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Abstract

Purpose – To overview and discuss the technical, economical, legal, and social reasons why public
key infrastructures (PKIs) have failed so far, summarizing the lessons learned, and giving expectations
about the future development of the field.

Design/methodology/approach – A detailed analysis of the developments in the PKI field,
pointing out the achievements so far and the issues that still remain unsolved.

Findings – The possible reasons for the failure of PKI technology.

Originality/value – Identifies and analyses the problems of PKIs considering the different
perspectives, i.e. not only the technical issues but also other issues like the economical, legal, and social
issues that have also influenced the failure of PKIs.
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Paper type Viewpoint

1. Introduction
There is an extended opinion that the internet may become a universal
communications medium that may eventually replace dedicated telephone,
television, and radio networks. In spite of the fact that the internet is growing at
explosive rates, it is still constrained by security concerns. Every company and
individual needs the confidence that business conducted electronically over the
internet is safely completed with the expected parties.

This is not a problem in the physical world because of the physical interaction of
parties. However, things become more complicated in a digital environment because
the technology available provides means for the interception, monitoring and forging
of messages, and even impersonation of the participating peers.

The employment of cryptographic techniques using symmetric keys can be
considered as a simple way to protect data. The major problem is that on the internet
one cannot assure that parties involved in a transaction can meet physically, or even
know each other beforehand. In these circumstances, the provision of security services
is challenging, and this is particularly true for user authentication.

The need for user authentication is evident in many public administration and
electronic commerce (e-commerce) applications. For example, there are multiple
instances where two unknown officials in different branches of the public
administration need to securely exchange documents. Several systems, such as
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Kerberos (Kohl, 1989; Kohl and Neuman, 1993), have been proposed to provide
authentication over public networks using secret key cryptography. Those systems are
not easily scalable for large groups of users (possibly belonging to different
organizations). Some efforts have been accomplished to solve this problem, like Davis
(1995), Ganesan (1995) and Schiller and Atkins (1995), but the resulting systems are not
widely deployed.

On the other hand, public key cryptography, as introduced by Diffie and Hellman
(1976) is a very powerful technology and seems to be well suited to satisfy the
requirements of the global internet. In fact, it is commonly agreed that this technology
is fundamental for a flourishing e-commerce in internet, and has become the foundation
for many e-commerce applications.

Public-key systems are based on the fact that every user has two keys, a public and
a private one. The public key is accessible by the public and can be requested from a
directory service, whereas the private key is kept secret by its owner. The dual way of
using the public and private parts of the key pair – encrypting with the public key and
decrypting with the private one, or encrypting with the private key and decrypting
with the public one – allows to apply asymmetric cryptography for
encryption/decryption of data, distribution of shared secret keys, and
generation/verification of digital signatures.

The widespread use of public key cryptography requires a public key infrastructure
(PKI) (Ford and Baum, 2000; Adams and Lloyd, 2002). The aim of a PKI is to make sure
that a public key in use really belongs to the claimed entity. Without a PKI, public key
cryptography would only be marginally more useful than traditional secret key
cryptography. During boom time, the developers of PKIs expected not only to solve
most problems concerning the security of transferred data, but also to provide general
solutions for e-commerce, for example, concerning the provision of various
non-repudiation services (Zhou, 2001). Against this background, people have often
argued that PKIs and corresponding certification services are the gold-mines of the
information age.

However, and in contrast to these relatively high expectations, PKIs have not really
taken off, and many certification service providers (CSPs) have even gone out of
business. In 1997, Frost and Sullivan envisaged the beginning of the PKI thriving that
was expected to endure for at least the next decade. While according to Datamonitor
(1999), the revenues for the entire PKI market were expected to reach 1.4 billion USD by
2003, today there are only a few companies actually making profit from selling PKI
products or acting as CSPs.

In this paper, we elaborate on the reasons for this PKI failure. More precisely, we
discuss the major issues that have constrained the expected success of PKIs. The rest
of the paper is organized as follows: in Section 2, we elaborate on PKIs. Section 3 is the
main part of the paper. It comprises a discussion of the technical, economical, legal, and
social reasons why PKIs have failed so far. Finally, in Section 4, we summarize the
lessons learnt and conclude the paper by giving some expectations about how the field
may possibly evolve in the future.

2. Public key infrastructures
The term certificate refers to “a document that attests to the truth of something or the
ownership of something” (Shirey, 2000). Historically, the term certificate was coined
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and first used to refer to a digitally signed record holding a name and a public key. As
such, the certificate attests to the legitimate ownership of a public key and attributes a
public key to a particular entity, such as a person, a hardware device, or anything else.
The resulting certificates are called public key certificates.

According to the same RFC, a public key certificate is a special case of a digital
certificate, namely one “that binds a system entity’s identity to a public key value, and
possibly to additional data items”. As such, it is a digitally signed data structure that
attests to the ownership of a public key (Oppliger, 2002).

There are several possibilities to classify public key certificates. For example, it is
common practice to define classes of certificates according to the quality of the
registration process(es). In addition, certificates can also be classified according to the
storage media in use (e.g. smartcards) and the type of functionality they can be used for
(Lopez et al., 2005).

In accordance with the aforementioned RFC, a certificate can not only be used to
attest to the legitimate ownership of a public key (in the case of a public key certificate),
but also to attest to the truth of any property attributable to the certificate owner. This
more general class of certificates is commonly referred to as attribute certificates. In
short, the major difference between a public key certificate and an attribute certificate
is that the former links the name of the user with his/her public key, whereas the latter
links the user with a list of generic characteristics.

In either case, the certificates are issued (and possibly revoked) by authorities that
are recognized and trusted by some community of users. In the case of public key
certificates, these authorities are called certification authorities (CAs), whereas in the
case of attribute certificates, these authorities are called attribute authorities. More
recently, the term CSP has been coined to refer to a CA that is providing certification
services.

This line of argumentation leads to the observation that, from a practical viewpoint,
attribute certificates are going to play a very important role in the near future. For
many applications, successful user authentication is only the first step, and what is
additionally needed is to provide evidence that a particular user possesses the proper
rights to perform a requested action. Therefore, authorization services are equally
important. Lopez et al. (2004) give examples authentication and authorization
infrastructures (AAIs) in which these functionalities are going to merge.

Generally speaking, we can consider that a PKI consists of one (or several) CA(s).
From Shirey (2000), a PKI is “a system of CAs that performs some set of certificate
management, archive management, key management, and token management
functions for a community of users” that employ public key cryptography. Another
way to look at a PKI is as an infrastructure that can be used to issue, validate, and
revoke public keys and public key certificates. As such, a PKI comprises a set of
agreed-upon standards, CAs, structures among multiple CAs, methods to discover and
validate certification paths, operational and management protocols, interoperable
tools, and supporting legislation. A PKI and the certification service it provides must
be specified in a certification policy and a certification practice statement (CPS),
Chokhani et al., (2003).

Many standardization bodies are working in the field of certificates and PKIs. Most
importantly, the telecommunication standardization sector of the International
Telecommunication Union (ITU-T) has released and is periodically updating a
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recommendation that is commonly referred to as ITU-T X.509, or X.509 in short. The
current version of X.509 is Version 3. Meanwhile, the X.509 has also been adopted by
many other standardization bodies, including, for example, the ISO/IEC JTC1.

The format of an X.509v3 certificate is specified with the abstract syntax notation
one (ASN.1) as shown below (Kaliski, 1993) (Table I).

The description of the fields is as follows:
. A version number (identifying version 1, 2 or 3).
. A serial number (i.e. a unique integer value assigned by the issuer).
. An object identifier (OID) that specifies the signature algorithm that is used to

sign the public key certificate.
. The distinguished name (DN) of the issuer (i.e. the name of the CA that actually

signed the certificate).
. A validity period that specifies an interval in which the certificate is valid.
. The DN of the subject (i.e. the owner of the certificate).
. Information related to the subject’s public key (i.e. the key and the OID of the

algorithm).
. Some optional information used to uniquely identify an issuer in case of name

re-use (defined for versions 2 and 3 only).
. Some optional information used to uniquely identify a subject in case of name

re-use (defined for versions 2 and 3 only).
. The extensions field allows the addition of new fields to the structure without

modification to the ASN.1 definition. An extension field consists of an extension
identifier, a criticality flag, and an encoding of a data value of an ASN.1 type
associated with the identified extension (defined for version 3 only).

The trust model employed by X.509 is often referred to as being hierarchical[1]. This
basically means that a user must define a number of root CAs and corresponding root
certificates (i.e. certificates that are trusted by default) from which trust may extend
(Figure 1). Typically, a root certificate is self-signed, meaning that the root CA has

Certificate <¼ SIGNED { SEQUENCE {
Version [0] Version DEFAULT v1,
SerialNumber CertificateSerialNumber,
Signature AlgorithmIdentifier,
Issuer Name,
Validity Validity,
Subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,

if present, version shall be v2 or v3
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,

if present, version shall be v2 or v3
Extensions [3] Extensions OPTIONAL

If present, version shall be v3 –
} } Table I.
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issued its own certificate (i.e. the subject and issuer are identical). Note that from a
theoretical point of view, self-signed certificates are not particularly useful. Anybody
can claim something and issue a certificate for this claim. Consequently, a self-signed
certificate basically says: “Here is my public key, trust me”.

Having established a number of root CAs and corresponding root certificates, a user
can try to find a certification path (or certification chain, respectively) that leads from a
root certificate to a leaf certificate (i.e. a certificate that is issued for a user or system).

Formally speaking, a certification path or chain is defined in a tree or wood of CAs
(root CAs and intermediate CAs) and refers to a sequence of one or more certificates
that lead from a root certificate to a leaf certificate. Each certificate certifies the public
key of its successor. Finally, the leaf certificate is typically issued for a person or a
system. A certification path can only be verified if all CAs on the path are trusted. In
practice, certification paths are comparably short, and it is hardly understood how
different certification paths can be combined in some meaningful way (Maurer, 1996).

X.509 can be used in many ways. Consequently, every nontrivial group of users who
want to work with X.509 certificates has to produce a profile, which nails down the
features, which are left undefined in X.509. The difference between a specification (i.e.
X.509) and a profile is that a specification does not generally set any limitations on
what combinations can and cannot appear in various certificate types, whereas a
profile sets various limitations, for example, by requiring that signing and
confidentiality keys be different. Many standardization bodies work in the field of
“profiling” X.509 for specific application environments. For example, the internet
engineering task force (IETF) has chartered the PKI X.509 (PKIX[2]) working group
(WG) to profile the use of X.509 on the internet. The IETF PKIX WG is a dynamic and
very active WG that has published many documents.

3. Analysis of the reasons for the PKI failure
In the last years, PKIs have experienced a hype and many companies and
organizations have announced to provide certification services to the general public.
Unfortunately, only a few of these companies and organizations have succeeded and
actually provide certification services that can be taken seriously.

We have identified a number of reasons that may have led to the PKI failure that we
have recently experienced. For a better understanding, we have classified those
reasons into categories. In this sense, there are technical, economical, legal, and social

Figure 1.
Hierarchical trust model
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reasons. Understanding these reasons is necessary to make sure that PKIs can be
successfully deployed in the future.

3.1 Technical reasons
The technical reasons for the PKI failure all have to do with the fact that the
establishment and operation of a PKI is more involved than one might think at first
sight. In this subsection, we elaborate on the following technical issues: complexity,
certificate management, global name space, and cross-certification. We argue why
those issues can be considered as reasons for the failure of PKIs wide deployment.

3.1.1 Complexity. We believe that X.509 is a complex standard and X.509 certificates
are complex data structures, as it can be assumed from the definition of the structure
certificate in previous section. The complexity is due to the fact that X.509 certificates
comprise many fields but moreover, comprise many (critical and/or non-critical)
extension fields. Additionally, X.509 certificates are specified with ASN.1 and must be
encoded according to some encoding rules. The resulting data structures are
non-intuitive and not very meaningful for human readers. They are also comparably
difficult to parse (by automated data processing processes). This is in contrast, for
example, to PGP certificates. In the future, XML-based certificates may become an
interesting alternative.

In general, a complex technology is not easy to deploy on a large-scale. Precisely,
PKI was conceived to be used on a large-scale basis. There are many things that can be
interpreted and/or implemented differently when it comes to X.509 certificates.
Consequently, X.509 products and services are not as interoperable as one would
suggest at first sight, and they frequently suffer poor interoperability (partly due to the
flexibility of the X.509 specification and the missing profiling). Furthermore, large
complexity may also lead to poor usability.

3.1.2 Certificate management. Certificate management is a complex and very
challenging task, and there are many things that can go wrong. For example, public
key pairs must be generated in an efficient and secure way. This can be done in a
centralized or decentralized way. In either case, one needs a cryptographically strong
pseudo-random bit generator for the generation of the key pair, what is not always
available to end-users. Alternatively, the CSP can provide that facility to end-users.
However, under that assumption, any user may have the possibility to repudiate
signatures performed using the corresponding private key, claiming an eventual
disclose of such key at the CSP side (computer system) during the generation (and
eventual following storage) of the key pair.

In relation with private keys, they must be securely stored in a personal security
environment, and the certificates must be made publicly available in a certificate
repository or directory service. In either case, it must be made sure that certificates and
certificate chains are retrieved from there, and that they are verified accordingly.
Hierarchical trust models are particularly dangerous, because they provide a single
point of attack (Burmester and Desmedt, 2004), regardless the number of levels of CAs.
Alternative models, like the mesh model (i.e. the PGP web of trust) are not a solution
because they tend to become poorly scalable in time and in space.

From a more technical viewpoint, certificate revocation is probably the most
challenging task of certificate management. A basic question is “how can one make
sure that status information about a certificate is distributed and used together with
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the certificate?”. The standard way to do certificate revocation is to have a CA
periodically issue a certification revocation list (CRL), i.e. a list of certificates that have
been revoked. As further addressed in Rivest (1998), the use of CRLs has several
important limitations and shortcomings. The more direct one is that whenever a user
wants to verify a signature, he/she will have to get the corresponding certificates in the
certification chain and, additionally, will have to check that those certificates in the
chain are not in the CRL.

There are a few alternative and/or complementary approaches to handle the
certificate revocation problem (Oppliger, 2002). However, and unfortunately, the
certificate revocation issue is not properly solved (and sometimes not even addressed)
by many applications in use today. The underlying reason for this fact is that a proper
solution for the certificate revocation problem requires an online component; for
instance, an online certificate status protocol responder that is costly to establish and
operate (Myers et al., 1999).

3.1.3 Global name space. As mentioned above, X.509 certificates include X.500 DNs.
These DNs, in turn, identify objects in a global (i.e. globally unique) name space.
Unfortunately, the definition and maintenance of a global name space is not as simple
in practice as theory suggests. In fact, there are only a few examples of global name
spaces that work in practice (one example is the domain name system). Many practical
problems related to X.509-based PKIs are related to the fact that these PKIs depend on
the notion of X.500 DNs.

In the Version 3 of X.509, the ITU-T tried to solve this problem by creating the
“subject alternative name” extension, a field to contain one or more alternative names
using a variety of name forms for the entity bounded by the CA to the certified public
key. However, this has not solved the problems. For the definition of the field see Table II.
For GeneralNames see Table III.

As other authors propose, instead of using a global name space, one may use local
name spaces that are linked in one way or another. A corresponding set of certificate

subjectAltName EXTENSION <¼ {
SYNTAX GeneralNames
IDENTIFIED BY id-ce-subjectAltName }Table II.

GeneralNames <¼ SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName <¼ CHOICE {
OtherName [0] INSTANCE OF OTHER-NAME,
rfc822Name [1] IA5String,
DNSName [2] IA5String,
x400Address [3] ORAddress,
DirectoryName [4] Name,
EdiPartyName [5] EDIPartyName,
uniformResourceIdentifier [6] IA5String,
IPAddress [7] OCTET STRING,
RegisteredID [8] OBJECT IDENTIFIER }Table III.
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formats and protocols was developed in the late 1990s by the IETF simple public key
infrastructure (SPKI) WG, (Ellison et al., 1999). In parallel, a team at the MIT worked
out the simple distributed security infrastructure (SDSI) (Rivest and Lampson, 1996),
which is in its basic concepts very similar to the SPKI idea.

The central aspect of the SPKI/SDSI development is not to bind a key to a certain
identity, but rather to a role or an authorization and to use only locally unique names
instead of global names. Therefore, names are only exclusive within a certain context
– the local name space. However, SPKI/SDSI has not been adopted by the industry so
far. Therefore, the problem remains open.

3.1.4 Cross-certification. In the past, people have sometimes argued that CAs can
cross-certify each other to form multi-CA PKIs. Cross-certification, however, requires
that the corresponding CPSs are equal (or at least very comparable). Unfortunately,
cross-certification does not work in practice. CSPs typically argue that the certification
services they provide are better than the ones of the competitors, and hence that they
are not able to cross-certify them.

There is hardly any incentive for cross-certification, and the authors are not aware
of any non-trivial cross-certification used in practice. Federated identity management
faces very similar problems, and hence it will be interesting to see if and how federated
identity management solves these problems in practice.

3.2 Economical reasons
The economical reasons for the PKI failure all have to do with the fact that the
establishment and operation of a PKI is an expensive endeavour and that it is difficult
to charge users for certificates (not only when the user gets his first certificate but also,
as some PKI providers pretend, also in subsequent issues due to revocation or
expiration reasons). In this subsection, we discuss on the following economical reasons:
large investments, return of investment, and business case.

3.2.1 Large investments. The establishment and operation of a PKI requires large
investments. For example, the PKI must be established and operated in a physically
secure environment. In national digital signature laws, various guidelines exist to
assure the security and safety of the facilities in which a CA is operating. This includes
regulations on the thickness of the walls of the building, on doors and windows, even
on entrance control systems and video monitoring. Certainly, fire protection concepts
and those against penetrating water have to be installed, too.

Except the violent intrusion into the CA’s facilities the operators have to consider
the attacker using other approaches to undermine the system. One scenario is based on
the compromising radiation emitted by the operating computers. Intercepting the
electromagnetic signals (e.g. from the processor, monitor, or the graphic accelerator) for
instance, could help the assailant to reproduce the keystrokes that were performed
when the pass phrase for the CA’s signing key was entered. Forgers might try to
exploit other weaknesses of the used hardware involved in the certification process.

In order to encounter these, for example, the German digital signature law (SigG,
2001), explicitly requires every single element involved in generating qualified
certificates to be evaluated either by the information technology security evaluation
criteria (ITSEC) or the common criteria for information technology security evaluation
(CC). Technical components and those involved into the secure generation of the
signatures have to withstand an examination conform to the level EAL4 (CC) or

Public key
infrastructures

551



E3/High (ITSEC). The security enhancing mechanisms and the evaluation of the
hardware and software is extraordinary time consuming and expensive. Last but not
least, there is also the need for the adequately eligible personnel, being able not only to
implement the concepts into the processes and products, but also to install and
maintain the necessary software.

On the user’s side, providing each user with hardware devices, such as smartcards
and card readers, for the secure storage of private key(s) is costly, especially in the case
of a large user population. Consequently, people often go for the less secure alternative
of using soft-tokens. In this case, the private keys and certificates are stored (and
protected) only in software. This is arguably less secure, but reduces the deployment
costs of PKIs considerably.

3.2.2 Return on investment. When it comes to economical considerations, people
often wonder about the return on investment (ROI). If the establishment and operation
of a PKI requires a large investment (as mentioned above), then the ROI is particularly
important. Unfortunately, the ROI of a PKI is very difficult to determine and quantify.
Part of the problem is that – like many other infrastructure components – public key
certificates do not provide a specific function that can be charged, but provides only the
means to secure functions.

3.2.3 Business case. Taken into account the large investments and the
hard-to-determine ROI of a PKI, people have been looking into possibilities to come
up with business cases for CSPs without success. In Switzerland, for example, a group
of companies and organizations formed the IG tOP[3] (Trägerschaft öffentliche PKI)
after the major CSP went out of business in 2001. The aim of the IG tOP was to specify
a business case for a public PKI that could be implemented by any CSP. The IG tOP
was not particularly successful, and the major result was that it is very difficult to
make a living from the provision of certification services.

3.3 Legal reasons
The legal reasons for the PKI failure have to do with the fact that there are many open
questions with regard to the liability of digital signatures and certificates, and that
non-repudiation may represent a dual-edged sword (from the user’s viewpoint),
meaning that non-repudiation is not always appreciated. In this subsection, we
elaborate on the liability and non-repudiation issues.

3.3.1 Liability. Liability is an important building block when it comes to digital
signature legislation. In fact, if a digital signature is generated according to some
digital signature law, then somebody must be made liable if something goes wrong.
For example, the German legislation (SigG, 2001) makes the certificate provider liable if
the damage is caused by the failure of the technical components, the misbehaviour of
the CSP (i.e. its employees) or other violations against the law. This may force the CSP
to create reserve funds or to get insurance in order to compensate eventual damage that
may result from the misuse of the certificates, as it is the case of the Spanish legislation.
The insurance protection, in turn, is expensive and must be taken into account in a
business case.

3.3.2 Non-repudiation. The owner of a public key certificate cannot repudiate a
signature that is generated with the appropriate signing key. From the certificate
owner’s viewpoint, this may be disadvantageous. In fact, it may lead to the situation in
which a certificate owner may be held liable and accountable for statements that are
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digitally signed with the proper key, even if he or she does not know (and does not agree)
with the statements. There are several limitations and shortcomings of digital signature
schemes that must be considered with care, and that may limit the deployment and use of
digital signatures in practice. The limitations and shortcomings are discussed in
Oppliger and Rytz (2004) and Maurer (2003, 2004). In short, although many properties of
digital signature systems can be proven in a mathematically strong sense, there are
many open questions and challenges when it comes to an implementation and real-world
deployment of the systems on a large-scale. What happens, for example, if a binary
string is a valid representation of two digital objects (e.g. a word file and an image file)?
To which object would a digital signature be attributed?

3.4 Social reasons
Last but not least, there are also a couple of social reasons that may be partly
responsible for the PKI failure. In this section, we will elaborate on the following issues:
notion of trust, poor usability, and lack of awareness.

3.4.1 Notion of trust. People often argue that certificates and PKIs can be used to
establish trust. The authors think that the notion of trust is sometimes badly
understood, and that a clear distinction must be made between the notion of trust and
what certificates can be used for. In the real world, trusted relationships are based on
bilateral relationships and experiences that have been made over time. Consequently,
trust can only be established slowly, but it can be destroyed almost immediately.

However, these properties (of trust) can only insufficiently be modelled with
certificates. It is important to note that, in certain way, certificates break the bilateral
relationship by introducing a trusted third party (i.e. the CSP). Furthermore, it is often
required that a party that has a certificate can be trusted without having made
experiences. So the level of trust we get from certificates is often overestimated.

3.4.2 Poor usability. The usage of public key cryptography in general, and public
key certificates in particular, is less trivial than postulated by vendors. In fact, poor
usability is a common feature of many products that employ (public key) cryptography
(Whitten, 2004). There is still a lot of room for research and development that focus on
the end user in order to find cryptographic solutions that, being secure, are usable too.
Examples include trusted devices, appropriate user interfaces, embedding the
cryptographic solutions in the applications.

3.4.3 Lack of awareness. The users of public key cryptography are often not aware
of the vulnerabilities and pitfalls. If, for example, an SSL/TLS session is established to
a secure web server, then the user is expected to verify the authenticity of the certificate
provided by the server. If the certificate is issued by a trusted CA, then the user must
do nothing particular. If, however, the certificate is issued by some untrusted (or even
unknown) CA, then the user must decide whether he or she accepts the certificate.

Unfortunately, it is possible and very likely that the user accepts the certificate by
clicking the corresponding checkbox without thinking and without considering the
further implications (Ellison and Schneier, 2000). There is a long way to go until people
are sufficiently aware of the vulnerabilities and pitfalls of public key cryptography.

4. Lessons learned and conclusions
After having argued that PKIs have failed and having identified a number of reasons
for this failure, one may be tempted to conclude that digital certificates and PKIs are
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not particularly useful, and that they will slowly disappear. This conclusion, however,
is too short-sighted.

Public key cryptography in general, and digital signatures and public key-based
key establishment procedures are simply too valuable than not to be used in practice.
In fact, there is hardly any alternative to the use of digital signatures to provide
non-repudiation services on a large-scale. Whenever public key cryptography is
employed, certified public keys must also be made available in one way or another.
Consequently, there are definitively (many) useful applications for public key
certificates and PKIs, and hence it is reasonable to expect that public key certificates
and PKIs will be highly deployed in the future.

In fact, we do believe that the main reason why hardly any CSP is providing
certification services to the general public is economical: it is very difficult to find a
business case. The underlying reason for this difficulty is that only a few people are
willing to buy certificates. To make things worse, there is a chicken-and-egg-problem:
without applications, there is hardly any incentive to buy a certificate, and without
certificates that are widely deployed, there is hardly any incentive to build applications
that make use of certificates.

In some countries, politicians have argued that it is necessary that the state solves
the problem by providing electronic ID cards that comprise certificates to citizens. This
line of argumentation, however, has problems of its own (not addressed in this paper).

If one were able to solve the economical problem(s) and find a way to successfully
market certificates, then the technical and social problems could be comparably simple
to solve. With respect to the legal problems, the situation is more involved. Digital
signature legislation is and continues to be very difficult to handle, and many people
will attempt to minimize their liability. In the most extreme case, they will try not to
use the technology in the first place. Consequently, the promoters of digital signatures
will have to work with economical incentives. For example, a service provider can
argue that a customer who digitally signs all of his or her transactions is authorized to
get a discount.

Contrary to the common belief that public key certificates and certification services
can be marketed independently from applications and application environments, we do
not think this way. Instead, we think that applications and application environments
will come along with their public key certificates and PKIs. Some of them will be very
specific and even proprietary to some extent (this contradicts, for example, to the
aforementioned vision of electronic ID cards).

Moreover, we think that the use of public key certificates and PKIs will be deeply
intertwined with future operating systems. The Microsoft Windows 2003 PKI Server
and the support and use of public key certificates in contemporary Windows operating
systems point in that direction. Whenever a user is registered and provided with an
account, it is fairly simple and straightforward to also equip him or her with a public
key pair and a corresponding public key certificate.

These types of public key certificates will be different from the ones one usually has
in mind when one talks about public key certificates that are issued in the context of
digital signature acts. From the user’s point of view, these certificates are not
completely different from passwords. Note that a user typically also has to enter a
password to unlock and make use of a private key. So the use and deployment of public
key certificates and PKIs may go unnoticed and in a subliminal way.
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It is not always necessary to make users aware of the full complexity a technology
brings with itself. Against this background, public key certificates and PKIs may have
a bright future and one may expect them to be omnipresent in future computing and
networking environments; this does not necessarily mean that they will be visible.

Notes

1. Note, however, that ITU-T X.509 does not embody a hierarchic trust model. The existence of
cross-certificates, as well as forward and reverse certificates, makes the X.509 model a mesh,
analogous in some ways to PGP’s web of trust (Zimmermann, 1995). The X.509 model is
often erroneously characterized as a hierarchic trust model because it is usually mapped to
the directory information tree (DIT), which is hierarchic, more like name schemes.

2. www.ietf.org/html.charters/pkix-charter.html

3. www.igtop.ch

References

Adams, C. and Lloyd, S. (2002), Understanding PKI: Concepts, Standards, and Deployment
Considerations, Addison-Wesley, Reading, MA.

Burmester, M. and Desmedt, Y. (2004), “Is hierarchical public-key certification the next target for
hackers?”, Communications of the ACM, Vol. 47 No. 8, pp. 68-74.

Chokhani, S. et al (2003), “Internet X.509 public key infrastructure certificate policy and
certification practices framework”, Request for Comments 3647, Network Working Group,
IETF, Reston, VA, November.

Datamonitor (1999), “Global PKI markets 1999-2003”, Datamonitor Report, November.

Davis, D. (1995), “Kerberos plus RSA for world wide web security”, Proceedings of the 1st
USENIX Workshop on Electronic Commerce, pp. 185-8.

Diffie, W. and Hellman, M. (1976), “New directions in cryptography”, IEEE Transactions on
Information Theory, Vol. IT-22 No. 6, pp. 644-54.

Ellison, C. and Schneier, B. (2000), “Ten risks of PKI: What you’re not being told about public key
infrastructure”, Computer Security Journal, Vol. XVI No. 1.

Ellison, C. et al (1999), “SPKI certificate theory”, Request for Comments 2693, Network Working
Group, IETF, Reston, VA, September.

Ford, W. and Baum, M. (2000), Secure Electronic Commerce: Building the Infrastructure for
Digital Signatures and Encryption, 2nd ed., Prentice-Hall PTR, Englewood Cliffs, NJ.

Ganesan, R.Y. (1995), “Augmenting Kerberos with public key cryptography”, paper presented at
Internet Society Symposium on Network and Distributed Systems Security, IEEE Press,
Piscataway, NJ, pp. 132-43.

Kaliski, B. (1993), “A Layman’s guide to a subset of ASN.1, BER, and DER”, RSA Laboratories
Technical Note, RSA Laboratories, Bedford, MA, November.

Kohl, J. (1989), “The use of encryption in Kerberos for network authentication”, Proceedings of
CRYPTO 1989, LNCS 435, Springer-Verlag, pp. 35-43.

Kohl, J. and Neuman, B.C. (1993), The Kerberos Network Authentication Service (V5), MIT,
Cambridge, MA.

Lopez, J., Oppliger, R. and Pernul, G. (2004), “Authentication and authorization infrastructures
(AAIs): a comparative survey”, Computers & Security, Vol. 23 No. 7, pp. 578-90.

Lopez, J., Oppliger, R. and Pernul, G. (2005), “Classifying public key certificates”, Proceedings of
2nd European PKI Workshop, The University of Kent, Kent, June.

Public key
infrastructures

555



Maurer, U.M. (1996), “Modelling a public-key infrastructure”, Proceedings of the European
Symposium on Research in Computer Security (ESORICS’ 96), LNCS 1146,
Springer-Verlag, pp. 325-50.

Maurer, U. (2003), “Intrinsic limitations of digital signatures and how to cope with them”,
Proceedings of the 6th Information Security Conference (ISC’ 03), LNCS 2851,
Springer-Verlag, pp. 180-92.

Maurer, U. (2004), “New approaches to digital evidence”, Proceedings of the IEEE, Vol. 92 No. 6,
pp. 933-47.

Myers, M., Ankney, R., Malpani, A., Galperin, S. and Adams, C. (1999), “X.509 internet public key
infrastructure. Online certificate status protocol – OCSP”, Request for Comments 2560,
Network Working Group, IETF, Reston, VA.

Oppliger, R. (2002), Security Technologies for the World Wide Web, 2nd ed., Artech House,
Norwood, MA.

Oppliger, R. and Rytz, R. (2004), “Digital evidence: dream and reality”, IEEE Security & Privacy,
Vol. 1 No. 5, pp. 44-8.

Shirey, R. (2000), “Internet security glossary”, Request for Comments 2828, RFC 2828, Network
Working group, IETF, Reston, VA, May.

Rivest, R. (1998), “Can we eliminate certificate revocation lists?”, Proceedings of Financial
Cryptography, ’98, in Hirschfield, R. (E.d), Springer Lecture Notes in Computer Science,
No. 1465, February, pp. 178-83.

Rivest, R. and Lampson, B. (1996), SDSI – A Simple Distributed Security Infrastructure,
Addison-Wesley, Reading, MA.

Schiller, J. and Atkins, D. (1995), “Scaling the web of trust: combining Kerberos and PGP to
provide large-scale authentication”, Proceedings of the USENIX Technical Conference,
New Orleand, LA.

SigG (2001), “Gesetz über Rahmenbedingungen für elektronische Signaturen und zur Änderung
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