer-Gomila, Magdalena Payeras-Capellà, and Llorenç Huguet-
Rotger. Optimality in asynchronous contract signing protocols. In Proceedings
of 1st International Conference on Trust and Privacy in Digital Business, LNCS
3184. Springer, August 2004.

13. Juan A. Garay and Philip D. MacKenzie. Abuse-free multi-party contract signing.
In Proceedings of 13th International Symposium on Distributed Computing, pages
151–165. Springer, 1999.

14. N. González-Deleito and O. Markowitch. An optimistic multi-party fair exchange
protocol with reduced trust requirements. In Proceedings of 4th International
Conference on Information Security and Cryptology, LNCS 2288, pages 258–267.
Springer, December 2001.

15. O. Markowitch and S. Saeednia. Optimistic fair-exchange with transparent signa-
ture recovery. In Proceedings of Financial Cryptography 2001. Springer, February
2001.

16. Silvio Micali. Simple and fast optimistic protocols for fair electronic exchange. In
Proceedings of 22nd Annual Symposium on Principles of Distributed Computing,
pages 12–19. ACM Press, 2003.

17. Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Optimal efficiency of
optimistic contract signing. In Proceedings of 17th Annual ACM Symposium on
Principles of Distributed Computing, pages 113–122. ACM Press, 1998.

18. Jose Onieva, Jianying Zhou, and Javier Lopez. Attacking an asynchronous multi-
party contract signing protocol. In Proceedings of 6th International Conference on
Cryptology in India, LNCS 3797, pages 311–321. Springer, December 2005.


