
1

Becoming JUDAS: Correlating Users and Devices
during a Digital Investigation

Ana Nieto

Abstract—One of the biggest challenges in IoT-forensics is
the analysis and correlation of heterogeneous digital evidence,
to enable an effective understanding of complex scenarios. This
paper defines a methodology for extracting unique objects (e.g.,
representing users or devices) from the files of a case, defining the
context of the digital investigation and increasing the knowledge
progressively, using additional files from the case (e.g. network
captures). The solution includes external searches using open
source intelligence (OSINT) sources when needed. In order to il-
lustrate this approach, the proposed methodology is implemented
in the JSON Users and Devices analysis (JUDAS) tool, which is
able to generate the context from JSON files, complete it, and
show the whole context using dynamic graphs. The approach is
validated using the files in an IoT-Forensic digital investigation
where an important set of potential digital evidence extracted
from Amazon’s Alexa Cloud is analysed.

Index Terms—IoT-Forensics, Digital Investigation, OSINT,
JSON, Data Normalisation, Alexa

I. INTRODUCTION

Nowadays, it is common that different user-oriented devices
and services are designed to generate a large quantity of
logs, which are then processed either by the administrators
or automatic tools, in order to identify specific problems
affecting their systems. Unfortunately, the correlation of digital
evidence from different sources as part of the same digital
investigation, is not an easy task when the number of files to be
processed grows significantly, a problem that is affecting the
Internet of Things (IoT) Forensic scenarios [1], [2]. In addition,
there are several issues that complicate the understanding
and correlation of digital evidence, where data normalisation
plays a critical role [3]. In order to truly comprehend the
digital scene, the data must be processed based on a set of
common criteria able to highlight what is really relevant to the
digital investigation. However, the heterogeneity of the sources
hinders the identification, classification and correlation of data.
Even when there is a large set of digital forensic tools able
to export the results to common formats, the interpretation of
the fields used by the tools can change.

For example, a common practice in data exchange, to save
the results of operations or to generate logs, is to use the
JavaScript Object Notation (JSON) [4] format. The JSON
format is based on two structures: a collection of name/value
pairs and an ordered list of values, such as object, array,
string, number, and special values such as true, false and
null [4]. This format is widely used by many applications, and
also by services that are accessed using Application Program
Interface (API) requests. The quality and quantity of data

A. Nieto is with University of Malaga, C/Arquitecto Francisco Peñalosa,
num. 18, c.p. 29071 Málaga, Spain (e-mail: nieto@lcc.uma.es).

stored in a JSON, as well as the tags used to describe the
values, depend on the application and the intended use of the
JSON; therefore, these files can be very different in form and
content. Some systems, such as Amazon’s Alexa Cloud, can
store important digital evidence in JSON files, according to [5]
and [6], mainly describing the operations performed by the
devices in such a context. Relevant digital forensic tools use
this format. For example, the framework Volatility for memory
analysis can provide the results of the operations executed
as JSON files. In addition, there are modules in Python that
can list the content of PCAP files as JSONs, including the IP
and MAC addresses and all the data available. All these, once
processed, can be useful to complete the information about
a system. However, although there are multiple tools able to
provide JSON files, there are no frameworks or solutions to
integrate all this knowledge as part of the same context. This
is a difficult task, considering that each tool can have its own
notation to represent data.

Although there are solutions able to process some of these
data, these have been developed for very specific purposes and
usually do not consider integration with other tools to complete
the knowledge. So it is difficult to progressively feed and im-
prove the information collected during a digital investigation.
It is also difficult to automate certain processes during the
analysis without having to consider data normalisation, not
only for a specific set of applications and devices, but also for
new ones when they are added.

A. Motivation and structure

As defined in [3], data normalisation is the combining of
evidentiary data of the same type from different sources with
different vocabularies into a single, integrated terminology
that can be used effectively in the correlation process. This
important requirement cannot be directly addressed given the
heterogeneity of the sources and applications in the current In-
formation Technology (IT) ecosystem. One of the motivations
of this paper is to provide a methodology able to simplify the
normalisation of data from different sources so as to identify
relationships between users and devices during an analysis,
in the context of a digital investigation. The JSON format
is chosen as the starting point of the analysis because it
provides us with a common umbrella under which we can
identify common characteristics in the output of applications
and API requests, being used for: i) identifying keywords and
equivalences between different sources, ii) performing new
requests for data that will be provided in the same format
and iii) integrating the new data in the common framework
defined in this paper.

A. Nieto, “Becoming JUDAS: Correlating Users and Devices during a Digital Investigation”, IEEE Transactions on Information Forensics & Security,
vol. 15, pp. 3325-3334, 2020.
http://doi.org/10.1109/TIFS.2020.2988602
NICS Lab. Publications: https://www.nics.uma.es/publications

2

With respect to large scale IoT-Forensic scenarios, thou-
sands of logs and files have to be analysed after the acquisition.
This approach considers the analysis of JSON files in order
to identify the relevant fields to classify the data, providing
a new abstraction layer for the digital investigator. Then,
additional files can be analysed to include new data in the
context. External services can also be used to improve the
analysis, whenever possible. Therefore, the solution focuses
on the analysis of digital evidence after it has been acquired.

The general idea is shown in Fig. 1. The solution proposed
here takes into account digital evidence extracted from the
different devices/systems involved. The JSON files are ana-
lysed to identify traces about devices (e.g., mobile phones,
sensors or others) and users (e.g., account identifiers), and
this information is visually shown in an interactive graph,
representing the live context. The rest of the documents in
the case can be processed and correlated with the current live
context. In addition, this local information is enhanced using
Open Source Intelligence Tools (OSINT) [7] services. The
methodology is implemented in the JSON Users and Devices
analysis tool (JUDAS), available at GitHub [8].

- Identification
- Classification
- Parsing
- Correlation
- Visualisation

Application1 Application2 Application3

Digital
Investigation
(Case Folder)

.json .pcap …
(Others)

JUDAS

Get Relevant Files (e.g. .json, .pcap)

1.- Generate Context

2.- Search Public Info

3.- Correlate & Feed

Internet

Fig. 1. JSON Users and Devices AnalysiS (JUDAS).

The structure of the paper is as follows. Section II describes
related work. Section III defines the JSON Users and De-
vices Analysys (JUDAS) methodology, which is validated in
Section IV using the developed tool of the same name. The
experiments were performed using a dataset from the latest
DFRW challenge [9], where the Alexa ecosystem is part of
the scene. Finally, conclusions and future work are discussed.

II. STATE OF THE ART

Two interesting contributions directly related to the ap-
proach presented here are [5] and [6]. In [5] a Cloud-based IoT
Forensic Toolkit (CIFT) is proposed to analyse Amazon Echo
artefacts. The soluton combines cloud forensics and client-side
forensics so as to have different sources of data to prevent
relevant data from being lost (e.g. cloud-native artefacts). The
authors define the Amazon Alexa ecosystem as the system
created by all the interconnected devices used to customise the
Alexa environment. The list includes: Alexa-enabled devices
such as Echo, compatible IoT devices and third-party appli-
cations and companion clients, and those devices in which,
although there are no specific applications for Alexa installed,
it is accessed through a browser to configure the options. The
structure of JSON files used by Alexa are detailed, because
these are important digital evidence about the activity of the
Alexa ecosystem. The description provided by the authors is

very useful to better understand some specific tabs. More
recently a solution for IoT-Forensics was proposed in [6],
considering Amazon Echo as a use case. The authors propose
a model to identify, acquire, analyse and present potential
digital evidence. The solution focuses on the Amazon Alexa
environment. The approach is very interesting and can help
investigators conduct a digital investigation in these scenarios,
contributing to the development of solutions for IoT-Forensics.

Indeed, several approaches in the context of IoT-Forensics
have emerged since 2012 (aprox.). Some recent examples
are [10], [11] and [12]. All of them stress the important
change of context introduced by IoT devices and the new chal-
lenges to be addressed: problems of density, lack of resources
and privacy issues all affect the acquisition and analysis of
potential digital evidence. One of the main issues is the
increased volume of data to be analysed, which complicates
the interpretation of results.

Unlike the aforementioned contributions, this paper provides
a solution for building an incremental representation of a
digital investigation where the focus is on users and their
relationships with a set of devices. The methodology proposed
takes advantage of the tools and external services using JSON
files. This format is used as a common representation for the
input of data into the JUDAS system. The steps to be taken
to identify, classify and parse the data considering the main
objective of correlating users and devices are given. Thus, the
files to be processed can be logs (e.g. from Alexa), results
of local applications or even external services accessed using
API requests (e.g. OSINT).

III. METHODOLOGY TO BUILD THE CONTEXT

The JUDAS methodology is defined, considering five phases
(c.f. Fig. 2): identification, classification, parsing, correlation
and visualisation, with the concept of feeding described as part
of the correlation with external sources. The first three phases
define the criteria used to normalise the data in JUDAS.

In Fig. 2 the phases are described, with an example, where
two JSON files are provided as input: J1 and J2. For the iden-
tification, the content of the files is analysed in order to identify
relevant keywords. The definition of keywords as identifiers
helps classify the data into different objects in the second
phase. In the classification the objects of interest are defined,
based on the analysis performed during the identification and
additional criteria. Thus, for example, considering just the tags
in J1 and J2 it would be natural to deduce that only two types
of objects can be defined to classify the data in our context, in
this specific example: users and devices. However, additional
classes can be added to prepare the system for analysing other
targets, much more specific ones (e.g. a new class Car which
inherits from Device.

After the classification, all the objects must be parsed, in
order to synthesise the data in unique objects. One important
part in this phase is the internal correlation, which is described
in more detail in Section III-D, and is part of the process of
data normalisation. In Fig. 2 O1 and O2 are summarised in
O4, which is related to O3. Therefore, after the parsing, only
two objects are included in the context: O4 and O3, which
can be visualised using the graphical view.

https://github.com/cadirneca/judas

3

Add New DataAdd New Types

Analysis of the structures
and tags in the JSON files

Create objects Combine objects

{“user”:“123xjK”,
“Location”:“Maldivas”}

J1

{“id_user”:”123xjK”,
“SourceDevice”:
 {“id”:”324”,
 “Type”:”MobilePhone”}}

J2

* Combination of Keywords:
“id” and “user” are part of the
tag “id_user” in J2.

From J1:
* New Object type “user”

* Relevant tags / Keywords: e.g.
“user” in J1, “Device” in J2.

From J2:
* New Object type “device
* New Object type “user”
“id_user” not recognised as
tag for “user”, but “id”
means “identifier”, and
“user” is for user, so the
closest type in the model is
“user”. J2 must have a user.

* Relevant values: e.g.
“123xjK” is the value for
“userID” in O1 and O2,
these must be the same
object.

* New Object type
“user” to combine O1
and O2. Individual items
are destroyed.

Visualization

Feeding
ParsingClassification

O4

O3

Summary of
objects and
relationships

OSINT

id: temporary_id_by_ip:
27.114.128.15
Country: Maldives,
…

* New information can be created during the feeding with
OSINT.
- E.g. O5 is a new user taken from the relationships in
social networks after searching for O4.
* Also, considering additional files in the use case (e.g.
pcap files) and extracting valuable info from the Internet.
- E.g. O6 is information about the IP hosted in Maldives.
So this “perhaps” is relevant to O5. Additional searches (e.g.
in Shodan) can help to identify if the new IP can be related
with specific devices.

Process as
JSON file

UserID = 123xjK
Location = Spain

UserID = 123xjK
DeviceID = 324

DeviceID = 324
Type = MobilePhone

UserID = 123xjK
Location = Spain
DeviceID = 324

O1

O2

O3 O3

O
4

=
O

1
+

O
2 O4

relationships
and/or new

objects

* Relationships: “user” and “device” inside J2. Perhaps
these are two objects related.

Identification

Generate basic context based on Local Data Add info from External Sources

network.pcap
ip.src =
192.168.1.23
ip.dst =
27.114.128.15
…

O6

Legend
Files

JSON PCAP

Adding new data to the
context for correlation

User
Device

Objects

Address

UserID = 45lpn
Location = Maldives

O5

In
pu

t o
f J

SO
N

 fi
le

s
 (c

an
 b

e
ge

ne
ra

te
d

by
 e

xt
er

na
l t

oo
ls

)
A) B) C)

E)

CorrelationD)

Fig. 2. Phases affected when adding new types (left) or data (right). New types require the modification of the schemas considered for identification,
classification and parsing. However, new data only requires the modification of those phases where the data must be correlated (parsing and feeding).

At this point new data can be added to the context, using
additional files in the use case. In Fig. 2 the file network.pcap
is added to the context by analysing the data inside the PCAP
and sending external requests to the OSINT services. The API
requests for the IP return new JSON files following similar
structures to Listing 1. In this example, there is a public IP
27.114.128.15 the location of which is the same as the user
described in O4, so this can be relevant to the context. A new
object of type Address is then included in the context.

Listing 1. Example: ipapi response for IP=27.114.128.15
{ ’ i p ’ : ’ 2 7 . 1 1 4 . 1 2 8 . 1 5 ’ ,
’ c i t y ’ : ’ M a l ’ ,
’ r e g i o n ’ : ’ Kaafu A t o l l ’ , ’ r e g i o n c o d e ’ : ’ 26 ’ ,
’ c o u n t r y ’ : ’MV’ , ’ count ry name ’ : ’ Mald ives ’ ,
’ c o n t i n e n t c o d e ’ : ’AS ’ ,
’ i n e u ’ : F a l s e , ’ p o s t a l ’ : None ,
’ l a t i t u d e ’ : 4 . 1 6 6 7 , ’ l o n g i t u d e ’ : 7 3 . 5 ,
’ t i m e z o n e ’ : ’ I n d i a n / Mald ives ’ , ’ u t c o f f s e t ’ : ’ +0500 ’ ,
’ c o u n t r y c a l l i n g c o d e ’ : ’ +960 ’ , ’ c u r r e n c y ’ : ’MVR’ ,
’ l a n g u a g e s ’ : ’ dv , en ’ , ’ a sn ’ : ’ AS7642 ’ ,
’ o rg ’ : ’DHIVEHI RAAJJEYGE GULHUN PLC ’}

Note that this means that in the classification a new type
for Address must be considered, and also new methods must
be added to identify similar objects of this class during the
parsing. For this reason any change made to add new types
will impact on the first phases of the methodology.

Last but not least, note that it is possible to increase the
information available in the context without having to consider
new files. For example, O4 can be used to deduce new
information about the relationships of the user described with
other individuals. The phases for visualisation and correlation
(either internal or external) are repeated while new data is
added to the context.

In this section the phases are described in detail, using spe-
cific examples considering the dataset analysed in Section IV.
Note that the classes have been chosen taking into account all
the information that has to be represented in this context. The
methodology is defined in order to highlight common steps
that have to be done to include new data. In addition, it is
important to note that the steps defined are implemented in
the JUDAS tool to carry out the whole process automatically.

It is important to note that the current solution is defined to
help in the analysis of digital evidence that has been acquired
in a previous step. In an investigation it may be the case
that some artefacts are related to a malware campaign but not
necessarily so. Note that the focus is on identifying users and
devices. Of course the devices can be part of a botnet, and this
can be identified during the analysis, but this is not always the
case or the main purpose of this tool.

A. Identification

This phase is dedicated to understanding the structure of
the files that will be processed by JUDAS, and is decomposed
into two parts: identifying equivalent terms inside the files and
identifying the relationships based on the context. The main
terms in the JSON files have been identified and are ready for
classification, once this phase is complete.

1) Identify equivalent terms inside the files: Considering
the heterogeneity of JSON files (c.f. Section I), it is critical
to determine the mapping between the different keys used to
access the values. For example, in TABLE I some equivalences
identified in the writing of this paper are listed. The first
column corresponds to the label used by JUDAS to represent
the terms that are equivalent (second column).

4

b)

a)

Fig. 3. Cards (a) and Authentication data (b). The same string is identified in two different JSONs in different ways. In (a) the string is part of the card
identifier and in (b) is a identifier by itself.

Fig. 4. This figure shows part of a JSON for Activity data, where the description for a device inside the Activity is highlighted.

TABLE I
EXAMPLES OF EQUIVALENCES IDENTIFIED IN THE JSONS

Label Key in JSON (Equivalences)
User(id) user, customerId, searchCustomerId, registeredCustomerId,

registeredUserId, deviceOwnerCustomerId
Device(id) device, sourceDevice, deviceSerailanNumber, deviceId, se-

rialNumber
Card(id) cardId
Type type, cardType, itemType
PostalCode postalCode, postal, Zipcode
Timezone timezone, timeZoneId, timeZoneRegion
Timestamp timestamp, creationTimestamp

The words device, sourceDevice, deviceSerialNumber, devi-
ceId, serialNumber correspond to identifiers for devices. So if
any of these words are included in a JSON, then it means that
an object can be generated to represent a device. The same oc-
curs with the words user, customerId, searchCustomerId, reg-
isteredCustomerId, registeredUserId, deviceOwnerCustomerId
for users. In addition, there are other words that although they
are not identifiers, can be mapped to the same concept for
their interpretation. For example type can be expressed as type,
cardType, itemType and so on, depending on the set of JSONs.

Furthermore, there are other types that are not considered
by default and the system must be able to add them as new
categories. The approach followed in this solution is to identify
a set of pre-defined equivalences, principally for identifiers, not
just those already mentioned, but also other identifiers about
concepts (e.g. timezoneId). These words are also included in
a list of keywords that belong to a dictionary, defined for each
object in the system. In addition, during the processing of the
JSON files, the list of keywords can be completed with new
words identified as part of the context. Therefore, the system
must be reviewed carefully when new JSONs with different
formats are processed, so as to identify new equivalences
(e.g. principally identified because different keywords have the
same value), and added to the structure.

2) Identify direct and indirect relationships based on the
content: It is very important to identify the relationships
between parts of the same JSON. This will help determine
the initial relationships of the objects. This must be done
considering: i) whether or not the structure analysed contains
identifiers of other objects as part of its description, and ii) if
any items contain other items.

The first case means that particular attention must be paid
to those fields that can be composed by multiple identifiers of
other objects. For example, Fig. 3 (a) shows the identifier for a
Card (cardId). As can be seen, this is composed of different
words, separated by the delimiter #. If we consider another
file with authentication data (c.f. Fig. 3 (b)), it is possible to
observe that the first word A2F07N8TDIAK5U corresponds
to a user’s identifier. Therefore, the system should be able to
understand that the card and the user are related. Furthermore,
the words AB72C64C86AW2 and B0F00712518400WN
represent the type of device used and the identifier of the
device, respectively.

The second case means that it must be identified when
one item can contain others by the explicit definition of the
same. For example, Fig. 4 shows data about an activity item,
which, in this case, contains fragments of a conversation. If
we observe this figure, then it is possible to identify the word
sourceDevice with values that describe the type and identifier
for a device. When this occurs, the decision taken is to extract
this information from the main object (activity in this example)
but leave behind a trace of the relationship of the main object
with the object extracted (device in this example).

Therefore, during this phase, the main items needed to
describe the context are identified. After that, it is critical to
define how to classify the type of information that will be
deduced from the sources.

5

B. Classification

Once the aforementioned relationships are known, the next
step is to identify the data that is independent from the rest
and then define a set of basic types or classes to represent
the context. In order to provide a complete solution, it is very
important to take into account the requirements extracted from
the previous phases, in particular what objects can potentially
be contained in others, and also the fact that some objects can
have different data depending on the type of file in which
they are defined. Moreover, in this phase it is essential to
select a representative set to classify all the data acquired
from the files and to store new data during the progress of the
digital investigation. It is also critical to define the possible
dependencies between classes.

For example, Fig. 5 shows the classes defined according
to the analysis of evidence in our case study: User, Device,
Activity, Card, Address, Service and Action. The reason is
because when analysing the JSON files there are several
items that need these specific structures to define a specific
behaviour or to differentiate the type of data that they store.
The class Anything is a special class defined with all the
default behaviour for any object added to the context. This
class defines, for example, how the other classes print their
data, the colour used to represent the objects of the classes
and how new data can be added to the objects. All the classes
in the proposed solution inherit from Anything, and the specific
behaviour of a class is defined depending on the purpose and
characteristics of that class.

Anything

Address

Route

Service

Activity

Action

Card

DeviceUser

*

2

1

*

1

*

*
4

<<id>>
<<id>>

Context

1

*

Fig. 5. Classification. The number of classes can increase if new entities must
be represented. Classes Anything and Context must be maintained.

Furthermore, some classes are more generic than others,
so are useful for several contexts. For example, the classes
User and Device intuitively serve to capture the data from
very different files. In other words, while all the previously
listed classes allow the representation of JSONs from an Alexa
ecosystem, the object User is also useful to represent a user
of the system described in an external JSON (not only in the
Alexa context). The class Address can be used to represent the
information about public IPs returned by the module ipapi (c.f.
Listing 1) or the additional APIs used to search information
about IP addresses, as well as the information about malicious
IPs (if any) returned by VirusTotal.

As a further requirement, the definition of these classes
needs to be as general as possible, so as to embrace the
integration of very different items in the same context. It
is even possible to discern the information that is natural
from each sub-environment in the same digital investigation or

identify the new objects generated due to interaction with the
external sources, because each class can be fully customised
(e.g. different colours for different devices).

Finally, this phase is closely related to the visualisation; if
the classification is poor, then the rest of the phases may be
affected. The parsing can be complicated, because the parser
might not know where to place or discard the data, something
which could also be the case in the correlation. Moreover, and
perhaps more importantly, we may not be able to see where
our failures are because the visualisation of the data strongly
depends on how they are classified.

C. Parsing

In JUDAS the initial seed or state representing the context of
the digital investigation is prepared during the parsing phase.
To do this, all the relevant files must be analysed to collect all
relevant data, interpret them and create the objects according to
a previous classification. This phase is highly dependent on the
classification. In the solution proposed, each class defines the
way in which the data from JSON files must be interpreted to
create the objects. During this phase the relationships between
the specific objects are also identified. This corresponds to
the scenario exemplified in Fig. 6, under the label Objects &
Relationships, using white boxes and arrows. This is the initial
knowledge that can be extracted from the selected files.

Process
JSON(s)

- Identification
- Classification
- Parsing
- Correlation

User
Device
Activity
Card

Address
Service
Action

Context: Objects + Relationships

U1 …
D1 D2 …
A1 A2 …
C1 C2 …

AD1 AD2 …
S1 S2 …

AC1 AC2 …

Object Type Objects & Relationships

Visual Representation

Fig. 6. Parsing, classification and visualisation of results

As stated, all the information about an individual, de-
vice or item is represented by the same, unique object.
Returning to the initial example of the user with identifier
A2F07N8TDIAK5U (c.f. Fig. 3), this restriction means that
when the parser finds the identifier of the user for the first time
it generates an object with the identifier as the key. All the
relationships with the user will leave a trace with this identifier.
When the parser is able to extract another object from a dif-
ferent JSON file, if the identifier is the same, then the original
object eats the second one to homogenise and complete the
information, and the second object is discarded. This process
is denoted cannibalism in JUDAS, and is described using the
pseudo-code shown in Algorithm 1.

The preceding phase of classification allows the expected
relationship between the objects to be known; for example,
it is expected that an Activity shows relationships between
users and devices, allowing them both to be related to each
other (c.f. Fig. 5). Then, the parser must consider these
relationships to extract the data of users and devices while
it is creating the Activity objects. JUDAS does not use a
single parser. Rather, each class defines its own parser to

6

Algorithm 1 Updating the context by processing all the objects, ensuring
unique objects and identifying relationships.

1: procedure CANNIBALIM
2: keys = getKeys() . List of all types in the context
3: allvalues = getall() . All objects in the context
4: mod = False
5: for k in keys do
6: valuesk = getall(k)
7: newval = []
8: for v in valuesk do
9: for o in allvalues do

10: done = v.eat(o)
11: mod = mod or done
12: newval.append(v)

13: context.update({k : newval})
return mod

improve the detection of objects following the requirements
detailed during the identification (c.f Section III-A). When
one object is identified inside another (c.f. Fig. 4), then the
object is extracted by the parser and only the identifier remains
in the parent. Additionally, a trace about the relationships
between the objects (e.g., User, Device and Activity in the
example) is grabbed in all the objects. However, in the same
system, multiple objects can have this behaviour. Moreover,
sometimes the information in the Activity is not complete,
and the Activity only has the user identifier.

The parser is also able to make correlations between objects
of different types based on the classification in the previous
phase. Therefore, the operation cannibalism described in Al-
gorithm 1 is also applied to objects of different classes in
order to complete the information about common aspects that
can affect various objects, such as the address. This operation
is done during the parsing, while the objects are added to
the context, and can be time-consuming. For this reason the
programming language chosen to implement this phase is very
important, in order to ensure efficient solutions.

While the parser is able to generate objects and complete
the information about these objects, additional steps must be
taken to complete the knowledge of the environment.

D. Correlation and Feeding

The correlation can be divided into two phases: internal
correlation between the objects in the context, produced by the
method eat during the parsing, and the correlation produced
by external inputs. The latter is denoted feeding in Fig. 2 in
order to highlight that it is a subsequent phase executed only
when the context cannot grow, based on the data available in
the local domain (folder) of the digital investigation.

Internal correlation is based on the inheritance. All the
classes representing a type of object inherit from the class
Anything (c.f. Fig. 5), where the initial behaviour of the
method eat is defined. eat depends on specific methods
declared as abstract, which are different depending on the child
implementing the specific behaviour. When the object to be
eaten has the same identification than the object processing
the call, the result of eat is a call to eatSame, described in
Algorithm 2, common to all classes.

During the external correlation or feeding the initial in-
formation is completed with external information acquired
from OSINT services. Note that JUDAS will determine the

Algorithm 2 Combine two objects that are equal; backpack is a dictionary,
used to store the description of values.

1: procedure EATSAME(object, destroy=False)
2: if object is not equal to this thenreturn False

. 1. Combine descriptions
3: keys2 = object.getKeys()
4: eat = False
5: for k in keys2 do
6: values = getBackpack()
7: values2 = object.getBackpack()
8: for v in values2 do
9: if v not in values then

10: values.append(v)

11: backpack[k] = values

. 2. Destroy the object if same
12: if destroy then: object.delete()

initial relationships in the same context based on the unique
identifiers, identified during the parsing. Depending on the
object this can be relaxed, including additional fields in the
comparison, such as the users’ email addresses. For example,
two objects with different identifiers but the same email can
be interpreted as the same, but the list of names is maintained
in case these are in fact different, and this can be identified in
the visualisation of results.

Public information

U1
D1

People

Devices

.pcap

Ask to external
sources

Feed the
objects

Generate new
objectsAD1

CorrelateSet of Address in the
Context

Device

Address

User

Network

Fig. 7. External correlation for objects (user, device) and files to be processed.

In Fig. 7 the alternatives implemented in JUDAS for exter-
nal correlation are described. First, there are some objects with
fields that can be useful for automatic searches in public, the
external sources, named previously (e.g. pipl). For example,
the fields name and email for a user can be used to get
additional information about the user. The requests for the
external tools are generated based on the available information
in the objects and the responses of the external services (if any)
are added to the current objects in the context.

In addition, it is possible to search for additional information
that is present in other types of files (not JSON). For example,
when analysing network files (.pcap), it is possible to extract
the IPs and MACs found in the file. Public IPs are then selected
and information about them is requested from external sources.
Note that, in this case, there are no objects representing
the IPs in the context. Therefore, only when the external
services provide their results about the IPs can new objects be
generated, in this case objects of type Address are used. Then,
the content in this new object is compared with the rest of the
objects of the same type in the current context. In this case
the comparison cannot be done using the identifier directly
(because new objects have a temporary id, c.f. Section IV-B),
so the correlation defines the matches based on the postal code
of the addresses and also the zone identifier. The pseudo-code
shown in Algorithm 3 describes the method for generating new

7

objects based on the information collected from public IPs
using the module ipapi. The result of this algorithm is used
in Algorithm 4 to perform the correlation with the objects.

Algorithm 3 Request information about public IPs using ipapi and
generate new objects of type Address.

1: procedure GETINFOIP(iplist)
2: addresses = []
3: for ip in iplist do:
4: if ipinfo.ispublic(ip) then:
5: info = ipapi.location(ip)
6: jsonarray = json.dumps(info)
7: a = json.loads(jsonarray, object hook =

eatjson.Address.as address)
8: if a is instance of Address then:
9: addresses.append(a)

return addresses

Algorithm 4 Correlating new addresses with the current context. This
version searches for matches in the timezone and the postal code, but
additional matches can be defined.

1: procedure CORRELATENETADDRESS(addresses)
. 1. Get devices with addresses defined

2: mydevs = getall(′Devices′)
3: mydevs = remove devices without addresses from mydevs

. 3. Check for matches
4: for d in mydevs do:
5: . 3.1. Get the ID of the addresses (strings)
6: addevlist = d.getBackpack(′Address′)
7: . 3.2. Get the objects for the IDs
8: addevlist = getObjects(addevlist,′ Address′)
9: . 3.3. Matches timezone (mtz) and zipcode (mzc)

10: mtz = list of pairs [apub, adev] where apub is in
addresses and adev is in addevlist and apub.timezone() ==
adev.timezone()

11: mzc = list of pairs [apub, adev] where apub is in addresses
and adev is in addevlist and apub.zipcode() == adev.zipcode()

. 4. Process results
12: if len(mtz) + len(mzc) > 0 then:
13: results = write results friendly
14: Add input to the history of the context

. 5. Return results return results

The new data, provided by the external sources, can be
included or not in the context. This part is easily modifiable
to include as many sources of information as desired.

E. Visualisation

The visualisation of the results is a critical part of providing
useful tools. JUDAS defines this phase following two require-
ments: i) separate the context from other tests/searches over
the digital evidence, ii) simplify the visualisation of results as
much as possible while still providing a general view.

The first decision made is to separate the visualisation of the
context and the operations on it from the operations on the files
containing the digital evidence (JSON files and other files used
to generate the context). This is required because the context
is a representation of all the data, but during the normalisation
some information can be misunderstood or missing. Therefore,
the description of the objects generated is shown in the main
window, as shown in Fig. 9. Keyword searches can be done
on both the objects of the context and on the source files.

The second requirement emphasises that although the data
of the context are numerous, we must find a way to express
them in their entirety so as to have a complete vision of
all the relationships. The solution proposed implements this

requirement using interactive graphs, generated using networkx
for Python and additional technologies to plot the graph in the
browser of the investigator. In Fig. 10 an example of the results
following this premise is shown. Each circle is a different
object in the context. The colours represent the type/class
of the object, and the numbers are identifiers generated to
simplify the visualisation of results (e.g. some identifiers are
very large and muddle the view). Additional information about
the devices is shown when needed by clicking on the object.

IV. PROOF OF CONCEPT: JUDAS TOOL

The JSON Users and Devices AnalysiS (JUDAS) tool has
been implemented to validate the methodology. It is able to
process and extract relevant data, concerning users and devices
from JSON files. After parsing the data from the files, the
tool is able to make a basic correlation of the items identified.
Then, the digital investigator can ask for specific inputs based
on different criteria (e.g. keywords found as identifiers).

eatingJSON

JUDAS

eatingNetwork eatingDump

Definition of the
context &

methodology

Additional formats can require specific modules

OSINT
Searcher

E
x
te

n
s
io

n
s

Fig. 8. JUDAS - Modules developed to the proof of concept.

JUDAS has been implemented using Python 3 to take
advantage of the multiple modules to aid in processing JSON
files and other formats. The methodology is implemented in
the central module named eatingJSON , shown in Fig. 8,
while the files with different formats (e.g. network files
or memory dumps) are pre-processed in additional modules
developed for the proof of concept. All the modules must be
developed taking into account the methodology and classes
included in eatingJSON . The OSINT module is designed to
search using the fields in the objects provided by the model.
The methods are further documented in the public repository
updated in GitHub [8]. In order to increase the functionality
provided, for example including new types of JSON files to
be understandable to the tool, only the hooks used during
the parsing have to be modified for the corresponding new
behaviour to be implemented, following the criteria described
in the methodology (c.f. Section III). To include new external
sources to check and correlate the results, it would be sufficient
to modify the main interface of JUDAS (c.f. Section IV-A);
however, depending on the source it could be useful to develop
new classes to represent the new data (c.f. Section III-B).

The following sections describe the basic usage of the tool,
some results after using it and the summary of statistics.

A. Quick Overview

JUDAS provides a Graphical User Interface (GUI) to
simplify the analysis (Fig. 9). The first step is to select a default
folder, where all the files of the same digital investigation will
be allocated. There are four tabs at the top of the GUI: Context,

8

Functional tabs

 Visual graph

Show options in the context

Ask to external

sources

Searches in the objects of the context

(not the files)

Specific notifications, including errors

and warning about the context

Fig. 9. Overview of the first window shown by the JSON Users and Devices AnalysiS (JSON) Tool, after loading the files of the case.

Files, API Keys and Report. The first tab is for including all
the operations that can affect the context (objects generated
by the tool). The second tab is for selecting the default folder
and also the type of files that can be added to the context
(for the current tests, only .json and .pcap files are collected).
The collection of relevant files is recursive. The third tab is
for including API keys, which are needed to use the external
services (e.g. Shodan). The last tab is for reporting. The actions
applied to the object are included in the report to simplify the
traceability of our actions in the system. These reports can be
saved to aid in the writing of the final report of the case.

In addition, there are different options or buttons whose ob-
jective is to show the different features implemented following
the premisses detailed in the methodology. Note that the text
in Fig.9 shows all the information in the object, including the
files where all the data can be found. In addition, each object
stores its own registry of its activity: time when it was created,
the object from which it was generated/extracted (if any), etc.

B. Proof of Concept: Results from Amazon’s Alexa
JUDAS is validated using a representative set of data

downloaded from the DFRW 2017/18 challenge [9] closed in
March 2019. These sources provide a rich context for analysis,
where, for the sake of clarity, only one part is used to test
JUDAS. The drawback to the dataset chosen is that both the
users and the devices are fictitious. So, the services consulted
for external information do not provide enough substantial
information to complete some parts of the context.

In Fig. 10 the context generated for the files downloaded
from the Alexa Cloud is shown. The first view of the circle

Activity
Device
User
Card

Address
Service
Action

Route

Fig. 10. Section of the dynamic graph generated for JUDAS for Alexa JSONs.

suggests that device #6 and user #0 are related inside the
majority of objects of type Activity. These relationships are
normal because #6 is an Echo device used to communicate
with the Alexa Cloud. Unlike #6, devices #39 and #42 are
related to the user, but their presence in the logs is not as
prominent as #6. Analysing the characteristics of the devices,
apparently these are mobile devices used either by the user or
by other users in the system with the (apparent) authorisation
of the only identified user, who is the owner of the Echo
device. If both objects are analysed, the tool shows different
account numbers that can be further analysed.

Moreover, the dataset used for this validation includes a
network capture in a .pcap file. Using the option Show network
info (step 1 in Fig. 11) the file is processed, and JUDAS
shows a list of public and private IPs, the MAC address and
two graphs to show the relationships between these values in
the context. The first graph at the top of Fig. 11 shows the

9

1

4

2

3

Fig. 11. Parsing a PCAP file to identify public IPs and check them using ipapi and Shodan. New Addresses can be added to the context after this step.

graph for IPs. Then, the option Acquire Public IP info (step 2)
implements the steps shown in Fig. 7, using external services
to acquire additional information for public IPs and creating
new Addresses that can be added to the context (step 3). The
new addresses are created with the “id” temporary and the IP
address as keywords to differentiate these from the addresses
with an identifier acquired from the JSON files. Then, once the
new addresses have been added to the context (step 3), new
items appear in the graph; there are no direct relationships
with the user and devices because public IPs are not directly
correlated. In this case, the addresses can be added to the
context in order to search for additional information about the
IPs in Shodan (step 4). For example, the arrow at the bottom in
Fig. 11 leads to the results from Shodan for IP 217.147.208.1.
In this case, the request returns a set of new IPs with the same
refid parameter, which is the IP used in the search.

In addition, the option Correlate with context can be used
to check if the information acquired about the public IPs
(step 2) has any similarities with current addresses in the
context before adding the new data to it (step 3). Therefore,
the option implements Algorithm 4, and can be called between
steps 2 and 3, producing similar results to those shown in
Fig. 12. However, note that using the dataset chosen, although
some matches have been found, they are not strong enough,
because the postal code for the addresses is not the same. The
correlation across additional axes is possible by adding the
desired fields in Algorithm 4. One of the future improvements
planned for the tool is to be able to select the values using the
GUI, avoiding the modification of the code.

C. Statistics

In addition to the features for working with the context, JU-
DAS provides some data about the number of objects that were
created (number of instances of the classes), the number of

Fig. 12. Output for correlation (Timezone and PostalCode).

instances that are finally used (unique instances), the number
of relationships per class and the number of source files from
where the instances were created. These data can be consulted
using the button “Summary”. In Fig. 13 the tool’s output for
the data analysed is shown. This graph is a summary, which
demonstrates the nature of the files analysed and the analysis
completed by JUDAS. The specific information about all the
instances/objects finally used to define the context is shown
in the main view (c.f. Fig. 9). For example, in Fig. 13 the
output data for the class User means that, while the tool was
analysing files, 231 instances of the class User were created
by the tool after analysing 44 files. However, all the instances
are for the same unique user, so all the instances are eaten (c.f.
Section III) in a single instance. Moreover, the unique instance
is related to 47 instances (other instances of other classes) in
the final state of the context. In addition, there are instances
that are not connected with the user that can be omitted in this
point of the analysis.

Note that all objects of the type Action are created from
the same file. In this case, the summary does not include the
external sources, and only shows those files used in the use
case. If the same test were to be repeated after acquiring public
IP info, then the number of instances for Addresses would
be higher. In addition, intuitively, the results highlight that
multiple instances of the same class with the same Id can be
present in the same file.

10

Fig. 13. Number of instances and relationships created by JUDAS.

In a real scenario, the parsing and correlation can be critical
to simplify the identification of users and devices in unique
objects. The tool summarises relevant words in a list of tags
that can be used to compose wordlists to perform additional
analyses improving the context. While the number of tags
is not limited, JUDAS will be more efficient if the tags are
mapped to the equivalences avoiding duplication.

Finally, these outputs are provided not only to reveal how
many objects with the same identifier are created and com-
bined, but also to contribute to improving the solution in
future versions, and simplify the comparison with new, future
work. Moreover, it helps ensure that all the appearances of the
same object can be extracted from the files and no knowledge
is lost. This also allows the impact of these objects on the
performance and the cost of processing to be seen. As the
tool becomes more complex, it will require new metrics to
evaluate performance for different uses cases.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed the JSON Users and Devices
analysis (JUDAS) methodology to correlate users and devices,
taking advantage of the JSON format widely used by many
tools, either to save logs or to provide results of operations on
data during the analysis of digital evidence. JUDAS generates
a unified representation of the context of a digital investi-
gation using the data available in the use case folder, and
asks external services to complete the information about the
objects generated. In addition, following the steps defined
in the methodology, a tool with the same name has been
developed to allow the integration with different tools and
modules able to simplify the parsing of new formats to be
added to the solution. The context draws from JSON files, but
alternative methods can be included in the future. The next
steps will focus on increasing the number of files that can be
processed (improving the classification and parsing) and also
the number of external sources that can be used to acquire
public information to feed the context.

Moreover, Natural Language Processing (NLP) can be
useful to improve the analysis of digital data concerning com-
munication between individuals. Taking advantage of NLP,
new modules focused on the interpretation of the text messages
exchanged between users can be defined to provide additional

information about the traits underlie personality. Considering
that Alexa (and similar platforms) stores text speech, this can
be very interesting.

Last but not least, the context is delimited by the files of
a use case, or those belonging to a digital investigation. For
the sake of simplicity a folder with all the potential digital
evidence is considered, but this can be much more complex
in the case the digital information is distributed over several
sources. Additional tools for correlating data from different
digital investigations without revealing the content of the data
itself could be helpful to further complete the data acquired.

ACKNOWLEDGMENTS

This work has been financed by the Spanish government
through the projects IoTest (TIN2015-72634-EXP/AEI) and
SMOG (TIN2016-79095-C2-1-R), and by the EU H2020-SU-
ICT-03-2018 Project No. 830929 CyberSec4Europe (cyber-
sec4europe.eu). The author has been financed by INCIBE.

REFERENCES

[1] E. Oriwoh, D. Jazani, G. Epiphaniou, and P. Sant, “Internet of things
forensics: Challenges and approaches,” in 9th IEEE International Con-
ference on Collaborative computing: networking, Applications and
Worksharing. IEEE, 2013, pp. 608–615.

[2] M. Conti, A. Dehghantanha, K. Franke, and S. Watson, “Internet of
things security and forensics: Challenges and opportunities,” 2018.

[3] P. Stephenson, “A comprehensive approach to digital incident investiga-
tion,” Information Security Technical Report, vol. 8, no. 2, pp. 42–54,
2003.

[4] D. Crockford, “Introducing json,” https://www.json.org, Accessed in
2019.

[5] H. Chung, J. Park, and S. Lee, “Digital forensic approaches for amazon
alexa ecosystem,” Digital Investigation, vol. 22, pp. S15–S25, 2017.

[6] S. Li, S. Li, K. R. Choo, Q. Sun, W. J. Buchanan, and J. Cao, “Iot
forensics: Amazon echo as a use case,” IEEE Internet of Things Journal,
pp. 1–1, 2019.

[7] “Osint framework,” https://osintframework.com, Accessed in 2019.
[8] “Json users and devices analysis (judas),” https://github.com/cadirneca/

judas, Updated in April 2019.
[9] “Dfrws forensic challenge,” https://www.dfrws.org/

dfrws-forensic-challenge, Accessed in March 2019.
[10] M. Hossain, Y. Karim, and R. Hasan, “Fif-iot: A forensic investigation

framework for iot using a public digital ledger,” in 2018 IEEE Inter-
national Congress on Internet of Things (ICIOT). IEEE, 2018, pp.
33–40.

[11] C. Meffert, D. Clark, I. Baggili, and F. Breitinger, “Forensic state
acquisition from internet of things (fsaiot): A general framework and
practical approach for iot forensics through iot device state acquisition,”
in Proceedings of the 12th International Conference on Availability,
Reliability and Security. ACM, 2017, p. 56.

[12] A. Nieto, R. Rios, and J. Lopez, “Iot-forensics meets privacy: towards
cooperative digital investigations,” Sensors, vol. 18, no. 2, p. 492, 2018.

Ana Nieto is post-doctoral researcher at the Uni-
versity of Malaga, focusing her research interests in
Digital Forensics. In 2018, she was awarded with
a grant to develop advanced cybersecurity research
by the Spanish Institute of Cybersecurity (INCIBE).
She is a senior member of the Network, Information
and Computer Security (NICS) lab. She is currently
working on the definition of new solutions to deal
with the new challenges for IoT-Forensics, such as
the definition of trustworthy entities in the figure of
digital witness and new mechanisms to the definition

of cybersecurity context in the scope of a digital investigation.

https://www.json.org
https://osintframework.com
https://github.com/cadirneca/judas
https://github.com/cadirneca/judas
https://www.dfrws.org/dfrws-forensic-challenge
https://www.dfrws.org/dfrws-forensic-challenge
https://www.nics.uma.es
https://www.nics.uma.es

	Introduction
	Motivation and structure

	State of the Art
	Methodology to Build the Context
	Identification
	Identify equivalent terms inside the files
	Identify direct and indirect relationships based on the content

	Classification
	Parsing
	Correlation and Feeding
	Visualisation

	Proof of concept: JUDAS Tool
	Quick Overview
	Proof of Concept: Results from Amazon's Alexa
	Statistics

	Conclusions and Future Work
	References
	Biographies
	Ana Nieto

