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Abstract. Nowadays, it is widely accepted that critical systems have to
be formally analyzed to achieve well-known benefits of formal methods.
To study the security of communication systems, we have developed a
methodology for the application of the formal analysis techniques com-
monly used in communication protocols to the analysis of cryptographic
ones. In particular, we have extended the design and analysis phases with
security properties. Our proposal uses a specification notation based on
MSC, which can be automatically translated into a generic SDL specifi-
cation. This SDL system can then be used for the analysis of the desired
security properties, by using an observer process schema. Apart from our
main goal of providing a notation for describing the formal specification
of security systems, our proposal also brings additional benefits, such as
the study of the possible attacks to the system, and the possibility of re-
using the specifications produced to describe and analyze more complex
systems.

1 Introduction

Formal methods characterize the behavior of a system in a precise way and can
verify its formal specification. In particular, the design and analysis of security
systems can greatly benefit from the use of formal methods, due to the evident
critical nature of such systems.

During recent years, the cryptographic protocol analysis research area [1] has
experienced an explosive growth, with numerous formalisms being developed.
We can divide this research into three main categories: logic-based [2], model
checking [3–5], and theorem proving [6]. Although all three approaches have
shown their applicability to simple problems, they are still difficult to apply in
real, more complex environments such as distributed systems over the Internet.

Moreover, we believe that the results obtained in the analysis of crypto-
graphic protocols do not have a direct application in the design of secure com-
munication systems. Probably, one of the major reasons for that is the lack of a
strong relationship between the analysis tools for security systems and the formal
methods techniques commonly used in the specification and analysis of commu-
nication protocols. Trying to bridge this gap is one of the major contributions
of our work.
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We have developed a methodology [7, 8] for the specification of secure sys-
tems, which also allows us to check that they are not vulnerable against both
well-known and originals attacks. Our approach uses a requirement language
(SRSL) to describe security protocols, which can then be automatically trans-
lated into SDL [9], a widely used formal notation specifically well suited for the
analysis of protocols. In addition, we have developed some verification proce-
dures and tools for checking a set of security properties, such as confidentiality,
authentication, and non-repudiation of origin. In our approach we use a simple
but powerful intruder process, which is explicitly added to the specification of
the system, so that the verification of the security properties guarantees the ro-
bustness of the protocol against attacks of such an intruder. This is known as
the Dolev-Yao’s method [10].

Because SRSL is an extension of MSC [11], available editors for MSC and
SDL can be used for writing SRSL specifications, as well as standard code-
generators and SDL validation tools. In particular, we have built our translators
and analyzing tools using Telelogic’s Tau SDL Suite.

The structure of this document is as follows. After this introduction, Sect. 2
defines the security concepts and mechanisms used throughout the paper. Then,
Sect. 3 provides an overview of our proposal. The SRSL language is presented
in Sect. 4, while Sect. 5 discusses how the SRSL descriptions can be automat-
ically translated into SDL, and how the SDL specifications produced can be
analyzed for proving security properties. Finally, Sect. 6 draws some conclusions
and outlines some future work.

2 Specification of Security Properties

A security protocol [12] is a general template describing a sequence of commu-
nications, which makes use of cryptographic techniques to meet one or more
particular security-related goals. In our context we will not distinguish between
cryptographic and security protocols, considering both to be equivalent. The in-
ternational organization ITU-T has defined Recommendation Series X.800 [13,
14] to specify the basic security services. Among these, the ones provided by the
basic security mechanisms (cryptographic algorithms and secure protocols) are
authentication [15], access control [16], non-repudiation [17], data confidential-
ity [18], and data integrity [19].

The notion of authentication includes both authentication of origin and entity
authentication. Authentication of origin can be defined as the certainty that a
message that is claimed to proceed from a certain party was actually originated
from it. As an illustration, if Bob receives a message during the execution of
a protocol, which is supposed to come from Anne, then the protocol is said
to guarantee authentication of origin for Bob if it is always the case that, if
Bob’s node accepts the message as being from Anne, then it must indeed be the
case that Anne has sent exactly this message earlier. Authentication of origin
must be established for the whole message. Additionally, it is often the case that
certain time constraints concerning the freshness of the received message must
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also be met. Entity authentication guarantees that the claimed identity of an
agent participating in a protocol is identical to the real one.

Access Control service. ensures that only authorized principals can gain access
to protected resources. Usually, the identity of the principal must be established,
hence entity authentication is also required here.

Non-repudiation. provides evidence to the parties involved in a communication
that certain steps of the protocol have occurred. This property appears to be very
similar to authentication, but in this case the participants are given capabilities
to fake messages, up to the usual cryptographic constraints. Non-repudiation
uses signature mechanisms and a trusted notary. We will distinguish two types of
non-repudiation services: non-repudiation of origin (NRO) and non-repudiation
of receipt (NRR). NRO is intended to prevent the originator’s false denial of
having originated the message. On the other hand, NRR is intended to prevent
the recipient’s false denial of having received the message.

Confidentiality. may be defined as the prevention of unauthorized disclosure of
information. In communication protocols, this means that nobody who has access
to the exchanged messages can deduce the secret information being transmitted.

Data Integrity. means that data cannot be corrupted, or at least that corruption
will not remain undetected. Accepting a corrupted message is considered as a
violation of integrity, and therefore the protocol must be regarded as flawed.

These services are commonly enforced using cryptographic protocols or sim-
ilar mechanisms. It is worth noting that, To specify a security system, it is not
necessary to know how the system is going to be analyzed, but it is essential to
identify the security services required.

Now, considering the system from the attacker’s perspective, additional se-
curity protocol vulnerabilities can be defined: (a) man-in-the-middle, where the
intruder is able to masquerade a protocol participant; (b) reflection, where an
agent emits messages and studies the system’s answers; (c) oracle, where the in-
truder tricks an honest agent by inadvertently revealing some information (notice
that such an attack may involve the intruder exploiting steps from different runs
of the protocol, or even involve steps from an entirely different protocol); (d) re-
play, in which the intruder monitors a (possible partial) run of the protocol and,
at some later time, replays one or more of the protocol’s messages; (e) interleave,
where the intruder contrives for two or more runs of the protocol to overlap; (f)
failures of forward secrecy, in which the compromised information is allowed to
propagate into the future; and (g) algebraic attack, where it is possible for in-
truders to exploit algebraic identities to undermine the security of the protocol.
Please note that these kinds of attacks depend on the environment of the system
(network, users, . . . ), and therefore not all of them are always achievable in a
given context. However, we will study all potential situations, trying to cover
them all in all cases.
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To keep clear the focus of the paper, the following assumptions have been
made. First, we suppose that cryptography is perfect, so no cryptanalysis tech-
niques are used. Second, all agents may freely and perfectly generate random
numbers. And finally, we do not consider interactions with any other protocols,
because this is an open research topic.

3 Methodology Overview

Our approach (depicted in Fig. 1) performs the design and analysis of security
protocols in the same way the design and analysis of a traditional communication
protocols is accomplished, but including the security aspects.

Fig. 1. Overview of Our Approach

In the first place, we need to gather the functional and security requirements
of the system in any (usually informal) way. These informal specifications, to-
gether with the behavior about the kinds of possible attacks (if available), is
the sort of information that can be described using our Security Requirements
Specification Language (SRSL).

SRSL is an extension of MSC, augmented with textual tags. We make use of
the MSC text area to include these tags, which are used to identify the security
characteristics of the data being transmitted, the intruder’s possible activities,
and the security analysis goals. In case the attacker’s behavior is not explicitly
provided, we automatically generate a generic process that tries to examine all
possible attacks.

For drawing the graphical SRSL specifications, any standard MSC and HMSC
editor can be used. In our case, we have used Telelogic’s TAU, which also allows
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the automatic translation of the graphical MSC diagrams into their correspond-
ing textual form. A translator program is then used to obtain the SDL system
from the SRSL descriptions. (This program has been written in C, using plain
LEX and YACC tools.) The SDL system produced is composed of: (1) a package
with the data types of the system for the analysis; (2) a package with one process
type for each protocol agent; and (3) a collection of process types (“observer”
and “medium”) for the analysis strategy.

To analyze the security properties, we evaluate the behavior of the SDL
system under different kinds of attacks (as specified by the medium processes
defined in the analysis strategy). The observer process provided by the TAU
Validator tool is used for these checks. Thus, we can check whether a specific
state is reached, or whether a particular data is ever stored into the intruder’s
database knowledge.

Security_information ::= definition_section security_service_section

Defintion_section ::= Definition var_definition  knowledge_section

var_definition ::= <varlist> : Agent ;
| <varlist> : Text ;
| <varlist> : Random ;
| <varlist> : Timestamp ;
| <varlist> : Sequence ;
| <varlist> : Public_key ;
| <varlist> : Symmetric_key ;
| <varlist> : Shared_key ;
| <varlist> : Session_key ;

Knowledge_section ::= Knowledge <listagent_id> : <varlistasig> ;

Security_service_section ::=  [intruder_strategy] security_property

intruder_strategy ::= Session instances [ <var>=<value> ] ;
| intruder_knowledge [ <initial_knowledge> ];
| intruder [ redirect | , impersonate | , eavesdrop ] ;

security_property ::= Security_service <security_service_list> ;

security_service_list ::= authenticated ( <agent> <agent> )
| conf ( <data> )
| NRO ( <agent> <data> )

Fig. 2. SRSL Security Section Syntax

We also make use of the TAU Validator assert mechanism, which enables
observer processes to generate reports during the state space exploration. These
reports are maintained by the Report Viewer, and can be examined to identify
security flaws.

Currently, confidentiality and authentication [20] are the security properties
usually analyzed. By analyzing confidentiality we prevent the intruder from being
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able to derive the plaintext of messages passing between honest nodes. Our
analysis consists of checking if the secret item can be deduced from the protocol
messages and the intruder’s database knowledge.

An authentication protocol is considered to be correct if a user Bob does not
finish the protocol believing that it has been running with a user Alice unless
Alice also believes that she has been running the protocol with Bob. Our analysis
consists of looking for a reachable state where Bob has finished correctly and
Alice will never reach her final state.

We also analyze non-repudiation of origin. For that we define the evidence of
origin and who produces it (the origin). Our analysis consists of checking that
the evidence is digitally signed by the origin agent, and that it cannot be created
by any other agent.

In addition, the SDL system generated from the SRSL specifications can be
used to automatically generate C or C++ code, which can interact with exiting
applications. In order to generate this code we need to replace the data types
package with a corresponding package that defines the data types in ASN.1 or
C. This prototype can also be used for testing, which is part of our future work.

4 The SRSL language

The main aim of SRSL is to define a high-level language for the specification of
cryptographic protocols and secure systems. As pre-requisites for this language
we need to ask it to be modular to achieve reusability, to be easy to learn, and
to incorporate security concepts.

As a natural base for SRSL we considered the requirements language most
widely used in the telecommunications: the Message Sequence Chart (MSC) and
its extension High-level MSC (HMSC). With MSC we can specify elementary
scenarios, and compose them to define more complex protocols with HMSC.
The version we have considered is previous to the MSC 2000 release [21], but we
believe that some features of this release are very useful.

SRSL is divided into two main parts. The first one contains the definition
of the protocol elements and the security analysis strategy. The second part
describes the message exchange flow.

The first part is textual. The syntax of its main elements is shown in Fig. 2.
These elements can be grouped into different categories, and are listed below
(language keywords are written in italics):

– Main elements:
� Entities: Agent, principal identification;
� Message: Text, message text; Random, number created for freshness, also

called nonce; Timestamp, actual time; Sequence, counter.
� Keys:

Public key public-key cryptographic, formed by a pair of public and pri-
vate keys;

Symmetric key used for symmetric encipher;
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Shared key symmetric key shared by more than one entity;
Session key a fresh symmetric key used to encrypt transmission.

– The “knowledge” section contains the information needed to describe the
initial knowledge of each party of the protocol.

– The “security service” section is split into the “intruder strategy” section and
the “security property” section. The first one defines a possible attack sce-
nario. The second one describes which security property we try to achieve
with this protocol. We have used three different security statements: Au-
thenticated(A,B), stating that B is certain of the identity of A; conf(X),
stating that the data X cannot be deduced (also called confidentiality); and
NRO(A,X), or non-repudiation of origin, which states that the data X (the
evidence) must have been originated in A. These statements have a formal
description which is used to analyze them.

The message exchange flow is described using the standard MSC and HMSC
facilities. MSC references are used to achieve reusability. We have specified a set
of standard protocols in SRSL, that can be easily re-used in different contexts,
and combined together to describe more complex protocols using their MSC
references.

Messages consist of an identification name (either a text string describing
the meaning of the message, or a simple counter sequence), and the message
parameters (which define the message data type format).

Some cryptographic operations can be applied to messages: Concatenate
(“,”) for data composition; Cipher ({<plaintext>} <key>) to cipher data; Deci-
pher(“decrypt(<cipher data>,<key>)”) to extract the plaintext; Hash(“<hash-
function> (<data>)”), result of a one way algorithm; and Sign([<plaintext>]
<Public Private key>”), for getting a hash encrypted message with the signer’s
private key. Further cryptographic functions can be defined if required.

In addition, the MSC expressions constructed using the inline MSC operators
alt, par, loop, opt and exc can also be used.

The keyword alt denotes alternative executions of several MSCs. Only one
of the alternatives is applicable in an instantiation of the actual sequence.

The par operator denotes the parallel execution of several MSCs. All events
within the MSCs involved are executed, with the sole restriction that the event
order within each MSC must be preserved. An MSC reference with a loop con-
struct is used for iterations and can have several forms. The most general con-
struct, loop<n,m>, where n and m are natural numbers, denotes iteration at
least n and at most m times. The opt construct denotes a unary operator. It is
interpreted in the same way as an alt operation where the second operand is an
empty MSC. An MSC reference where the text starts with exc followed by the
name of an MSC indicates that the MSC can be aborted at the position of the
MSC reference symbol, and instead continued with the referenced MSC.

To illustrate our approach we will specify here a typical secure web access to
a data bank portal via the Internet. Figure 3 shows the SRSL specification of the
system in SRSL, that uses two agents: “User Browser” and “Bank Portal”. The
“Bank Portal” agent has a secure web service via the HTTPS protocol, which
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provides authentication of the server. This is represented by an MSC reference
called “https server auth” that implements the server authentication and the
key exchange protocol defined in HTTPS. This MSC reference is defined in a
package of standard protocols. The results of this scenario is authentication of
the server and a session key called “https skey”. The first security requirement
“Authenticated (User Browser, Bank Portal)” is achieved with this protocol.

Fig. 3. SRSL Security Scenario of User’s Web Access to Bank

The second requirement means that the user must authenticate itself to the
bank’s portal. This is accomplished by a mechanism that asks for the user’s
identification (login) and password, and subsequently validates it. The exception
MSC reference called “login refused” is active if the login-password authentica-
tion process of the “Bank Portal” fails. Notice that all messages are ciphered by
the https protocol session key.
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agentA

agentB

agentlib

denc

enc
sign

analcryptlib

Cryptographic functions

x:y A (0) : AgentA

x:y B (0) : AgentB

x:y medattack (1,1) : Redirect

x:y observer (1,1) : Obv_redir_attack

Explore

Redirect

Router

b<protocol_name>

<protocol_name>

/* type of intruder's behaviour */

/* Observer checking */

/* Explore all possibilities */

/* Man-in-the-middle attack */

/* Do nothing  */

/* system definition */

Obv_redir_attack

observer

observerlib

Fig. 4. Generic SDL System Overview

The last three requirements mean that the data transmitted is confidential.
This goal is accomplished by making use of the session key established during
the https connection.

Of course, other alternative security mechanisms could have been consid-
ered for specifying this system, which also met the five original requirements.
The important point to note here is that we have chosen a form of specification
that does not bind the developer to any particular security mechanisms, thus
achieving separation of concerns and modularity. This is accomplished by allow-
ing the security requirements to be defined at a higher level of abstraction, and
independently from the system’s functional requirements.

In the case of a system that is already implemented (a legacy system) that we
want to analyze or document, we can describe instead the security mechanisms
that have been implemented.

5 Security Analyses

We use SDL for the security analyses. In the first place, we need to build an
SDL system from the SRSL specifications. We have developed a program that
automates this process. The program is written in the C language, and uses
LEX and YACC standard tools. The input file is a protocol specification written
in SRSL, and the program produces a valid SDL system. The generated SDL
system (depicted in Fig. 4) is composed of three packages, and contains several
processes.
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The SDL package that defines the system data types and their operators is
called “analcryptlib”. It also contains elementary security data types, and the
message format definition used in the protocol. This information is used by the
rest of the system.

Another SDL package defines a process type for each principal agent. They
are implemented in a standalone fashion so they can be reused in different sit-
uations. Figure 4 shows two process types, which reference agents A and B
respectively.

The last package is about the observer processes. They implement the assert
mechanism used in the validation process, and depend on the medium process
(called “medattack” in Fig. 4), and on the security services that will be evaluated.

The SDL system (shown in Fig. 5) is named after the protocol it defines, and
consists of a single SDL block, which is composed of the process structure for
analysis (“A”, “B”, “medattack”), an observer process (“observer”) and several
medium process types (“explore”, “redirect”, and “router” ). The process struc-
ture for the analysis consists of a medium process that controls all transmissions
among agent processes. This control implements the attacker’s procedure.

 block b<protocol_name>
 

A(0,):AgentA
 

B(0,):AgentB
 

medattack(1,1):Redirect

 

observer(1,1):obv_redir_attack

 

Explore

 
Redirect

 
Router

 

GA

 

GB

 

RA  m2,m4

 

m1,m3,m5

 Gmedium

 
RB

 m1,m3,m5

 

m2,m4

 
Gmedium

  

 use analcryptlib;
 

use agentlib; 

 use observerlib; 

 system <protocol_name>  

  b<protcol_name> 

 

Fig. 5. SDL System Configuration

Please note that medium process types have to be created inside this block
because they implement the intruder’s behavior, and therefore they may create
process agent instances. The TAU tool we use requires all process instances to
be defined within the same block. The following describes in detail all the system
parts, and how the SRSL specifications are mapped onto the SDL description of
the system.
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5.1 Data Types Package

An SDL package contains the data types and the cryptographic functions used in
the SRSL specification of the system. We may consider an SDL package for per-
forming the analysis, and other package (written in ASN.1) for code generation.
All cryptographic data and operators are standardized using ASN.1 notation,
following PKCS standards [22].

Since the SDL data types do not support recursive definitions, we make use
of enumerated and structured data types. The elemental data types defined in
Sect. 4 are then mapped to enumerated SDL struct sorts. An example is depicted
in Fig. 6.

newtype TSKEY
  literals NULL,Kas,Kbs;
endnewtype;

Kas,Kbs :
symmetric_key;

Fig. 6. Example of translation of security data to SDL struct

The messages, which are sent by protocol agents, are constructed by con-
catenation of elemental data types and cryptographic operations. We define a
struct sort for each message, and set of elemental data types. The cryptographic
functions are then applied to a set of elemental data types called “TENCMESS”.
This is shown in Fig. 7

Freshness or temporary secrets are implemented by adding an item that
references the process instance values. In particular, we use the SDL sort PID
for this purpose.

Furthermore, we define a “set of knowledge” type for each data type. The
analysis methods use these types to store message knowledge in order to prove
the specified security properties.

5.2 Agents Package

The generic model identifies each protocol agent with an SDL process type.
All process types are stored in a package called “agentlib” so they can be used
in other specifications. An agent specification is totally independent from the
rest of the system, so they are generated in separate modules. In addition, the
specification allows concurrent instances, so we can evaluate this behavior in the
analysis phase.

The generic state transition of an agent process is triggered when it receives
a correct message (a message accepted by the agent). Then, either the next
message is composed to be sent to the receiver agent, or the process stops if the
protocol’s final state is reached for this process. If the message is not correct,
the process returns to the state where it is waiting for messages.
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newtype TM1 struct
  Kab1 : TSKEY;

     Nb1: TRANDOM;
endnewtype;

newtype TMESSAGE choice
      m1 TM1;
       /* others type messages */
endnewtype;

newtype TENCMESS  struct
  
  

message TMESSAGE;
     keymess TGENKEY;
     singkey TGENKEY;
     idhash THASH;

operators
     enc : TMESSAGE, TGENKEY -> TENCMESS; 

  denc : TENCMESS, TGENKEY -> TMESSAGE;
     sign : TMESSAGE, TGENKEY -> TENCMESS;
     hash : TMESSAGE, THASH -> TENCMESS;

endnewtype;

1. A -> B:
{Kab,Nb}Kas

Fig. 7. Example of Translation Belonging to the First Message of a Security Protocol

The MSC expressions used in SRSL are mapped into SDL as follows: an alt
expression produces several signal trigger states; a loop expression makes all next
transitions return to the initial section state; an opt expression is implemented
by a continue signal; and finally, an exec expression is translated into an asterisk
state.

An SDL process is a finite state machine, and therefore it finishes when
it executes a stop statement, or provides a deadlock if no signal arrives. Our
model has to explore all possibilities. Hence, we need to develop a mechanism to
ensure that all signals sent must be processed. Consequently, we have added a
state called “final” to indicate the end of the protocol execution, and a general
transition composed of a common “save” statement and a continuous signal, with
less priority than the input statement, that checks whether there are signals still
waiting to be processed. By means of this structure we are transforming a finite
state machine into an infinite one, just for analysis purposes.

At this point, if we instantiate the medium process with a “Router” process
type, we can specify a security protocol in the same way as we might specify a
traditional communication protocol, and therefore we can analyze some of the
liveness properties of the system in a traditional way. In the next subsection, we
are going to explain how the security properties can be checked.

5.3 Model Medium-Observer Processes

In our approach, the intruder’s behavior is divided into two main aspects, the
exploration algorithm and the check mechanism. The first one is provided by a
medium process, while an observer performs the check mechanisms.

We can consider two kinds of medium processes. The first one is character-
ized by an exploration mechanism that tries to explore all possibilities. It starts
by examining all combinations of the different initial knowledge of each agent.
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Afterwards, it checks the concurrent agents’ execution, by first trying combi-
nations of two concurrent sessions, and so on. Our algorithm finishes when an
“out of memory” is detected, or when it detects that the significant intruder
knowledge is not incremented. In general, the completeness problem [23, 24] is
undecidable. Thus, the fact that the algorithm terminates without having found
a flaw, is not a proof that there are no flaws.

The second kind of medium process uses an intruder process specialized in
finding a specific flaw. If we are able to characterize a particular kind of attack,
we can then evaluate the protocol trying to find such a specific flaw. Perhaps
this is not the best solution in general (the only result we get is that a specific
vulnerability does not occur in the cases we have examined), but it is very useful
for a protocol designer that wants to be sure that the protocol is not vulnerable
with respect to that kind of attack.

 

 

 

 process type << block b<protocol_name> >> Redirect

 

dcl v1,v3,v4,v5 TENCMESS;

 

dcl v2 TENC2MESS;

 

dcl sessA1,sessB1,sessA2,sessB2 PID;

 

dcl ses INTEGER;

 

router

 

m1(v1) m2(v2)

 

m3(v3)

 

m4 (v4)

 

m5(v5)

 

A

 

( B,A,P)

 

sessA1=sender

 

sessB2=sender

 

sessA1=sender

 

sessB2=sender

 

sessA1=sender

 

sessA1:=offspring;

 

m1(v1) to
sessB2

 

m2(v2) to
sessA1

 

m3(v3) to
sessB2

 

m4(v4) to
sessA1

 

m5(v5) to
sessB2

 

B

 

( A,P)

 

-

 

-

 

-

 

-

 

sessB1:=offspring;

 

-

 

A

 

( A,B,P)

 

sessA2:=offspring;

 

B

 

( B , P )

 

sessB2:=offspring;

 

router

 

GMedium

 

m1,m2,m3,m4,m5

 m1,m2,m3,m4,m5

 

true

 

false

 

true

 

false

 

true

 

false

 

true

 

false

 

true

 

false

 

Fig. 8. Implementation of “redirect” Intruder’s Behavior
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The state transition of the medium process is triggered when it receives
any message. After reception, the message is stored into the intruder’s knowl-
edge database. The intruder then decides which operation performs next, and
proceeds to the next routing state. We have defined three different operations:
eavesdrop, redirect, and impersonate. In an eavesdrop operation, the intruder
intercepts the message but does not send it to any agent. A redirect operation
means that the intruder intercepts the message but does not forward it to the
original receiver. In an impersonate operation, the intruder sends a faked mes-
sage to the original receiver.

Under the EU-funded project CASENET we are currently investigating the
use of the protocol developer SAFIRE tool [25] to execute the medium processes.
Even if we have to modify these processes to use the tool, we may easily obtain
an environment for testing intruders’ strategies. This is an open research item.

Fig. 9. Example of Observer Process Type that Checks Correspondence Flaw

The security properties are proved using condition rules. These rules check
different situations where protocol vulnerability is possible. The observer process
carries out the checking mechanism. This is a special SDL process type that is
evaluated in each transition of the protocol specification. It has access to all
variables and states of all process instances, so we can test it automatically.
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To implement it we have to create an SDL struct sort with a “v” operator for
each structured type that we want to evaluate. Figure 9 shows an example of an
observer process. We can see the condition rules for checking the authentication
property, and the report result. The report contains a security failure MSC
scenario.

Currently, confidentiality, authentication, and non-repudiation of origin can
be checked. For checking confidentiality, we examine whether a specific value
(that we consider secret) can be deduced from the intruder’s knowledge. Au-
thentication is analyzed by checking that all the principal processes finish at the
expected protocol step. Some authors [20] call this the correspondence (or prece-
dence) property. Finally, non-repudiation of origin analysis consists of checking
that, in the intruder’s database knowledge, the evidence is signed digitally by
the origin agent, and that it cannot be generated without this signature, and
not even in another protocol run.

In order to validate our proposal we have carried out the analysis of some of
the most classic cryptographic protocols, such as the Needham-Schroeder sym-
metric key, and the secure socket layer (SSL). Ref. [7] describes the results of the
analysis for the authentication protocol Encrypted Key Exchange (EKE) [26].
This protocol was specified in SRSL, using a well-known “man in the middle”
attack evaluating two executions running in parallel sessions. The attack fol-
lowed the redirect intruder’s behavior. The resulting scenario describes a situa-
tion where only one of the two agents in each session has finished (agent A of
the first session, and agent of B of the second one), but not the other.

6 Conclusions

We have presented a new analysis method for analyzing and evaluating security
protocols and their possible attacks. Security protocols are specified in SRSL,
which can then be translated into a working SDL system. Attacks are imple-
mented by SDL processes that specify the intruder’s behavior and observer pro-
cesses that check safety properties. One of the benefits of our approach is that
protocol specifications are described independently from the analysis procedures,
so they can be re-used in other environments as well.

Several kinds of security attacks can be analyzed using our approach. It is
essential to study how they can be produced in a real environment. We examine
the result scenario provided in an analysis procedure, and redesign the security
protocol if necessary.

We have applied this method in complex systems, for instance in electronic
contract signing. The SRSL specification helped to implement it and draw at-
tention to security services and their related mechanisms. Furthermore, we have
simulated several security critical scenarios in order to verify the security prop-
erties.

Currently we are extending SRSL so more complex protocols can be specified,
and to analyze other properties. We are studying the use MSC-2000 features.
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Furthermore, we are developing a framework to implement for testing protocol
attacks in the Internet environment.
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Abstract. Due to their intrinsic complexity, the development of dis-
tributed systems is difficult in general and therefore relies on careful and
systematic development steps. This paper addresses the design and im-
plementation of distributed systems, using SDL as the design language.
In particular, the refinements during implementation design are exam-
ined, and it is shown how SDL interfacing patterns can support these
steps, even in a heterogeneous environment. Then, tool support to au-
tomatically implement the interfacing patterns by generating tailored
APIs for the system environment is presented. Finally, these technolo-
gies are illustrated in the context of a comprehensive development of a
distributed light control system in a heterogeneous environment, using
various communication technologies.

1 Introduction

The development of distributed systems in heterogeneous environments is a diffi-
cult issue - despite the use of customized design languages, development methods,
and tool support in this area. One reason certainly is the intrinsic complexity of
these systems due to concurrency, synchronization, and cooperation of system
agents. Especially in cases of large systems, this requires suitable structuring
mechanisms as well as a careful and systematic system design.

For the functional design (the design covering the overall functionality of a
distributed system) SDL [1] is a suitable specification language that is widely
used in industry. SDL supports the hierarchical structuring of a complex dis-
tributed system into agent modules. Furthermore, the interaction behavior as
well as the internal behavior of these modules can be specified. For closed SDL
systems, implementation code can be generated automatically, which has posi-
tive effects on quality, development costs, and time-to-market.

When it comes to implementation design, where, for instance, direct inter-
action of agents is replaced by message exchange through an underlying com-
munication service, an SDL system may have to be partitioned into several

� This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as
part of Sonderforschungsbereich (SFB) 501, Development of Large Systems with
Generic Methods
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subsystems. Usually, such a communication service is provided by a local oper-
ating system, and thus is part of the environment from the view point of the
SDL subsystems. This means that to interact, agents now send/receive messages
to/from the environment.

To implement open SDL systems (systems interacting with their environ-
ment) only part of the code is generated automatically with the existing tools.
In addition, an environment interface – also called environment functions – has
to be supplied, requiring manual coding steps. On the one hand, this environ-
ment interface depends on the underlying communication service. On the other
hand, it depends on the SDL subsystems using the interface. Thus, replacement
of the underlying communication service or changes of the interaction behav-
ior of SDL agents entail changes of the environment interface, which is a time
consuming and error-prone task.
Our strategy to address this particular problem is twofold:

1. First, we define generic design solutions for the interaction of an open SDL
system with different underlying communication services. This is done by
defining, for each communication technology, an interfacing pattern, us-
ing the pattern description template and notation of the SDL pattern ap-
proach [2–6]. Interfacing patterns can then be applied during the implemen-
tation design, where the decision to use a particular technology is made. In
this way, the interaction behavior of SDL agents can be controlled, reducing
the need for modifications of the environment interface.

2. Second, we conceive and implement tool support for the automatic gen-
eration of the environment interface. This tool support is syntactically and
semantically integrated with the interfacing patterns, and currently supports
interfacing with TCP and UDP sockets, CAN, UART/TP, and QNX IPC.

In [7], two solutions for environment interfaces are described:

The first solution is based on so-called light-weight APIs and datagram sock-
ets. The idea is to emulate the datagram sockets by representing them as SDL
abstract data types with suitable SDL operators (Socket, SendTo, RecvFrom,
Close). To send a signal, it is first encoded into a character string, and then
sent by evaluating the expression “SendTo (<parameterList>)”. This strategy
is straightforward, as there is a one-to-one relationship between SDL actions
and the service primitives of datagram sockets. However, it differs from the
SDL communication paradigm that is based on explicit signal exchange.
The second solution is based on so-called full-weight APIs and again data-
gram sockets. The communication is based on specific SDL signals outPacket,
bindPort, and inPacket. To send a signal, it has to be encoded into a character
string, and is then sent by an explicit SDL output action, as one parameter
of outPacket.

Both solutions have the disadvantage that the SDL designer has to specify the
coding and decoding of SDL signals and signal parameters in the design. Another
drawback is that there exists only one set of operations for different SDL signals,
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therefore, the receiver has to decode the packets first in order to distinguish
between these signals. Finally, only datagram sockets are currently supported.

The paper is structured as follows. In Sect. 2, we elaborate on the systematic
design of distributed systems, illustrated by a running example. In particular, we
explain the refinements during implementation design, and show how these steps
can be supported by SDL interfacing patterns. In Sect. 3, we introduce the tool
APIgen for the automatic generation of environment interfaces. We show how
the tool complements existing code generators, and explain the generated code.
Section 4 presents a survey of the comprehensive development of a distributed
light control system in a heterogeneous environment, where various interfacing
patterns have been applied in the design phase, and APIgen has been used to
generate the environment functions. Conclusions are drawn in Sect. 5.

2 Systematic Design of Distributed Systems with SDL

2.1 Stepwise Design

The design of distributed systems is often done in several steps, especially in cases
of large systems. This requires that the system requirements be partitioned into
subsets that can be dealt with one-by-one.

Horizontally The separation of system functionalities can lead to a proper parti-
tioning, such that with each requirement subset, more functionality is added.
For instance, phases of a communication service (connection setup, data
transfer . . . ) or functionalities of a communication protocol (flow control,
error control . . . ) can be identified.

Vertically The requirements can be partitioned into different levels of abstrac-
tion. For instance, on a high level of abstraction, direct reliable interaction
between groups of system agents is assumed, while this assumption is later
relaxed to unreliable, indirect interaction between pairs of system agents.
This of course may influence the behavior of the system agents, which now
may have to deal with loss or group management.

For the remainder of the paper, it is sufficient to consider vertical partitioning,
by distinguishing two levels of abstraction:

– Functional design deals with the overall system functionality — a high level
of abstraction.

– Implementation design addresses the mechanisms used to implement the
system, in particular, the replacement of direct interaction between system
agents by concrete communication services.

To illustrate these steps, we start with a simple example: the system pingPong.
Figure 1 shows a functional design, where two agents called pingAgent and
pongAgent interact via a common channel pingPongTable, directly exchanging
signals ping and pong, each carrying a parameter of type Integer.
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SYSTEM pingPong 1(1)

pingPong

pingPong example

BLOCK pingPong
SIGNAL ping(Integer),

pingAgent pongAgent
pingPongTable

pong ping

1(1)

pong(Integer);

PROCESS pingAgent

ping(i) pong(i)

ping(i)

PROCESS pongAgent

wait4ping

ping(i)

i:= i+1

pong(i)

wait4pong

DCL i Integer := 0; DCL i Integer;

1(1) 1(1)

wait4ping

wait4pong

-

wait4pong

Fig. 1. Example “pingPong”: Functional Design

In a distributed environment, it is intended that the agents of the system
pingPong be placed on different hosts. Therefore, the direct interaction of the
functional design has to be replaced by an underlying communication service.
This leads to an implementation design, where this underlying service is made
explicit, and the behavior of the interacting agents is modified such that the
functional design is realized correctly.

Figure 2 shows an implementation design that is based on the decision to
use the communication service provided by the transport protocol TCP. For this
purpose, an SDL component called TCPserviceProvider is added, and interaction
between pingAgent and pongAgent, now acting as service users, is redirected via
this process. As TCP supplies specific service primitives, the behavior of the
service users requires modification. For instance, to send a signal ping, a socket
has to be created, and a connection must be established. Furthermore, the signal
ping and its parameter have to be encoded before they can be sent, and to be
decoded upon reception. Figure 2 shows the additional behavior of pingAgent
resulting from these design decisions. The correspondence between Figs. 1 and 2
is highlighted by the shaded SDL symbols.

2.2 Pattern-based Implementation Design

Analysis of several implementation designs has shown similarities in those parts
where common channels have been replaced by an explicit service provider. To
capture these similarities, we have defined generic solutions using the SDL pat-
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SIGNAL
   TCPsocket.req,
   TCPsocket.cnf(Integer),
   TCPconnect.req(Integer,String,Integer),
   TCPconnect.cnf, TCPconnect.ref,
   TCPclose.ind;
SIGNAL
   ping_TCP_prep(Integer),
   pong_TCP_prep(Integer),
   ping_TCP_snd(Integer,Integer),
   ping_TCP_rcv(Integer,Integer),
   ...;
SIGNALLIST pingIn = ...;
SIGNALLIST pingOut = ...;

...;

PROCESS pingAgent 1(1)

DCL sockFD Integer;

*

TCPsocket.req

TCPconnect.req
(sockFD, host, port)

TCP_close.ind

wait4socket

wait4connectwait4pong

pong_TCP_rcv
(sockFD,i)

pong_TCP_prep
(sockFD)

ping_TCP_snd
(sockFD,i)

ping_TCP_snd
(sockFD,i)

DCL host String := ‘localhost’;
DCL port Integer := 4000;

wait4connect

TCPconnect.cnf TCPconnect.ref

wait4socket

TCPsocket.cnf
(sockFD)

wait4pong

-

BLOCK pingPong

pingAgent pongAgent

TCPclient
(pingIn)

(pingOut)

1(1)

TCPserver

TCPserviceProvider

(pongIn)

(pongOut)

DCL i Integer := 0;

Fig. 2. Example “pingPong”: implementation design

tern approach [2, 6, 8]. In particular, we have defined, for each type of communi-
cation service, an SDL interfacing pattern. Currently, interfacing patterns exist
for the services provided by TCP, UDP, CAN, Bluetooth, UART/TP, AAL5, and
QNX interprocess communication. Furthermore, SDL components representing
these services have been defined in order to have complete implementation de-
signs that can be simulated.

In Fig. 3, we show an excerpt of the generic solution defined by the SDL pat-
tern TcpInterfacing. The excerpt is taken from the SDL Fragment, the syntac-
tical part of the design solution defined by the pattern, and shows the context, the
adaptation, and the embedding for a TCP client (EFSM TCPclientAutomatonA)
and the enclosing scope unit (SU TCP). To define the generic design solution,
a language called PA-SDL (Pattern Annotated SDL, see [6] for details) is used.
Solid symbols denote design elements that are added to the context specifica-
tion as a result of the pattern application. As a general rule, names may be
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+

B

EFSM TCPclientAutomatonA
DCL sockFD Integer;

*

TCPsocket.req

TCPconnect.req
(sockFD, host, port)

TCP_close.ind

wait4socket

wait4connect

msg_n_TCP_prep
(sockFD)

msg_n_TCP_snd
(sockFD,...)

DCL host String := ‘...’;
DCL port Integer := ...;

TCPconnect.cnf TCPconnect.ref

wait4socket

TCPsocket.cnf
(sockFD)

SU TCP

p-specializes AutomatonA

SIGNAL
msg_n_TCP_prep(Integer),
msg_n_TCP_snd(Integer,...),
msg_n_TCP_rcv(Integer,...),

+

A

someState

trigger
< ... >

connected

trigger
< ... >

wait4connect

connected

*

C connected

connected*

C connected

msg_n_TCP_rcv
(sockFD,...)

SIGNAL
TCPsocket.req,
TCPsocket.cnf(Integer),
TCPconnect.req(Integer,String,Integer),
TCPconnect.cnf,
TCPconnect.ref,
TCPclose.ind;

errorState

closeState

Fig. 3. TcpInterfacing pattern (SDL Fragment, excerpt)

changed. However, names in italics must be fresh, and if underlined, renamed in
a unique way when adapting the pattern. SU refers to a structural SDL unit, for
instance, a system, a block, a process, or a service. Scissor symbols indicate the
possibility of refinements, for instance, by adding further actions to a transition,
without disrupting the control flow. Finally, the shaded part called border symbol
is an annotation denoting replications. The direction of replication (horizontal
or vertical) is given by the arrow, the number of replications is specified by the
multiplicity.

To apply a pattern, the context has to be identified first. In case of the
TcpInterfacing pattern a choice must be made of the enclosing structural
unit, two active components (SDL processes), and matching transitions of these
components. The SDL fragment then defines how to adapt the pattern, and
how to embed it into the SDL context specification. Application of the TcpIn-
terfacing pattern to the functional design in Fig. 1 yields the implementation
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design in Fig. 2. In a similar way, interfacing with other types of communication
services can be achieved.

3 Automatic Implementation of SDL Designs with
APIgen

In this section, we introduce the tool APIgen (API generator), which supports
the automatic code generation for distributed systems designed in SDL. API-
gen is a supplement for Cadvanced, the SDL-to-C compiler that is part of the
Telelogic TAU SDL suite [9]. In its present form, APIgen is syntactically and se-
mantically integrated with the interfacing patterns of the SDL pattern pool (see
Sect. 2.2). Starting point for the code generation is an implementation design,
as shown in Sect. 2.1.

3.1 Architecture of APIgen

To run a system in a distributed environment, several implementation decisions
have to be made. For instance, the target environment is determined, and the
logical distribution given by the implementation design is mapped to physical
components. In fact, this is also a decision between light and tight integration,
in the sense that SDL processes are mapped to different OS processes or a single
one. This may lead to a modification of the implementation design, such that
components to be implemented on the same physical node are collected into one
SDL system that is syntactically complete and therefore can be compiled.

pingAgent pongAgent

TCPclient TCPserver

TCPserviceProvider

Cadvanced

APIgen

1

OS TCP Implementation

xInitEnv
xInEnv
xOutEnv
xCloseEnv

SYSTEM ...

xInitEnv
xInEnv
xOutEnv
xCloseEnv

2

3

SYSTEM ...

Fig. 4. Example “pingPong”: light integration

Figure 4 shows the result of these implementation decisions for the pingPong
system: pingAgent and pongAgent are assigned to separate nodes, therefore, sep-
arate SDL systems that interact with their local environment are introduced,
each containing the corresponding declarations and process specifications. The
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resulting SDL systems are open in the sense that they interact with their envi-
ronment. Here, interaction is by means of signals. Furthermore, it is decided to
replace TCPserviceProvider by an OS TCP implementation.

From the implementation decisions, it follows that, from the view point of
pingAgent and pongAgent, the communication service now belongs to the envi-
ronment. This is important when it comes to automatic code generation: it is
straightforward to generate C-code from SDL specifications, using Cadvanced,
the SDL-to-C compiler [9]. However, interaction with the environment is not
directly supported. For interaction between pingAgent and pongAgent with the
OS TCP implementation, for instance, a set of tailored environment functions
has to be provided: xInitEnv and xCloseEnv are called at system start and termi-
nation, respectively; xOutEnv is called when a signal is sent to the environment,
and xInEnv is called periodically, polling for events in the environment leading
to signals to be sent to the SDL system.

Conceptually, the environment functions can be understood as an API. They
abstract from internal details, and serve as an interface to be used by SDL pro-
cess implementations whenever interaction with the environment is necessary.
Because the code of this API depends on both the environment (the type of
communication service and its implementation) and the SDL system (the sig-
nal types to be exchanged with the environment, and, in particular, the signal
parameters), it is commonly hand-coded. In our experience, this is a very time
consuming and error prone task, due to several fundamental and conceptual
differences between the physical environment representing a “real” world and
abstract SDL specifications.

SDL- C-code:

environment
functions:

specifications:
executables

APIgen

Cadvanced(subsystem1.pr)

gcc
compiler

linker

(subsystem2.pr)

(subsystemn.pr)
...

(subsystem1.c)
(subsystem2.c)

(subsystemn.c)
...

(subsystem1.env.c)
(subsystem2.env.c)

(subsystemn.env.c)
...

&
• TCP Sockets
• UDP Sockets
• CAN
• UART/TP
• QNX-IPC

(subsystem1)
(subsystem2)

(subsystemn)
...

communicating over
basic technologies:

Fig. 5. Tool chain for automatic code generation

In the pingPong example, both SDL systems are compiled using Cadvanced,
generating C-code that assumes the existence of this API. Furthermore, the
TCP implementation is part of the operating system. To fully automate the
code generation, we have conceived and implemented APIgen, a tool to create
the environment functions (see Figure 5). APIgen takes the SDL specifications
as input, and automatically generates C-code, supporting a variety of communi-
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cation technologies (e.g., TCP sockets, UART/TP, CAN, QNX IPC). This fills
the gap between code generation performed by Cadvanced and existing com-
munication technologies, without requiring subsequent manual modifications or
additions. Generated environment functions are stored in separate files named
subsystemn.env.c (see Fig. 5). They can be compiled separately and are linked
with core modules subsystemn.c generated by Cadvanced.

 subsystem.pr

strings.tmpl
com_tcp.c

select

writeenv subsystem.env.cparse_pr

com_UART.c

com_TCP.c

xInitEnv
xCloseEnv
xInEnv
xOutEnv

APIgen

basic services library

Fig. 6. Architecture of APIgen

When APIgen is started, there is no further interaction with the system
developer. All communication specific information (such as selection of com-
munication technology, host addresses, port numbers) is contained in the SDL
implementation design specification, and is obtained from interfacing pattern ap-
plications (see Sect. 2.2). More specifically, APIgen takes SDL pr-files as input,
and outputs env.c-files (see Fig. 6). Pr-files are processed in order to identify and
collect signals sent to the environment. Furthermore, it is determined what basic
technology is used to exchange these signals with other SDL systems (module
parse pr in Fig. 6). For this purpose, specific naming conventions have been de-
fined. For instance, if an original signal sig is to be sent, then the corresponding
signal to be sent via TCP sockets is to be named sig TCP snd (see Fig. 2). Please
note that these naming conventions are enforced when applying the TCPinter-
facing pattern (see Fig. 3).

The actual generation of environment functions is performed by the module
writeenv, which uses general purpose strings from the library strings.tmpl and
basic technology specific strings from the selected module of basic services library
(see Fig. 6). Arranging technology specific strings into separate modules supports
the extension of APIgen to incorporate further basic technologies, as well as its
maintainability.
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3.2 Auxiliary signals

Before signals between processes of different open SDL systems can be ex-
changed, the underlying basic technology may have to be configured. For in-
stance, a connection setup may be required, and messages to be exchanged may
have to be registered. For these purposes, we introduce a specific set of SDL
signals called auxiliary signals. These signals have predefined names and pa-
rameters, and must be sent to the environment prior to message exchange in
accordance with the underlying service.

TCPsocket.req

TCPsocket.cnf (socketFD)

sockFD = socket( AF_INET, SOCK_STREAM, 0 );
if( sockFD >= 0 ) {

xSignalNode newSig;
newSig = xGetSignal( TCPsocket.cnf, ...);

... (newSig))->Param1 = sockFD;
SDL_Output( newSig, ...)

xOutEnv

Fig. 7. API generation for auxiliary signals (example)

In Fig. 2, pingAgent first requests a socket, using SDL signals TCPsocket.req
and TCPsocket.cnf, and then establishes a connection, using further signals
TCPconnection.req, TCPconnection.cnf, and TCPconnection.ref. These are aux-
iliary signals following obvious naming conventions that are known to APIgen.
Based on these naming conventions, APIgen will generate, for each signal, suit-
able environment functions xInEnv and xOutEnv. An example is shown in Fig. 7:
an output of TCPsocket.req triggers the creation of a stream socket, where the
file descriptor sockFD is returned as result.

The return of a result causes a problem in the context of SDL, because
the output of a signal does not yield a return value. This is due to differ-
ent interaction paradigms: in SDL, interactions are asynchronous notifications,
while C-procedure calls are based on synchronous inquiry. To solve this prob-
lem, we model synchronous inquiry in SDL: after requesting a socket by output
of a TCPsocket.req signal, the SDL process enters a waiting state until the re-
sult is returned. This result is received as a parameter of the predefined signal
TCPsocket.cnf (see Fig. 2). To ensure that both naming and behavior conventions
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are followed in the SDL design, we have defined the TCPinterfacing pattern
(see Sect. 2). Please note that by using these conventions, it is straightforward
to create multiple sockets, and to distinguish them by their file descriptors.

Figure 7 shows an excerpt of the API code that will be generated for the
pingPong example. As the result will be returned upon completion of the socket
request, the library function SDL Output is called to return the TCPsocket.cnf
signal to the SDL process. Usually, SDL Output would be called in the envi-
ronment function xInEnv, as this is an input to the SDL process. However, for
efficiency reasons, it has been incorporated into xOutEnv.

3.3 Transfer Signals

Once the underlying basic technology has been configured, SDL signals can be
exchanged between remote SDL processes. For this purpose, a specific set of
SDL signals called transfer signals is derived from the original signals: that is,
those signals that had been directly exchanged between SDL processes of the
functional design (see Fig. 1). For instance, for an original signal ping, transfer
signals ping TCP snd and ping TCP rcv are added to the signal definitions of the
sending and the receiving process, respectively. The suffix distinguishes whether
a signal is sent or received. The use of these signals in the SDL implementation
design is shown in Fig. 2 and is in fact quite obvious.

To establish the interfacing between SDL processes and TCP sockets, several
strategies are possible. For instance, a signal TCP snd, parameterized with the
file descriptor of the socket and a byte sequence containing the signal type and
the signal parameter values, could be used for sending different SDL signals (see
[7], full-weight API). This approach requires that coding and decoding of SDL
signal type and parameter values is performed in the SDL implementation design.
Without appropriate tool support, for instance, by Cadvanced, this strategy
requires a very detailed design specification.

Alternatively, coding and decoding could be shifted into the application pro-
gramming interface. We have adopted this strategy for two reasons. First, it
relieves the SDL implementation designer of the tedious and error-prone de-
tails. Second, the routines for coding and decoding of signals can be and in
fact is automatically generated by the tool APIgen. During the parsing phase,
APIgen extracts all information necessary for this purpose from the input file
subsystemn.pr. In particular, the naming conventions support the identification
and collection of signals to the environment, and the assignment of the corre-
sponding basic technology. We point out that different basic technologies may
be used at the same time, therefore, this strategy also supports the development
of large systems in heterogeneous environments. Furthermore, the naming con-
ventions are again supported by interfacing patterns, e.g., TCPinterfacing.



        

326 P. Schaible, R. Gotzhein

ping_TCP_rcv (socketFD,i)

ping_TCP_snd (socketFD,i)

send (socketFD, buffer, sizeof(buffer),0);

transport

ping_TCP_prep (socketFD)

receive (socketFD, buffer, sizeof(buffer));
switch (buffer[0])

case SIG_ping_TCP:
newSig = xGetSignal( ping_TCP_rcv
newSig->Param1 = socketFD;
newSig->Param2 = ping_decode(buffer)
SDL_Output(newSig, ...)

xOutEnv

xInEnv

buffer = ping_encode(pingParList);
buffer[0]= SIG_ping_TCP;

Fig. 8. API generation for transfer signals (example)

Figure 8 shows another excerpt1 of the API code that will be generated for
the pingPong example. In this example, an output of a signal ping TCP snd is
mapped to the corresponding part of the environment function xOutEnv, and sent
via an existing TCP connection. This TCP connection has already been estab-
lished during the configuration of the underlying service, using auxiliary signals
(see Section 3.2). The receiver prepares the reception of signals ping TCP rcv by
first calling ping TCP prep, thus indicating where signals of this type should be
delivered. Afterwards, polling for actual receptions is done (environment func-
tion xInEnv). To support signal parameters, APIgen generated coding and de-
coding procedures, to be used by xOutEnv and xInEnv, respectively (ping encode,
ping decode, see Fig. 8).

Please note that this is an excerpt of the code generated as part of xOutEnv.
For each SDL signal sent via the environment interface, approximately 1 page
of C-code is added to this function.

Some implementation details are worth mentioning:

– To generate environment functions (pingAgent.pr and pongAgent.pr), APIgen
is started with a complete list of communicating SDL systems. This way, cor-
responding snd and rcv signals, (such as ping TCP snd and ping TCP rcv)
can be associated and obtain a unique, system wide signal identification

1 For each SDL signal, approximately 1 page of C-code is generated and added
to the environment functions. In addition, functions for encoding and decoding of
signal parameters may be generated, depending on whether ASN.1 is used to define
these parameters.
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(such as SIG ping TCP, see Fig. 8) as well as matching coding and decoding
procedures (ping encode and ping decode in Fig. 8) to be incorporated into
xInEnv and xOutEnv as shown.

– Coding and decoding of signal parameter values is supported in different
ways:
� For certain basic SDL data types and some composite data types (in-

cluding structures and arrays), APIgen automatically generates coding
and decoding routines. The standard strategy is to encode all parameter
values of a signal into a string.

� For ASN.1 data types, coding and decoding routines are automatically
generated with the ASN.1 utilities provided with the Telelogic TAU tool
suite. Both basic and packed encoding rules (BER and PER) are sup-
ported. These routines are then linked with the code generated by API-
gen.

� When developing heterogeneous systems, it may be necessary to use spe-
cific routines for coding and decoding of signals. These routines can not
be generated by APIgen. However, APIgen supports the system devel-
oper by creating template files (signaldefs.h and signaldefs.c) for coding
and decoding routines, which are then completed by the system devel-
oper.

Development of APIgen started in 1998. After a first prototype with re-
stricted functionality (few basic technologies, restricted use of signal parame-
ters), it has been continuously improved and extended, and has been used in
several case studies. The most comprehensive case study has been SILICON,
where a distributed application in a heterogeneous environment has been devel-
oped from scratch. In the next section addresses this case study — especially
the use of SDL interfacing patterns and APIgen.

4 The SILICON case study

In 1999, the problem description of a distributed light control system [10] was
sent out with an international call for papers, soliciting the application of re-
quirements engineering methods, techniques, and tools to this case study. The
results have been published in [11]. We have taken a subset of this problem de-
scription as the starting point for another case study called SILICON (System
development for an Interactive LIght CONtrol), covering not only the require-
ments phase, but all development activities. In particular, the objective of this
case study has been to develop a complete, customized solution starting from
an informal problem description, applying generic methods in all development
phases.

The problem description of the SILICON case study consists of the building
description and the informal needs from the view points of the user and the
facility manager. Fig. 11 is an excerpt of the ground-plan, showing two offices
and a hallway section as well as a number of installations. Each office is equipped
with two light groups and switches to turn the lights on and off. The windows
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can be darkened by sun blinds that are controlled by further switches. Another
light group is placed in the hallway section, it can be switched on and off. In
addition, the light in the hallway is triggered by a motion detector.

In the following, we will focus on the design and implementation phases, and,
in particular, on the interfacing with basic communication technologies at design
and implementation level. According to the design steps explained in Sect. 2, we
start with the functional design, which deals with the overall system functionality
on a high level of abstraction. Nevertheless, we introduce a high-level system
structure by identifying application components. For instance, we distinguish
sensors, actuators, and control cells. Control cells are structured hierarchically,
starting with the building level down to the room level, they receive sensor
values and trigger actuators. This leads to a functional design with a logical
system structure that follows the physical building structure.

light

light

buildingCC
[status]

office

[status]

building

SYSTEM ...

officeCC

SDL Overview

Fig. 9. SDL functional design (excerpt): system architecture (SDL overview diagram)

In Fig. 9, an excerpt of the logical system structure as specified in SDL is
shown. It contains three application components, namely a light sensor light, an
office control cell officeCC, and a building control cell buildingCC. On the func-
tional design level, these components interact directly through SDL channels.
An interaction occurs, for instance, when the light sensor sends a signal status,
which is received by officeCC and then forwarded to buildingCC. The status signal
may then trigger further signals (not shown here), for instance, to display the
light status on the facility manager control panel, or to trigger the light actuator.

In the implementation design, the channels between application components
have been replaced by underlying communication services. In the SILICON case
study, it was decided to group sensors, actuators, and control cells hierarchically,
and, depending of the required throughput and real-time performance, to use
different communication technologies on each level of the hierarchy. For instance,
it was decided to use UART/TP and CAN to interconnect components of one
room and one floor, respectively.

Figure 10 indicates how these design decisions have been incorporated into
the SDL implementation design. While keeping the application components
unchanged, further components representing the communication middleware
(switchPE, UART Codex light . . . ) and the basic communication technologies
(UARTservice Provider, CANserviceProvider) as well as the necessary channels
are added, refining the functional design without modifying the behavior of the
application components. In contrast to the example in Section 2, the communi-
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UARTserviceProvider

switchPE

[status]

UART_Codex_light

switchMW

officePE

UART_Codex_office

[UART_status_rcv]

officeMW

[UART_status_snd]

light

switch

buildingCC

[status]

office

[status]

building

officeCC

[status]
[status]

CAN_Codex_buildingCAN_Codex_office

buildingMW

buildingPE

[CAN_status_rcv]

[UART_status_snd]

[CAN_status_rcv]

[CAN_status_snd]

[status]
[status]

[status]

CANserviceProvider

SDL Overview

Fig. 10. SDL implementation design (excerpt): refined system architecture

cation middleware (switchMW, officeMW, buildingMW) is made explicit and not
incorporated into the application components, in order to enclose all communi-
cation specific functionality. Otherwise, the approach is just the same: select an
underlying service provider and apply interfacing patterns to replace direct com-
munication. In the case study, we have applied several such patterns, including
UARTinterfacing, CANinterfacing, TCPinterfacing, and Bluetooth-
Interfacing.

Based on the implementation design, we have developed a complete, cus-
tomized implementation, consisting of a physical building model, a new tailored
communication technology, application hardware, communication middleware,
and application software. The implementation of the application components and
the communication middleware has been produced as described in Sect. 3, using
Cadvanced and APIgen. This provides evidence that the approach scales, and
that it works well also in the context of heterogeneous communication systems.
Figure 11 shows the building model topology laid out around the ground-plan:

– On the room level, the UART/TP-bus technology (Universal Asynchronous
Receiver Transmitter/Token Passing) provides interconnection between mi-
cro controllers implementing switches, light groups, sun blinds, motion de-
tectors, and user control panel, and embedded PCs implementing office and
hallway controllers. We have installed 3 separate UART-buses, each associ-
ated with the devices of a single room.

– On the floor level, the CAN-bus technology (Controller Area Network) in-
terconnects embedded PCs that act as office or hallway controllers.
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sun blind

light group

switch

switch
sensor

UART-bus 2UART-bus 1

motion detector

office

CAN-bus

controller
node
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UART-bus 3

switch

Bluetooth

(µC) (embedded
PC)

user
control
panel

facility manager
control panel 2

TCP over Ethernet

facility manager
control panel 1

Fig. 11. Topology of the building model implementation

– On the building level, Ethernet technology interconnects one or more embed-
ded PCs of each floor. In this case study, this option is not fully exploited,
however, we use this technology to download executables, and to visualize
the communication system in operation. Furthermore, the facility manager
control panel can be attached to this technology.

– In addition, Bluetooth technology provides wireless interconnection between
the facility manager control panel and office controllers.

The hierarchical structure of the communication system in combination with
field bus technologies requires special purpose protocols with routing support,
as TCP/IP-solutions are not feasible here. Furthermore, these protocols have to
support real-time communication.

The physical building model is shown in Fig. 12. It has been demonstrated
at several industrial fairs including Embedded Systems 2001 in Nuremberg, and
CeBIT 2001 in Hannover, in cooperation with Telelogic. In the front part of the
building model, the windows equipped with sun blinds are visible. Below, micro
controllers implementing the switches, sun blinds, and light groups are installed.
User control panels are mounted in front of the building, and can be used to
control each light group and sun blind separately. Furthermore, the panel can be
used to set and recall one or more light scenarios. The embedded PCs are hidden
under the building. To the left of the building model, two computer screens are
placed. The front screen belongs to a laptop that acts as the facility manager
control panel, and is used for control purposes as well as for visualization on
the application level. The flat screen above provides the visualization on the
communication level.
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Fig. 12. SILICON building model

5 Conclusions

We have presented a methodology for the development of distributed systems
through refinement of the functional design supported by SDL interfacing pat-
terns. Interfacing patterns define generic solutions for recurring design problems,
as do SDL patterns in general. In accordance with the underlying communica-
tion service, interface patterns are selected from the pattern pool, adapted, and
embedded into the context specification. This is particularly valuable, as the
quality of the design is improved, leading to a significant reduction of rework
due to defects. Also, incorporating further basic technologies is straightforward.

In order to generate code from implementation designs, we have developed
the tool APIgen, which complements existing SDL-to-C code generators. APIgen
automatically generates environment interfaces for a variety of communication
technologies, without the need of further user interaction, and is syntactically
and semantically integrated with the corresponding SDL interfacing patterns.
This way, several basic technologies can be used together, without the need for
manual coding. This closes a gap in the development of distributed systems.

The methodology presented here is intended to support the communication
system developer, who needs to preserve some control over the basic communi-
cation technology, even at the design level. For instance, the ability to make a
proper selection between different technologies such as CAN, UART, or TCP,
and to control their configuration (setting host addresses and port numbers) are
crucial. Furthermore, when a particular selection, say TCP, has been made, the
designer can control at which point in execution, connections are established and
closed. This is different from other methodologies (such as the normal approach
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using Telelogic TAU) where interfacing with the environment is transparent on
design level.

Currently, APIgen supports SDL-96, a pragmatic decision based on the avail-
able commercial tool support. It would be desirable to use the additional lan-
guage features of SDL-2000, in particular, hierarchical states and exception han-
dling. With these features, further abstractions can be introduced into design
specifications, for example encapsulating generic design decisions captured by
SDL patterns in general or SDL interfacing patterns in particular.

SDL interfacing patterns may be interpreted as design-level APIs, to be used
during SDL implementation design. This way, the generic solutions captured
by interfacing patterns may eventually lead to standardized design-level APIs,
enabling interoperability. Furthermore, based on standardized APIs, tools for
the automatic generation of program-level APIs (environment functions in the
context of SDL implementations) can be developed. In fact, APIgen has been
conceived and implemented for precisely this purpose.

References

1. ITU-T. Recommendation Z.100 (08/02), Specification and Description Language
(SDL). International Telecommunication Union, Geneva.
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