
On the deployment of a real scalable

delegation service

Javier Lopez, Isaac Agudo, Jose A. Montenegro

Computer Science Department,

E.T.S. Ingenieria Informatica

University of Malaga, Spain

Abstract

This paper explains the evolution of the concept of delegation since its first refer-
ences in the context of distributed authorization to the actual use as a fundamental
part of a privilege management architecture. The work reviews some of the earli-
est contributions that pointed out the relevance of delegation when dealing with
distributed authorization, in particular we comment on PolicyMaker and Keynote,
and also on SDSI/SPKI. Then, we elaborate on Federation as a particular case of
delegation, and remark the importance given to federation by the industry. Finally,
the paper discusses about privilege management infrastructures, introducing a new
mechanism to extend their functionality using advanced delegation services.

1 Introduction

As it is widely known, computer and network security are related to the Inter-
net more than ever before. As a consequence, the use of Internet has brought
new requirements and changes to security software. Some of those changes
focus on the way users are authenticated by Internet applications and how
their rights and privileges are managed.

Therefore, one of the most controversial security services is Access Control.
Lampson defines access control as the composition of two services, Authentica-
tion and Authorization [12]. Internet applications require distributed solutions
for the access control service. Accordingly, authentication and authorization
services need to be distributed too.

Email addresses: jlm@lcc.uma.es (Javier Lopez), isaac@lcc.uma.es (Isaac
Agudo), monte@lcc.uma.es (Jose A. Montenegro).

Preprint submitted to Elsevier Science 4 May 2007

J. Lopez, I. Agudo, and J. A. Montenegro, “On the deployment of a real scalable delegation service”, Information Security Technical Report, vol. 12,
pp. 139-147, 2007.
http://doi.org/10.1016/j.istr.2007.05.008
NICS Lab. Publications: https://www.nics.uma.es/publications

In order to achieve a real scalable distributed authorization solution, the Del-
egation service needs to be strongly considered. Delegation is quite a complex
concept, both from the theoretical and from the practical point of view. In this
sense, the implementation of an appropriate delegation service is becoming a
cornerstone of Internet applications since recently.

Because delegation is a concept related to authorization, this paper aims and
put into perspective the delegation issues and implications that are derived
from a selected group of authorization schemes that have been proposed during
the last years as solutions for the distributed authorization problem.

In this work, the group of authorization solutions selected are KeyNote, as
an evolution of PolicyMaker, SDSI/SPKI and Privilege Management Infras-
tructures (PMI). We also review two Federation solutions, Microsoft Passport
and Shiboleth, as they have become important on the Internet. The reason
for selecting these schemes is twofold. On the one hand, in some cases, they
are supported by international bodies. This is the case of IETF, that has sup-
ported the two first ones through several RFCs. It is also the case of ITU-T,
that has proposed and supported the PMIs. It is important to note that PMIs
have been supported by the IETF too. On the other hand, schemes selected
can be considered as practical solutions, so they can be deployed in the In-
ternet more easily than other more specific approaches based on formalisms
(graph theory or logic programming), like [13], [14], [19], [18].

The paper is structured as following. Section 2 covers PolicyMaker and KeyNote
solutions, reviewing them briefly. Section 3 analyzes the SPKI/SDSI solution
in global, but also the SDSI solution in particular. Section 4 introduces the
concept of Federation, and section 5 elaborates on ITU-T PMI, introducing a
new mechanism to extend their functionality using advanced delegation ser-
vices. Finally, section 6 concludes the paper.

2 PolicyMaker and Keynote

Blaze, Feigenbaum and Lacy introduced in [4] the notion of Trust Manage-
ment. In that original work they proposed the PolicyMaker scheme as a so-
lution for trust management purposes. PolicyMaker is a general and powerful
solution that allows the use of any programming language to encode the na-
ture of the authority being granted as well as the entities to whom it is being
granted. It addresses the authorization problem directly, without considering
two different phases (one for authentication and another for access control).
PolicyMaker encodes trust in assertions. They are represented as pairs (f, s),
where s is the issuer of the statement, and f is a program.

2

Additionally, PolicyMaker introduces two different types of assertions: certifi-
cates and policies. The main difference between them is the value of the Source
field. To be more precise, the value is a key for the first one (certificates), and
a label for the second one (policies).

It is important to note that, in PolicyMaker, negative credentials are not
allowed. Therefore, trust is monotonic; that is, each policy statement or cre-
dential can only increase the capabilities granted by others. Moreover, trust
is also transitive. This means that if Alice trusts Bob and, extensively, Bob
trusts emphCarol, then Alice trusts Carol. In other words, all authorizations
are delegable. Indeed, delegation is implicit in PolicyMaker; thus, it is not
possible to restrict delegation capabilities. This is the reason why delegation
is uncontrolled in PolicyMaker.

KeyNote [3] has been proposed and designed to improve two main aspects of
PolicyMaker: to achieve standardization and to facilitate its integration into
applications. Keynote uses a specific assertion language that is flexible enough
to handle the security policies of different applications. Assertions delegate
the authorization to perform operations to other principals. As PolicyMaker,
KeyNote considers two types of assertions. Also, as in PolicyMaker, these two
types of assertions are called policies and credentials, respectively:

• Policies. This type of assertions does not need to be signed because they
are locally trusted. They do not contain the corresponding Issuer of Poli-
cyMaker.

• Credentials. This type of assertions delegate authorization from the issuer
of the credential, or Authorizer, to some subjects or Licensees (see later for
details).

Assertions are valid or not valid depending on action attributes, which are
attribute/value pairs like resouce=="database" or access=="read"

KeyNote assertions are composed of five fields:

• Authorizer. If the assertion is a credential, then this field encodes the
issuer of that credential. However, if the assertion is a policy, then this field
contains the keyword POLICY.

• Licensees. It specifies the principal or principals to which the authority
is delegated. It can be a single principal or a conjunction, disjunction or
threshold of principals.

• Comment. It is a comment for the assertion.
• Conditions. It corresponds to the ”program” concept of PolicyMaker, and

consists of tests on action attributes. Logical operators are used in order to
combine them.

• Signature. It is the signature of the assertion. This field is not necessary

3

for policies, only for credentials.

Further description on how KeyNote uses cryptographic keys and signatures
can be found in [5].

Figure 1 shows an example of assertion. It states that an RSA key 12345678
authorizes the DSA keys abcd1234 and 1234abcd for read and write access on
the database.

KeyNote-Version: 2

Authorizer: "rsa-hex:12345678"

Licensees: "dsa-hex:abcd1234" || "dsa-hex:1234abcd"

Comment: Authorizer delegates read and write access to

either of the licensees

Conditions: (resource == "database" &&

(access == "read") || (access == "write"))

Signature: "sig-rsa-md5-hex:00001234"

Fig. 1. KeyNote assertion

Given a set of action attributes, an assertion graph is a directed graph with
vertex corresponding to principals. An arc exists from principal A to principal
B if an assertion exists where the Authorizer field corresponds with A, the Li-
censees field corresponds with B and the predicate encoded in the Conditions
field holds for the given set of action attributes. A principal is authorized,
under a given set of action attributes, if the associated graph contains a path
from a policy to the principal.

3 SDSI/SPKI

This solution is an unification of two similar proposals, SDSI (Simple Dis-
tributed Security Infrastructure) and SPKI (Simple Public Key Infrastruc-
ture). SPKI was proposed by the IETF working group and, in particular, by
Carl Ellison [7]. SDSI was an alternative design to X.509 for a public-key in-
frastructure, and it was designed designed by Ronald L. Rivest and Butler
Lampson [17].

The SPKI/SDSI certificate format is the result of the SPKI Working Group
of the IETF [8]. The main feature of SDSI/SPKI is that its design provides
a simple public key infrastructure which uses linked local name spaces rather
than a global, hierarchical one. All entities are considered analogous; hence,
every principal can produce signed statements.

The data format chosen for SPKI/SDSI is S-expression. This is a LISP-like
parenthesized expression with the limitations that empty lists are not allowed
and the first element in any S-expression must be a string, called the “type” of

4

the expression. In this section, we detail the SDSI solution and the integrated
solution SDSI/SPKI, as the development of the SPKI solution is similar to
the integrated solution. The subsections detail the certificates of each proposal
and explain how the delegation is implemented.

3.1 SDSI

SDSI establishes four types of certificates: Name/V alue, Membership, Autocert
and Delegation.

Name/Value Certificates: These certificates are used to bind principals
to local names. Every certificate must be signed by the issuer, using his/her
public key (figure 2).

Membership Certificates: These are certificates that give to principals the
membership to a particular SDSI group.

Autocert Certificates: These are self-certificates, a special kind of certifi-
cate. Every SDSI principal is required to have an Autocert (figure 3).

Delegation Certificates: These certificates are the mechanisms for imple-
menting the Delegation in SDSI (figure 3). SDSI provides two types of dele-
gation, based on the structure of the delegation certificate:

(i) A user (issuer) can delegate to someone by adding that person as a member
to a group issuer control. A issues a delegation certificate to B. Therefore,
B will have the same privileges as the group1.

(ii) A user (issuer) can delegate to someone so that this person is able to sign
objects of a certain type on the user’s behalf. The ”certain type” is defined
by using the template form.

(Cert:

(Local-Name: user1)

(Value:

(Principal:

(Public-Key:

(Algorithm: RSA-with-SHA1)

......

)))

(Signed: ...))

Fig. 2. Name-Value certificates

5

(Auto-Cert: (Delegation-Cert:

(Local-Name: user1) (Template: form)

(Public-Key:) (Group: group1)

(Description: temporal user) (Signed: ...))

(Signed: ...))

Fig. 3. Autocert and Delegation certificates

3.2 Integrated Solution, SPKI/SDSI

SPKI/SDSI unifies all types of SDSI certificates into one single type of struc-
ture. The SPKI/SDSI certificate contains at least an Issuer and a Subject, and
it can contain validity conditions, authorization and delegation information.
Therefore, there are three categories: ID (mapping <name,key>), Attribute
(mapping <authorization,name>), and Authorization (mapping < authoriza-
tion, key >).

The structure of Figure 4 represents the ID certificate and the Authorization
Certificate. The Attribute Certificate has the same structure as Authorization
Certificates.

(cert (cert

(issuer <principal>) (issuer <principal>)

(subject <principal>) (subject <principal>)

(valid <valid>)) (propagate)

(tag <tag>)

(valid))

Fig. 4. ID and Authorization Certificates

The field propagate is the field used to perform the delegation. As it was de-
sirable to limit the depth of delegation, SPKI/SDSI initially had three options
for controlling this: no control, boolean control and integer control. Actually
these options have been reduced to boolean control only. In this way, if this
field is true, the Subject is allowed by the Issuer to further propagate the
authorization.

4 Federations

In this section we analyze some of the most interesting federation solutions
that have been developed by different consortium or enterprises. We focus
on two significant solutions such as Shibboleth [22], and .Net Passport [21].

6

These selected solutions represent both educational and enterprise points of
view. Shibboleth is the representative for academia solutions, although there
are other solutions like PAPI and Athens. On the other hand, we chose .Net
Passport as the enterprise representative, although its opponent, Liberty Al-
liance [20], is growing in popularity, mainly due to the relevance of the partners
that conforms the consortium.

The general definition of Federation is the act of establishing a trust rela-
tionship between two entities, or in more detail, an association comprising
any number of service providers and identity providers. Therefore, Federation
should be understood as delegation of services where the service providers
delegate the security management to identity providers.

4.1 Microsoft Passport

At the end of 90’s, as part of its .NET initiative, Microsoft introduced a set of
Web services that implement a so-called “user-centric” application model, and
that are collectively referred to as .NET My Services. At the core of Microsoft
.NET My Services is a password-based user authentication and Single Sign-
In service called Microsoft .NET Passport. The fundamental component of a
Federation Solution is Single Sign-In (SSI) Service; therefore, Microsoft .NET
Passport could be considered as the first partial Federation Solution.

Microsoft .NET Passport users are uniquely identified with an email address
(usually hotmail and MSN accounts) and all participating sites are uniquely
identified with their DNS name. A passport account has four parts. The first
is a Passport Unique Identifier (PUID), assigned to the user when he/she sets
up the account. This PUID is a 64-bit number that is sent to the user’s site
as the authentication credential when a Passport user signs in, being used in
representation of the user for the administrative operations. The second is the
user profile, containing the user’s phone number or email address, user’s name
and demographic information. The third part of a passport account is the
credential information such as the password or security key used for a second
level of authentication. The wallet is the fourth element that enables users to
digitally store credit card numbers, expiration dates, and billing and shipping
addresses.

Passport use a series of cookies to store the authentication information and to
assist the sing-in functionality in the user computer. During the early years,
there were numerous security failures. The work by Kormann [11] enumerates
a series of Passport flaws. The security issues are related to: User Interface,
Key management, Cookies and Javascript, Persistent cookies and Automatic
credential assignment.

7

In 2003, IBM, Microsoft, BEA, RSA and Verisign published a competing iden-
tity management framework called Web Services Federation Language, or WS-
Federation which was intended to be the direct competitor of Liberty [15] al-
though at this moment IBM, BEA, RSA and Verisign are part of the Liberty
consortium.

4.2 Shibboleth

Shibboleth is a project of Internet2/MACE. The purpose of the proposal is
typically to determine if a person using a web browser has the permissions
to access a target resource based on information such as being a member of
an institution or a particular class. It is implemented by using federated ad-
ministration. In federated administration, a resource provider usually leaves
the administration of user identities and attributes to the user’s origin site.
Therefore, users are registered only at their origin site, but not at each re-
source provider. Moreover, the system is privacy preserving in the sense that
it does not use identity information. Therefore, it is necessary to associate
a handle with the user. This handle stores the security information without
exposing the identity of the user. Consequently, Shibboleth is a system for se-
curely transferring attributes about a user, from the user’s origin to a resource
provider site. Two principal components are in charge in performing the at-
tribute transference, Attribute Authority (AA) in the user side and Shibboleth
Attribute Requester (SHAR) on the resource side. These components inter-
change authorization information by exchanging SAML [6] messages using any
shared protocol that supports the required functional characteristics.

5 Privilege Management Infrastructure (PMI)

It is well known that by using an authentication service you can prove who
you are. Identity certificates (or public-key certificates) provide the best so-
lution to integrate that basic service into most applications developed for the
Internet that make use of digital signatures. However, new applications need
an authorization service to describe what it is allowed for a user to do. In this
case, privileges to perform tasks should be considered.

For instance, when a company needs to establish distinctions among their em-
ployees regarding privileges over resources, the authorization service becomes
important. Different sets of privileges over resources (either hardware or soft-
ware) will be assigned to different categories of employees. In those distributed
applications where company resources must be partially shared through the

8

Internet with other associated companies, providers, or clients, the authoriza-
tion service becomes an essential part.

Authorization is not a new problem, and different solutions have been used
in the past. However, “traditional” solutions are not very helpful for many of
the Internet applications. Those solutions are not easy to use in application
scenarios where the use of identity certificates, to attest the connection of
public keys to identified subscribers, is a must. In such scenarios, types of in-
dependent data objects that can contain user privileges would be of great help.
Attribute certificates proposed by the ITU-T (International Telecommunica-
tions Union) X.509 recommendation [10] provide an appropriate solution, as
these data objects have been designed to be used in conjunction with identity
certificates.

The use of a wide-ranging authentication service based on identity certificates
is not practical unless it is complemented by an efficient and trustworthy mean
to manage and distribute all certificates in the system. This is provided by a
Public-Key Infrastructure (PKI), which at the same time supports encryption,
integrity and non-repudiation services. Without its use, it is impractical and
unrealistic to expect that large scale digital signature applications can become
a reality [16],[1].

Similarly, the attribute certificates framework defined by ITU provides a foun-
dation upon which a Privilege Management Infrastructure (PMI) can be built.
PKI and PMI infrastructures are linked by information contained in the iden-
tity and attribute certificates of every user. The link is justified by the fact
that authorization relies on authentication to prove who you are.

Although linked, both infrastructures can be autonomous, and managed in-
dependently. Creation and maintenance of identities can be separated from
PMI because authorities that issue certificates in each of both infrastructures
are not necessarily the same ones. In fact, the entire PKI may be existing and
operational prior to the establishment of the PMI.

The last X.509 ITU-T Recommendation [10] establishes four PMI models:
(i) General, (ii) Control, (iii) Roles and (iv) Delegation. The first one can be
considered as an abstract model, while the other ones can be considered as
the models for implementation.

The PMI area inherits many concepts from the Public Key Infrastructure
(PKI) area. In this sense, an Attribute Authority (AA) is the authority that
assigns privileges (through attribute certificates) to users, and the Source of
Authorization (SOA) is the root authority in the delegation chain. A typical
PMI will contain a SOA, a number of AAs and a multiplicity of end entities
(EE) [9].

9

Figure 5 depicts the relation between the entities of a PMI in the Delegation
Model. Initially, the Source of Authority assigns or delegates the privilege to
Attribute Authorities. These can delegate the privileges to other AAs or to
EEs.

Source of Authority

Attribute Authority Privilege verifier

End-entity
privilege holder

Assigns
privilege

Delegates
privilege

Asserts
privilege

Trusts

Asserts privilege

(if authorizated)

Delegates
privilege

Fig. 5. PMI Delegation Model

AAs and EEs can use their delegated privileges and present them to the Privi-
lege Verifier (PV), that verifies the certification path to determine the validity
of the privileges. The difference between AA and EE is that EE can not fur-
ther delegate the privileges to other entities, becoming the leaves of the tree.
The PV must trust the SOA in order to verify the certification path, as they
may reside in different domains.

The mechanism (data structure) used to contain the delegation statement(s)
is the attribute certificate. Figure 6 shows the structure of the attribute cer-
tificate, and how a delegation path is established through a chain of these
certificates. The Extensions field is used by the authorities to include the
delegation policy.

5.1 PMI Extensions

Extensions to X.509 certificates can be done by adding extra information in its
extensions field. This field allows us to include additional information into the
attribute certificate. Although the X.509 standard provides five predefined
extension categories, we focus on the Delegation extension category, which
defines different extension fields. Among them, the Recommendation includes:

Authority attribute identifier In privilege delegation, an AA that dele-
gates privileges shall itself have at least the same privilege and the author-
ity to delegate that privilege. An AA that is delegating privilege to another
AA or to an end-entity may place this extension in the AA or end-entity
certificate that it issues. The extension is a back pointer to the certificate in
which the issuer of the certificate containing the extension was assigned its
corresponding privilege. The extension can be used by a privilege verifier to

10

Version Number

Serial Number

Signature Algorithm

Issuer

Validity Period

Holder

Attributes

Issuer Unique Identifier

AA Signature

Extensions

Version Number

Serial Number

Signature Algorithm

Issuer

Validity Period

Holder

Attributes

Issuer Unique Identifier

AA Signature

Extensions

Version Number

Serial Number

Signature Algorithm

Holder

Attributes

Issuer Unique Identifier

AA Signature

Extensions

(a) X.509 Attribute Certificate

SOA

SOA Signature

AA1

......

......

......

AA1

AA1 Signature

AA2

......

......

......

AAn-1

AAn-1 Signature

AAn

......

......

......
...............

......

......
......
......

......

......

ISSUER

HOLDER

(b) Delegation Path

Fig. 6. Delegation Elements in PMI

ensure that the issuing AA had sufficient privilege to be able to delegate to
the holder of the certificate containing this extension.

Different approaches are available to include mechanisms to control delega-
tion in PMI. OpenPMI [23] project is based on the use of X509 Attribute
Certificate and therefore is a practical implementation of a PMI. It provides a
more complex mechanism to perform the delegation, allowing the possibility
to use the extension fields of the attribute certificate to perform a controlled
delegation. The proposal makes uses of graphs to model authorization and
delegation relationships. The key of the project is to attach extra information
to each edge in the graph. In particular, a real number in the interval [0,1]
that measures the level of confidence of the issuer on the certificate is included.
Moreover, it distinguishes between positive and negative statements. Positive
ones grant the right encoded in the certificate and negative ones deny it. The
variable “sign” is used for this purpose. It also adds another Boolean variable,
“delegation”, to define if the certificate can be chained with others, i.e. the
attribute can be delegated.

This extension is defined in [2] using ASN.1 (figure 7), based on the Authority
attribute identifier one. The new extension determines a sequence between
the SOA and the holder. Each sequence includes other sequences, ArcsId,
where to include the information of the arcs in the graph, weight of the arc,
origin node, and boolean information about statements, delegation and sign.

11

The destination node must coincide with the serial number of the attribute
certificate.

Fig. 7. Attribute Certificate and Weight Path Identifier Extension

The main contribution of OpenPMI project is the design of authorization
and delegation statements in a graphical way that afterwards can be auto-
matically turned to X509 attribute certificate chains. The example of figure
8 shows the graphical design of delegation statements (normal line) and au-
thorization statements (dashed line) and its equivalent representation using
attribute certificates. Each attribute certificate stores, in the extensions field,
the information about the graph.

6 Conclusions

Delegation is needed to obtain a real scalable distributed authorization. How-
ever, the uncontrolled use of delegation statements can become a security
threat because any user could improperly get the same privileges over a re-
source than the owner of that resource. Therefore, delegation solutions must
include a mechanism to control the delegation and to produce appropriate au-
thorizations statements. In this paper, our goal has been to study and put into
perspective the delegation implications of a group of schemes that have been
proposed as solutions for distributed authorization problems. In PolicyMaker
and Keynote the delegation statement does not exist, and any authorization
statement can be delegated again and again without any control. SDSI con-
siders three different possibilities to control the delegation, although SPKI has
reduced it to a boolean condition. Such a boolean parameter is only a modest
mechanism to control the depth of the delegation. Federations, included here
to show how commercial solutions like Microsoft Passport fit in the Autho-
rization and Delegation picture, are a step ahead PKI but still do not provide
full delegation capabilities. On the contrary, the PMI solution provides more

12

Fig. 8. Design of Certificates and its corresponding certificate chains

complex mechanisms to perform the delegation, allowing the possibility to use
the extension fields of the attribute certificate for a controlled delegation.

References

[1] Adams, C., Lloyd, S. “Understanding Public-Key Infrastructure: Concepts,
Standards and Deployment Considerations”, New Riders, 1999

[2] Isaac Agudo, Javier Lopez and Jose A. Montenegro. A representation model of
trust relationships with delegation extension. In 3rd International Conference

on Trust Management, iTrust 2005, volume 3477 of Lecture Notes in Computer

Science, pages 116 – 130. Springer, 2005.

[3] Blaze, M., Feigenbaum, J., Ioannidis, J. and Keromytis, A. 1999. “The KeyNote

13

Trust-Management System Version 2.” RFC 2704.

[4] Blaze, M., Feigenbaum, J. and Lacy, J. 1996. “Decentralized Trust
Management.” In IEEE Symposium on Security and Privacy. IEEE Computer
Society Press pp. 164–173.

[5] Blaze, M., Ioannidis, J., and Keromytis, A. 2000. “DSA and RSA Key and
Signature Encoding for the KeyNote Trust Management System.” RFC 2792.

[6] Cantor, S., Kemp, J., Philpott, R., Maler, E (2005). Security Assertion
Markup Language (SAML V2.0). OASIS. Retrieved March 15, 2005, from
http://docs.oasis-open.org/security/ saml/v2.0/

[7] Ellison, C., Frantz, B. and Lacy, J. 1996. “Simple public key certificate”.
Internet Draft http://world.std.com/~cme/spki.txt

[8] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B. and Ylonen, T.
1999. “SPKI Certificate Theory”, RFC 2693.

[9] Farrell, S. and Housley, R. 2002. “An Internet Attribute Certificate Profile for
Authorization”, RFC 3281.

[10] ITU-T X.509, ISI/IEC 9594-8, Information technology - Open Systems
Interconnection - The Directory: Public-key and attribute certificate
frameworks. 08/2005.

[11] Kormann, D., Rubin, A 2000. Risks of the Passport Single Signon Protocol.
Computer Networks, Elsevier Science Press, volume 33, pages 51-58, 2000

[12] Lampson, B. 2004. “Computer security in the real world.” IEEE Computer

Society Press 37(6):37,46.

[13] Li, N., Mitchell, J.C. and Winsborough, W.H. 2002. “Design of a Role-Based
Trust Management Framework.” In Proceedings of the 2002 IEEE Symposium

on Security and Privacy. IEEE Computer Society Press pp. 114–130.

[14] Li, N., Grosof, B. and Feigenbaum, J. 2003. “Delegation logic: A logic-based
approach to distributed authorization.” ACM Trans. Inf. Syst. Secur. 6(1):128–
171.

[15] Liberty Alliance Project White Paper (2003). Liberty Alliance & WS-
Federation: A Comparative Overview. Retrieved October 14, 2003, from
http://www.liberty.org Rivest, R. and Lampson, B. 1996.

[16] Nash,A., Duane,W., Joseph,C., Brink, D.“PKI: Implementing and Managing
E-Security”, McGraw-Hill, 2001

[17] “SDSI - A Simple Distributed Security Infrastructure.” Working document,
Presented at CRYPTO ’96 Rumpsession.

[18] Ruan, C. and Varadharajan, V. 2004. “A Weighted Graph Approach to
Authorization Delegation and Conflict Resolution.” In ACISP 2004. Vol. 3108
of Lecture Notes in Computer Science, Springer pp. 402–413.

14

[19] Varadharajan, V., Ruan, C. and Yan Zhang. 2003. “A Logic Model for Temporal
Authorization Delegation with Negation.” In 6th International Information

Security Conference, ISC. Vol. 2851 of Lecture Notes in Computer Science,
Springer pp. 310–324.

[20] http://www.liberty.org

[21] http://www.passport.com

[22] http://shibboleth.internet2.edu

[23] http://openpmi.sourceforge.net

15

	Introduction
	PolicyMaker and Keynote
	SDSI/SPKI
	SDSI
	Integrated Solution, SPKI/SDSI

	Federations
	Microsoft Passport
	Shibboleth

	Privilege Management Infrastructure (PMI)
	PMI Extensions

	Conclusions
	References

