
XML-based Distributed Access Control System

Javier López, Antonio Maña, Mariemma I. Yagüe ?

Computer Science Department
University of Málaga. Spain.

{jlm, amg, yague}@lcc.uma.es

Abstract. The use of attribute certificates and the concept of mobile
policies have been proposed to overcome some of the limitations of the
role based access control (RBAC) paradigm and to implement security
requirements such as the “originator controlled” (ORCON) policy. Mo-
bile policies are attached to the data that they control and enforced
by their execution in trusted servers. In this paper we extend this idea
to allow the execution of the policies in untrusted systems. Our exten-
sion allows that policies are bound to the data but not attached to it.
By this modification security administrators are able to change policies
dynamically and transparently. Additionally, we introduce X-ACS, an
XML-based language designed to express policies in a simple and unam-
biguous way overcoming the limitations of other approaches. Important
features of X-ACS are that it can be used by processors with limited
capabilities such as smart cards while allowing the automated validation
of policies.

1 Introduction

Despite of the popularization of distributed systems in most computing disci-
plines, systems for access control to information still rely on centralized security
administration. Centralized control has important disadvantages [1] and does
not facilitate the deployment of originator retained control mechanisms.

On the other hand, solutions proposed for distributed access control do not
provide the flexibility and manageability required. An interesting approach based
on the concept of mobile policies [2] has been proposed to solve some of the
limitations of RBAC [3]. This system introduces the remote execution of the
access control policies, addressing a solution for some of the problems of cen-
tralized access control, but requires that access control policies are executed in
trusted computers (data servers in this case) which, in practice, represents just
a small improvement over the single server model. Once access to a data object
is granted, this data is sent to the client computer where it has no protection.
Furthermore, because data and policy are compiled in a package, a change in
the policy that controls a data object requires that the data-policy package is
recompiled and distributed to all trusted servers.
? Work partially supported by the E.U. through project IST 2001-32446

J. Lopez, A. Mana, and M. I. Yague, “XML-Based Distributed Access Control System”, Third International Conference on E-Commerce and Web
Technologies (ECWeb02), LNCS vol. 2455, pp. 203-213, 2002.
NICS Lab. Publications: https://www.nics.uma.es/publications

In this paper we present ACDACS (Attribute Certificate Distributed Access
Control System). ACDACS extends the mobile policy concept by allowing the
execution of mobile policies in untrusted systems and enabling that policies are
linked to the data object but not integrated with it. Therefore, policies can be
dynamically changed in a transparent manner. We also introduce X-ACS; an
XML-based authorization language designed to support a wide range of autho-
rization scenarios in a simple and unambiguous way, to be used by processors
with limited capabilities such as smart cards and to facilitate policy validation.

The rest of the paper is organized as follows. Section 2 presents the motiva-
tions. Section 3 summarizes some related work. Section 4 describes the ACDACS
system. Finally, section 5 summarizes the conclusions and presents ongoing and
future work.

2 Motivation

In distributed computing environments, such as extranets or research networks
that comprise several institutions, the access policy applicable to each resource
(data object, service, etc.) must be defined by the owner of the resource. The
access control system must guarantee that the policy is enforced before access is
granted to the resource. Moreover, there are many different situations where it
is desirable that the owner of each resource is able to retain the control over it
and to change the access policy dynamically and transparently. In these systems
traditional centralized access control mechanisms do not provide the necessary
functionality and flexibility. The need of a central authority and repository is
not always acceptable by the institutions sharing the network. Furthermore,
centralized systems are unable to provide means to guarantee that originators
retain control over their information.

Several access control models have been introduced to fit different access
control scenarios and requirements. Some schemes have also tried to integrate
different models in a unified framework [4]. These approaches represent signifi-
cant advances over traditional single-policy systems but, unfortunately, are still
constrained by the underlying models and do not provide the necessary flexibil-
ity.

Role based access control is commonly accepted as the most appropriate
paradigm for the implementation of access control in complex scenarios. RBAC
can be considered a mature and flexible technology. Numerous authors have dis-
cussed its access properties and have presented different languages and systems
that apply this paradigm [5][6].

The main problem with RBAC is that the mechanisms are built on three
predefined concepts: “user”, “role” and “group”. The definition of roles and the
grouping of users can facilitate management, specially in corporation information
systems, because roles and groups fit naturally in the organizational structures
of the companies. However, when applied to some new and more general access
control scenarios, these concepts are somewhat artificial.

We believe that a more general approach is needed in order to be used in
these new environments. For example, in the referred situations, groups are an
artificial substitute for a more general tool: the attribute. In fact, the definition
of groups is usually based on the values of some specific attributes (employer,
position, . . .). Some attributes are even built into most of the access control
models. This is the case of the user element; the identity is just one of the most
useful attributes, but it is not necessary in all scenarios and, therefore, it should
not be a built-in component of a general model.

In actual access control models, the structure of groups is defined by the
security administrator and is usually static. Although the grouping of users can
suffice in many different situations, it is not flexible enough to cope with the
requirements of more dynamic systems where the structure of groups can not be
anticipated by the administrators of the access control system. In these scenarios
new resources are incorporated to the system continuously and each resource may
possibly need a different group structure and access control policy. Furthermore,
the policy for a given resource may change frequently.

Our work is focused on the solution of the originator retained control is-
sue providing fair distributed access control management and enforcement. The
basic goal is to be able to express, validate and enforce access control policies
without assuming the trust in the rest of the computers of the network. Finally,
because the creation and maintenance of access control policies is a difficult and
error prone activity, we have developed a language to express those policies and
validate them to find contradictions or ambiguities.

3 Related Work

Access control is one of the most mature disciplines in computer security. Never-
theless, new models and functionalities in access control systems are required to
fullfil the needs of new Internet applications. An interesting system for policy-
based management of networks and distributed systems is presented in [7]. The
separation of the policy specification from the access control implementation has
been proposed in [8]. This separation follows the “network-centric” approach of
Röscheisen and Winograd [9] and allows the policy to be modified dynamically,
without changing its underlying implementation [10]. Other access control lan-
guages have been developed in the security community to support different access
control approaches. Jajodia et al. present in [11] a logical language which allows
users to specify the policy according to what access control decisions are to be
made as well as the authorizations.

Several proposals have been introduced for access control to distributed het-
erogeneous resources from multiple sources. The Akenti Project [1] proposes an
access control system designed to address the issues raised in allowing restricted
access to distributed resources controlled by multiple stakeholders. The require-
ment for the stakeholders to trust the rest of the servers in the network, the
assumption of the existence of a supporting identity PKI (public key infrastruc-

ture) and some security vulnerabilities related to the existence of positive and
negative use-conditions are the main drawbacks of the Akenti system.

The PERMIS Project [12] objective is to set up an integrated infrastructure
to solve identification and authorization problems. The PERMIS group has ex-
amined various policy languages – such as Ponder [7] – concluding that XML is
the most appropriate candidate for a policy specification language. Because the
PERMIS system is based on the RBAC model it shares its limitations. Also the
requirement of a supporting PKI is hard to fulfil and it is not necessary in many
authorization scenarios.

Since its inception, XML has been used for defining specific vocabularies
to represent different human endeavor. In our context, the eXtensible rights
Markup Language (XrML) [13] and eXtensible Access Control Markup Lan-
guage (XACML) [14] are two proposals for standard XML extensions for digital
rights management and access control. While XrML can be considered a ma-
ture specification, its complexity makes it not appropriate for our application
scenarios where simplicity is essential. XACML is a very recent (still in the
development process) and promising competitor in the field of access control
languages. Both, XACML and our X-ACS language are based on XML Schema.
The main differences are that X-ACS is designed to be used by processors with
limited storage and processing capabilities such as smart cards and oriented to
the validation of the policies.

Also based on XML, the Security Assertion Markup Language (SAML) [15]
is an assertion language and messaging protocol for describing, requesting and
sending authentication and authorization data between security domains. Its
basic goal is to promote the interoperability between disparate security sys-
tems, providing the framework for secure e-business transactions across company
boundaries.

Another interesting work, presented in [16], uses XML for defining a fine-
grained access control system for XML documents. This approach differs from
ours in that it is completely “server-side”. Authorizations can be specified at doc-
ument or instance level (in XML documents), or alternatively at schema level (in
DTDs). Authorizations specified in a DTD are applicable to all XML documents
that conform to it. Our proposal is based on a higher level language, the XML
Schema language which presents an XML syntax and object oriented features.
XML Schema can be extended with business rules expressed in Schematron. The
expressive power of both languages allows the definition of advanced integrity
constraints in a database-like style [17].

4 The ACDACS System

Considering the basic objective of providing means to implement the ORCON
policy, the different scenarios considered and the analysis of previous proposals,
our main goals for the ACDACS distributed access control system are:

– Originator retained control. Originators should be able to retain control over
the resources they own even after access is granted to users.

– Distributed access control management. Administrators should be able to
manage the resources they control regardless of the location of that resource.

– Distributed access control enforcement. Access control enforcement mecha-
nisms must be distributed to avoid bottlenecks in request processing.

– Flexibility. The system should be applicable in different scenarios.
– Independence. The system should not depend on underlying infrastructures

or authentication systems.
– Dynamism. There should be a fast and secure mechanism to change policies.
– Ease of management. The distributed approach should not introduce com-

plexity of management. Supporting tools should be provided.
– Efficiency. Access control management and enforcement should be efficient.
– Security. The distributed access control mechanism must ensure the same

level of security as a centralized one.

4.1 ACDACS System Architecture

The ACDACS system is based on the following idea: the security requirements of
the processes related to the transmission and access to information are feasible
if we can have a trusted software running in the client computer. Therefore, the
system is based on the creation of mobile software elements that transport the
protected content and enforce the access control policies. ACDACS is based on
the SmartProt software protection system [18]. SmartProt partitions the soft-
ware into functions that are executed by two collaborating processors. One of
those processors is a trusted computing device that enforces the correct execu-
tion of the functions and avoids that these functions are identified or reverse
engineered. We use smart cards as secure coprocessors although special online
access servers can also be used as secure coprocessors for this scheme.

Data

Objects
 SmartProt

protection

Protected Data
Objects (applets)

Originator

Server 1 Server 2

. . .

Freely Distributed

X-ACS Policies

Specifications

Mobile policy

generator

Mobile
Policies

Licenses

Fig. 1. The ACDACS Architecture

Figure 1 shows the architecture of the system. The unprotected data objects
in the originator computer are transformed into PDOs (protected data objects).
PDOs are Java applets that protect the data and enforce the access control
mechanism. Policies are not included in the PDO. Instead, each PDO is linked

to the applicable policy by a mobile policy that is produced specifically for the
client when requested. PDOs can be freely distributed to untrusted servers.

:SecureCoprocessor

Steps 7-8 are
repeated

Originator :Server :Server :Client

7: Run(protSect)�

6: Install(mobilePolicy)

4: PolicyReq(PDO_ID, CardCert)

1: DataReq(req)

2: PDO(pdo)

3: Run(pdo)

5: POLICY(mobilePolicy)

8: Result(res)

Fig. 2. ACDACS Functioning

Figure 2 depicts the dynamic functioning of the system. When the client re-
quests some data object from a server it receives the PDO containing it. This
PDO runs in the client computer. Before the PDO can execute the protected
sections of its code it has to retrieve the corresponding mobile policy (which
includes the license that allows the decryption and execution of the protected
sections of the PDO). To do this the client sends a request containing the cer-
tificate of the public key of the secure coprocessor (the smart card or the access
server). In case the PDO is retrieved from its originator, a mobile policy for that
PDO is produced. Otherwise the server just forwards this request to the PDO
originator.

In scenarios where the number of attributes and attribute certification au-
thorities, known as SOAs (source of authorizations), are high it might be desir-
able to avoid that clients have to verify all the certificates directly. In this case a
temporary authorization mechanism is used to map several attribute certificates
from different SOAs to a single temporary authorization. This temporary autho-
rization is a special attribute certificate signed by one SOA which simplifies the
verification performed by the PDOs. This solution is especially useful when the
client is accessing several PDOs from the same originator.

To allow owners of the information to be able to dynamically change the
access control policy we must separate the policy from the PDO. When the PDO
is executed it retrieves the policy from the originator and enforces it. The reasons
to require the request of the mobile policy at access time and from the originator
are that a high degree of flexibility is allowed, and the originator is given more
control over the application of the policies. Nevertheless, for efficiency, originators
can define certain validity constraints for each policy (based on time, number of
accesses, etc. depending on the smart card features). Therefore policies can be
cached by clients and used directly while they remain valid. Also the generation
of the mobile policy is a reasonably fast process while the generation of PDOs is

slower. Furthermore, PDOs are much more stable than policies. Finally, opposed
to PDOs, each mobile policy is specific for a smart card (or access server).

Policies are specified using X-ACS and are later translated into a more com-
pact format to be included in the mobile policy. The link between PDO and the
corresponding mobile policy is established by cryptographic means. The struc-
ture of the mobile policy is defined as follows:

MP ::= Policy, EncryptCardPublicKey(PDOkey, validity,H(Policy))

where Policy is the compact representation of the X-ACS policy, CardPublicKey
is the public key of the smart card that will access the PDO, PDOkey is the
random symmetric key used to encrypt the protected sections of the PDO, va-
lidity represents the limits of use of the MP and H is a collision-resistant one
way hash function.

The mobile policy includes the key required by the smart card to decrypt
and run the protected sections of the PDO. This key is encrypted for a specific
smart card and will only be in the clear inside that card. As the PDO key is
only known by the originator it is impossible for dishonest users to alter mobile
policies or produce false ones.

We will now describe the main building blocks of ACDACS: (i) an infras-
tructure for software protection and (ii) a policy specification language and its
associated validation mechanisms.

4.2 Software Protection

The ability to protect software that runs in the client computer in order to guar-
antee that it performs the intended function opens a way to solve the originator
retained control problem. Our solution for this problem is based on the protec-
tion of the mobile software that we use to convey the information. The mobile
software (PDO) contains some protected sections that must be executed by a
secure coprocessor.

The SmartProt system includes three actors: the information provider, the
card manufacturer and the client (who possess a smart card). The card manu-
facturer certifies the public keys of the smart cards. SmartProt requires smart
cards that have cryptographic capabilities, contain a key pair generated inside
the card and ensure that the private key never leave the card. Cards also contain
the public key of the card manufacturer and some support software. Particularly,
cards contain an interpreter for the protected code sections, a license manager,
a runtime manager and, optionally, an electronic purse. Each protected software
application runs in a sandbox isolated from others. The contents of the memory
used by each application remain between calls to the card.

The process is divided into two main phases: production and authorization.
The first step of the production phase consists in the translation of some specific
sections of the original application code by functionally equivalent sections of
card-specific code. The translation process also identifies the dependencies be-
tween these protected sections, reorganizes the code and introduces fake code to

confuse the attacker. These sections are then encrypted with a fresh key using a
symmetric cryptosystem. The last step substitutes the original code sections by
calls to a function that transmits the respective equivalent protected sections,
including code and data, to the card. Some additional support functions are also
included. The protected mobile software application generated in the production
phase can be distributed and copied freely. In the case of the ACDACS system,
the protected application (PDO) is a Java applet responsible for the transport
of the information. Therefore, the protected mobile software includes the in-
formation to be accessed (which is encrypted), the access control enforcement
mechanism and a cryptographic link to the access policy. The production phase
is independent of the client card and will be performed just once for each piece
of mobile software.

A license (specifically created for the smart card of the user) stating condi-
tions (e.g. validity) is required to run the protected software. In the ACDACS
system the license includes the access policy and is called Mobile Policy (MP).
In the authorization phase, the new MP is produced linking the policy and the
PDO. The MP contains validity constraints that are set by the security admin-
istrator according to the volatility of the policies.

MPs can be cached and used in the client computer while they remain valid.
Just in the case that no valid MP is available, a new MP has to be requested
and produced. The MP is obtained and loaded in the card as part of the PDO.
When the MP is received by the client smart card, it is decrypted, verified and
stored inside the card until it expires or the user decides to extract it.

Once installed, the MP allows the execution of the protected sections of the
PDO. These protected sections do not reside in the cards. Instead, during the
execution of the protected program, these sections are transmitted as necessary
to the card where they are decrypted using the installed MP and executed. When
finished, the card may send back some results. Some other partial results will be
kept in the card in order to obtain a better protection against function analysis
and other attacks.

The definition of the license (MP) structure permits a high degree of flexi-
bility. Furthermore, licenses can be individually managed because each applica-
tion has its own key. This is not possible in other software protection proposals
where the protected sections of all applications share the same key (usually the
protected processor key). In our scheme, because the protected sections are en-
crypted using a symmetric key kept inside the cards, and therefore known only
by the PDO producer, dishonest users can not produce false sections.

4.3 Authorization Language

The XML data model can represent semantic information through descrip-
tive tags. Complemented by related technologies certain types of database-like
schemes can also be used [17]. XML Schema presents a rich set of data types,
allowing user-defined data types, mechanisms such as inheritance, etc. XML
Schema allows us to represent the semantics of the policies. Although some con-
straints such as, “if the value of <Rights> is Update then the value of <Actions>

should be Notify” are not expressible using XML Schema, our Policy Validator
application is able to check, among others, this kind of constraints.

X-ACS policies are based on an XML Schema template1 that facilitates their
creation and syntactic validation. X-ACS has been developed taking into ac-
count that policies must be evaluated by smart cards. Therefore, other related
languages are not well suited for the ACDACS system.

In our language, a policy consists of a set of access_Rule elements. Each
one of these elements defines all the combinations of attribute certificates that
allow the user to gain the access established by the Rights attribute. Therefore,
it is composed as a series of attribute_Set required to gain access and the
Rights obtained over the data in case access is granted. Each attribute_Set
defines a particular attribute certificate combination associated with an optional
Action (that has to be performed before access is granted). Attribute certificates
will be used to provide evidence of the possession of each attribute. Therefore,
attribute certificates are described stating their name (attribute_Name), value
(attribute_Value) and the signer of the certificate (SOA_ID). Optionally, poli-
cies include parameter elements that are instantiated using the metadata avail-
able for the requested object.

Suppose our administrator states the policy shown in figure 3 in order to
grant authorization to access the marks of a subject to lecturers and deny it to
students. It is possible for lecturers to register as students of courses that they
do not teach. In such a case, those lecturers would get access to their own marks.

<?xml version="1.0" encoding="UTF-8"?>
<policy xmlns="http://www.uma.es/ecWeb02"
xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.uma.es/ecWeb02 PolicyTemplate.xsd"
policy_Description="GRANT write_access TO marks IF Position=’Lecturer’">
<access_Rules>
<access_Rule Rights="update">

<attribute_Set>
<attribute>
<attribute_Name>Position</attribute_name>
<attribute_Value>Lecturer</attribute_value>
<SOA_ID>LCC_ADM</SOA_ID>

</attribute>
</attribute_Set>

</access_Rule>
</access_Rules>

</policy>

Fig. 3. WrongPolicy.xml

X-ACS policies are verified in several ways. Policies are verified syntactically
using an XML Schema validator. Semantic verification is made in an automatic
way by the Policy Validator, an XML application based on the DOM API.
This validator also allows policies to be verified in the context where they will

1 available as supplementary material

be applied. Policy context verification is based on the definition of a set of
global rules establishing a series of facts about the environment of the system.
This semantic information allows the detection of possible inconsistencies in
the declared policy. Test cases can be defined by the administrator. Parameters
are instantiated by the Policy Validator based on metadata expressed in test
cases. The X-ACS global rules established about the context enable the detection
of semantically incomplete policies. With the aid of the context validation the
administrator would have detected the error in the previous example and stated
the policy as shown in figure 4.

<?xml version="1.0" encoding="UTF-8"?>
<policy xmlns="http://www.uma.es/ecWeb02"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.uma.es/ecWeb02 PolicyTemplate.xsd"
policy_Description="GRANT write_access TO marks (metadata: Subject)

IF Position=’Lecturer’ AND Teaches=Subject">
<parameter>Subject</parameter>
<access_Rules>
<access_Rule Rights="update">

<attribute_Set>
<attribute>

<attribute_Name>Position</attribute_name>
<attribute_Value>Lecturer</attribute_value>
<SOA_ID>LCC_ADM</SOA_ID>

</attribute>
<attribute>
<attribute_Name>Teaches</attribute_name>
<attribute_Value>*Subject</attribute_value>
<SOA_ID>LCC_ADM</SOA_ID>

</attribute>
</attribute_Set>

</access_Rule>
</access_Rules>

</policy>

Fig. 4. RightPolicy.xml

5 Conclusions and future work

We have presented the ACDACS distributed access control system to solve the
originator retained control problem. We have described the underlying mecha-
nisms that make possible this system: the SmartProt software protection scheme
and the X-ACS language and tools. ACDACS is flexible, can be applied regard-
less of the attribute certification scheme, implements distributed access con-
trol management and enforcement mechanisms, does not depend on underlying
infrastructures or authentication systems, allows the dynamic modification of
policies in a transparent and efficient way and is secure. We have functional
implementations of the SmartProt mechanism and the PDO (applet) generator.
Regarding X-ACS, we have developed the XML Schema specification and the
Policy Validator. Ongoing work is focused on the implementation of some of the
components of the system such as the Policy Edition Assistant. We are working

on the definition of a generic mechanism to allow access control administrators
to gain knowledge about the attributes certified by each SOA. This mechanism
allows SOAs to define metadata about the attributes they certify. These meta-
data are also used by the policy creation and validation tools. We are currently
applying the system to other scenarios such as digital libraries.

References

1. Thompson, M., et al.: Certificate-based Access Control for Widely Distributed Re-
sources. In: Proc. of the Eighth USENIX Security Symposium (1999) 215-227

2. Fayad, A., Jajodia, S.: Going Beyond MAC and DAC Using Mobile Policies. In:
Proc. of 16th IFIP SEC. Kluwer Academic Publishers (2001)

3. McCollum, C.J., Messing, J.R., Notargiacomo, L.: Beyond the pale of MAC and
DAC - Defining new forms of access control. In: Proc. of the IEEE Symposium on
Security and Privacy (1990) 190-200

4. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian,V.S.: Flexible support for
multiple access control policies. ACM Transactions on Database Systems (2000)

5. Osborn, S., Sandhu, R., Munawer,Q.: Configuring Role-Based Access Control to En-
force Mandatory and Discretionary Access Control Policies. In: ACM Transactions
on Information and System Security, Vol.3(2) (2000) 85-106

6. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST Model for Role-Based Access Con-
trol: Towards a Unified Standard. In: Proc. of the 5th ACM Workshop on Role-based
Access Control (2000) 47-63

7. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Proc. of Policy Worshop (2001)

8. Wedde, H.F., Lischka, M.: Modular Authorization. In: Proc. of the 6th ACM Sym-
posium on Access Control Models and Technologies (SACMAT) (2001)

9. Röscheisen, M., Winograd,T.: A Network-Centric Design for Relationship-based Se-
curity and Access Control. In: Journal of Computer Security, Special Issue on Se-
curity in the World-Wide Web (1997)

10. Sloman, M.S.: Policy Driven Management for Distributed Systems. Journal of Net-
work and Systems Management, Vol. 2(4) (1994) 333-360

11. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A Logical Language for Expressing
Authorizations. In: Proc. of IEEE Symposium on Security and Privacy (1997) 31-42

12. Chadwick, D. W.: An X.509 Role-based Privilege Management Infrastructure.
Business Briefing. In: Global Infosecurity (2002) http://www.permis.org/

13. ContentGuard, Inc.: eXtensible Rights Markup Language, XrML 2.0. (2001)
http://www.xrml.org

14. Org. for the Advancement of Structured Information Standards.: eXtensible Access
Control Markup Language. http://www.oasis-open.org/committees/xacml/

15. Org. for the Advancement of Structured Information Standards.: SAML 1.0 Spec-
ification Set (2002) http://www.oasis-open.org/committees/security/

16. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: A fine-
grained access control system for XML documents. In: ACM Transactions on Infor-
mation and System Security (TISSEC), to appear.

17. Yagüe, M.I., Aldana, J.F., Gómez, C.A.: Integrity issues in the Web. In: Doorn, J.
and L. Rivero (eds.): Database Integrity: Challenges and Solutions (2002) 293-321

18. Maña, A., Pimentel, E.: An Efficient Software Protection Scheme. In: Proc. of 16th

IFIP SEC. Kluwer Academic Publishers (2001)

