
A Representation Model of Trust Relationships
with Delegation Extensions

Isaac Agudo, Javier Lopez, and Jose A. Montenegro

Computer Science Department, E.T.S. Ingenieria Informatica
University of Malaga, Spain
{isaac, jlm, monte@lcc.uma.es}

Abstract. Logic languages establish a formal framework to solve au-
thorization and delegation conflicts. However, we consider that a visual
representation is necessary since graphs are more expressive and un-
derstandable than logic languages. In this paper, and after overviewing
previous works using logic languages, we present a proposal for graph
representation of authorization and delegation statements. Our proposal
is based on Varadharajan et al. solution, though improve several ele-
ments of that work. We also discuss about the possible implementation
of our proposal using attribute certificates.

Keywords: Attribute Certificate, Authorization, Delegation, Graph repre-
sentation, Privilege Management Infrastructure (PMI)

1 Introduction

Traditional authorization schemes are typically based on the fact that the stake-
holder has privileges to access the computer resource. That type of systems
require that all users of a shared resource are locally registered. However, that
requirement conforms a scenario where the authorization service does not scale
well.

There are recent schemes where the authorization relies on elements that are
external to the functional elements of the computer system. In these schemes, it
is necessary to establish a trusted relation among the functional elements and
the elements responsible for the authorization. On the other hand, they facilitate
the situation in which several computer systems can share the same authoriza-
tion method. Hence, the global information system results more scalable. We
refer to this as distributed authorization: the authorization system publishes the
authorization elements and the functional system use them to evaluate users’
operations.

In many circumstances, delegation is a basic and necessary component to
implement distributed authorization. The problem is that actual systems do not
represent delegation concepts in a correct way. Several approaches have been
proposed in order to manage delegation in distributed environments. The classic

I. Agudo, J. Lopez, and J. A. Montenegro, “A Representation Model of Trust Relationships with Delegation Extensions”, 3th International
Conference on Trust Management (iTRUST05), LNCS vol. 3477, pp. 9-22, 2005.
http://doi.org/10.1007/11429760_9
NICS Lab. Publications: https://www.nics.uma.es/publications

solution for knowledge reasoning is the use of logic, although there are other
proposals that use a graphical representation.

In this paper we introduce Weighted Trust Graphs (WTG) a graphical repre-
sentation for authorization and delegation. As it can be deduced from its name,
it is based on graphs, and provides a more flexible solution, in several ways, than
other proposals, like those by Varadharajan and Ruan [1, 2]. One advantage of
our solution is that WTG is a generalization of the other proposals. Addition-
ally, WTG allows to define more complex policies. Even if in other solutions
a delegation statement is usually issued together with an authorization state-
ment, our solution can use both of them separately, allowing us to introduce the
notion of negative delegation. We define negative and positive delegation state-
ments as trust on negative and positive authorization, respectively. Moreover,
we implement delegation as transitive trust.

The rest of the paper is structured as follows. Section 2 presents two variants
to represent authorization and delegation statements: logic languages and visual
representation using graphs. Section 3 describes our proposal based on graph
representation, including the formalization of the system. In section 4, we discuss
about the possible implementation of our proposal using attribute certificates.
Finally, section 5 concludes the paper.

2 Representing Authorization and Delegation Statements

2.1 Logic-based Schemes

This subsection introduces two formal proposals for delegation. These works are
based on the use of logic languages to represent the authorization and delegation
concepts. The Two significant proposals are, Delegatable Authorization Program
and RT Framework.

Delegatable Authorization Program - DAP. Ruan et al proposed in [3] a
logic approach to model delegation. Their language, L, is a first order language,
with four disjoint sorts (S, <S), (O, <O), (A,<A), and T = {−, +, ∗}, for subject,
object, access right and authorization types, respectively.

In the constant set of authorization types, T = {−,+, ∗}, − means negative,
+ means positive, and ∗ means delegatable. A negative authorization specifies
the access that must be forbidden, while a positive authorization specifies the
access that must be granted. A delegatable authorization specifies the access that
must be delegated as well as granted. The partial orders <S ,<O,<A represent
inheritance hierarchies of subjects, objects and access rights, respectively.

In DAP, predicates consist of a set of ordinary predicates defined by users,
and one built-in predicate symbol, grant, for delegatable authorization. The later
is a 5-term predicate symbol with type S×O×T×A×S, where the first argument
is the grantee, the second one is the object, the third is the authorization type,
the fourth is the access right and, finally, the fifth argument is the grantor
of this authorization. Intuitively, grant(s, o, t, a, g) means s is granted by g the

access right a on object o with authorization type t. grant is called authorization
predicate. There are two special predicates named cangrant and delegate, of type
S ×O ×A and S × S ×O ×A, respectively, that are used to model delegation.
cangrant(s, o, a) means subject s has the right to grant access a on object o to
other subjects, while delegate(g, s, o, a) means subject g has granted to subject
s access a on object o with access type ∗.

A DAP consists of a finite set of rules of the form:

b0 ← b1, . . . , bk, not bk+1, . . . , not bk+m, m ≥ 0

In [6], Ruan et al. extend their model with temporal capabilities, adding a
new temporal parameter to predicates.

Example. Sorting of the language is defined as, S = {#, s1, s2 : s1 <S s2},
O = {o1, o2; o1<Oo2}, A = {write, read; write<Aread}, and the rules of the
DAP as:

r1 : dba(s1)←
r2 : ¬dba(s2)←
r3 : ¬secret(o1)←
r4 : secret(o2)←
r5 : grant(s1, o2,*,write,#)←
r6 : grant(s2, o2,-,write,s1)←
r7 : grant(s, o,-,write,#) ← secret(o),not dba(s)

RT Framework. Li et al. proposed in [5] logic programming as a way to model
authorization and delegation relations. They use Roles for this purpose and
they define a full general framework, RT for Role Based Trust Management. It
comprise five different solutions, each of them with different characteristics. Roles
can be interpreted as privileges or attributes, and are similar to what Ruan et
al. call access rights. As in the previous logic-based proposal, the RT Framework
defines a partial order in roles, establishing how rights can be inherited. Partial
orders are used to represent other concepts too. Let u, p, r denote users, rights
and roles, respectively; then:

– r1 ≥ r2, is read as r1 dominates r2, and means that r1 has all the rights r2

has. It can also be read as r2 contains r1.
– u ≥ r assigns role r to user u.
– r ≥ p assigns right p to role r.

RT defines several types of credentials, an analogous concept to DAP . The
basic credentials are:

1. A.R ← D: This credential means that A defines D to be a member of A’s
role R. In the attribute-based view, this credential can be read as D has the
attribute A.R, or equivalently, A says that D has the attribute R.

2. A.R← B.R1: This credential means that A defines its role R to include all
members of B’s role R1. In the attribute-based view, this credential can be
read as if B says that an entity has the attribute R1, then A says that it has
the attribute R.

3. A.R← A.R1.R2: The expression on the right is called a linked role. It means
that A.R contains B.R2 for all B in A.R1. The attribute-based reading of
this credential is: if A says that an entity B has the attribute R1, and B says
that an entity D has the attribute R2, then A says that D has the attribute
R.

4. A.R← B1.R1 ∩B2.R2 ∩ . . .∩Bn.Rn: This credential means that if an entity
is a member of B1.R1, B2.R2, . . . and Bk.Rk, then it is also a member of
A.R. The attribute-based reading of this credential is A believes that anyone
who has all the attributes B1.R1, . . ., Bk.Rk also has the attribute R.

EPub.disct ← EPub.preferred∩EPub.student
EPub.preferred ← EOrg.preferred

EOrg.prederred ← IEEE.member

EPub.student ← EPub.university.stuID

EPub.university ← ABU.accredited

ABU.accredited ← StateU

StateU.stuID ← Alice

IEEE.member ← Alice

2.2 Graphs-based Schemes

Logic programming offers a powerful mechanism to represent authorization and
access control decisions. Authorizations are represented as predicates and deci-
sions are based on formulae verification. There are many logical solutions for
formulae verification and it is easy to implement such a system in a standard
way. A disadvantage of logical programming is that it is not well understandable
and has an obscure transcription. The previous solutions are clear examples.

On the other hand, there are graphical solutions that are thought to be less
powerful but more expressive and more understandable. A graphical solution
may be based on the use of directed graphs to model authorization and delegation
process. Basically, this maps each predicate to a directed arc in a graph. Arcs goes
from the issuer of the authorization or delegation statement to the subject who
is authorized or granted privileges. There are as many different arcs as different
authorization/delegation statements to consider. As we model authorization and
delegation, the graph we get is a tree and the root of the tree is (usually) the
owner of the resource which we are reasoning about. With such a tree it is
possible to study the relations between entities in the system in a graphical way.

Varadharajan and Ruan have proposed two solutions to represent authoriza-
tion and delegation using directed graphs. In [1] they present a first approach

to the problem. This approach considers three types of authorizations: negative
authorization, positive authorization and delegatable authorization. As shown in
figure 1, a cross line represents a negative authorization, a dashed line represents
a positive authorization, and a simple line represents a delegatable one.

In [2] the same authors proposed a new approach, weighted graphs. In that
proposal, each authorization is associated with a weight given by the grantor,
representing the degrees of certainties about the authorization grants. The weight
is a non-negative number, and a smaller number represents a higher certainty.
When considering both negative and positive authorizations, we get conflicts if
the same subject is issued a negative and a positive authorization. In this case,
we need to define a conflict resolution method that allows us to decide which of
them has to be considered.

(a) Simple Graph (b) Weighted Graph

Fig. 1. The two graph-based models proposed by Varadharajan et al.

These authors follow the idea of predecessor-take-precedence. However, there
are still some conflicts that they do not solve. For instance, Figure 2 shows an
incomparable conflict in the weighted graphs approach. We believe that ACD
should override ABD because in the first link of the path A prefers C instead of
B. This follows the predecessor-take-precedence philosophy as previous decisions
take precedence over later ones. As shown later, our solution resolves this conflict.

A

B

C

D

5

1

1

5

Fig. 2. Incomparable conflict

3 Weighted Trust Graph

Weighted Trust Graphs (WTG) aims to generalize the proposal presented in [2].
However, our definition is more flexible. In fact, we support this proposal as a
particular case of our framework.

As we consider negative and positive authorizations, conflicts between them
may arise. We assign to each authorization a weight that, together with the
security level policy, allow us to avoid many conflicts. In case the weights are the
same, we follow a predecessor-take-precedence principle with some refinements;
that is, a new conflict resolution method, that we call strict-predecessor-take-
precedence.

This principle can also be used as a stand alone policy, where the owner of the
resource establishes a hierarchy of subjects by assigning appropriated weights to
their delegations, and any of the further delegations made for these subjects has
to preserve this hierarchy. For instance, if A gets from S the higher priority in
the hierarchy, all A’s delegation or authorization statements take preference over
the others ones.

In this paper we propose a security policy to avoid conflicts. We call it Mean
Policy, where we use the strict-predecessor-take-precedence principle to solve
conflicts.

Credentials are represented using arcs in a graph. Thus, both terms are used
equally. We consider a credential as a 4-tuple:

(Issuer, Subject, Type,Right)

where (i) Issuer is the issuer of the authorization or delegation statement;
(ii) Subject is whom this statement refers to; (iii) Type, as we will see later, is
the type of the statement in a general way; and, (iv) Right is the right together
with the resource we are reasoning about. We can represent Right as a 2-tuple
consisting on the resource and the type of access, Right = (Resource, Access).
As with the Right of a credential, we can also express the Type as a 3-tuple1

composed of the following parameters:

– Weight, which represents the level of trust in this authorization.
– Delegatable, which represents if the statement is delegatable or not.
– Sign, which represents the sign of the statement (negative or positive).

Then, we can define a credential as follows.

Definition 1. A credential is a 4-tuple of the form (Issuer, Subject, Type,
Right) where Issuer ∈ S, Subject ∈ S, Type = (w, d, s) ∈ D × {0, 1} × {0, 1}
and Right = (o, a) ∈ O ×A.

– S is the set of subjects in the system;
– D is the domain where we evaluate the credential. In general, it could be any

real number, but for our framework we restrict it 2 to D = [0, 1]. We consider
1 If we consider validity intervals, it should be part of the credential Type and we

should use a 4-tuple.
2 Varadharajan et al. proposal could be derived from our framework, using non-

negative numbers instead of [0, 1].

it as the level of trust that the issuer has on this credential: ’1’ stands for
fully trustable credential, while ’0’ stands for non trustable credentials.

– O is the set of objects;
– A is the set of access types.

We denote the set of all credentials by G. Given a credential, we can refer to
its Type components by the functions described next.

Definition 2. Let m be a credential, then:

– Weight, |m| defines the weight of the arc; according to Definition 1, |m| ∈
[0, 1]. When m = 0 we consider this credential as non existing.

– Delegatable, d(m) is ’0’ for authorizations, and ’1’ for delegation state-
ments.

– Sign, s(m) is the sign of the credential (’1’ if positive, ’0’ if negative).

Based on the proposal by Varadharajan et al., we define a graphical repre-
sentation for the four types of credentials that we can obtain for the parameters
d and s. Parameter w (the weight) is placed over the arcs in the graph. The
different arc types that we support are represented in figure 3:

– Arc a) represents a positive delegation statement; i.e. d(m) = 1 and s(m) =
1. It means that the issuer trusts the subject about his/her positive autho-
rizations or delegations. For simplicity, we suppose that this credential can
be interpreted as a b or c credential.

– Arc b) represents a positive authorization statement; i.e. d(m) = 0 and
s(m) = 1. It means that the issuer authorizes the subject to access the
resource.

– Arc c) represents a negative delegation statement; i.e. d(m) = 1 and s(m) =
0. It means that the issuer trusts the subject about his/her negative autho-
rizations or delegations.

– Arc d) represents a negative authorization statement; i.e. d(m) = 0 and
s(m) = 0. It means that the issuer denies access to the subject over the
resource.

a) d)b) c)

Fig. 3. Different types of arcs

We allow negative delegation statements which stands for trust about nega-
tions. In the example of figure 4, a bank could issue a negative delegation state-
ment over granting credits to a company that maintains a customer blacklist,

and at the same time could issue a (positive) delegation statement to one of
its local offices. Even if the local office agrees on granting a credit to a specific
citizen, they have to take into account the negative authorization issued by the
black list company.

0.5

0.5

CitizenBank

0.7

0.8

Local

Black
List

Office

Fig. 4. Negative delegation

When taking decisions about granting access to a certain resource, we have
to analyze the chains or paths of credentials from the owner of the resource to
the subject. Next, we define paths of credentials.

Definition 3. A path C is a sequence of consecutive credentials, m1m2 . . .mn.
Every mi is a credential and by ’consecutive’ we mean that the issuer of mi+1

must be the subject of mi for all i ∈ {1, . . . , n − 1}. The length of the path is
defined as the number of credentials.

If there is only one path between the nodes, we can also note a path by its
nodes instead of its arcs. Once we define a path, there could be conflictive paths
between the same subjects, so we have to be able to compare them and decide
which of them is valid and which not.

The key for conflict resolution is to define a metric over paths of credentials,
which allow us to measure the priority of each authorization or, at least, to
compare them. Such a metric should follow the predecessor-takes-precedence
method. Therefore, a path should become less important as it grows (or, what
is to say, as new arcs are added). We will use the term metric, even if it is not
a metric in the mathematical sense.

Definition 4. A metric is a non-negative function |C| = f(|m1||m2| . . . |mn|)
where n = length(C). In case there are different metrics, we denote it as | · |i,
where the subindex refers to the particular metrics.

The main property a metric has to fulfill in order to be considered as a
metric for paths is monotony. This means that the weight or level of trust of the
path decreases when going down in the path. As we want that larger paths are
less important, we are interested in decreasing metrics, i.e., if we add one more
credential to an existing path, the weight of the newer path can not be greater
than the weight of the older path:

|m1m2 . . . mi| ≥ |m1m2 . . . mimi+1| (1)

Some examples of monotone metrics are,

– |C|· = |m1||m2| · · · |mn|
– |C|min = min(|m1|, |m2|, . . . , |mn|)
– |C|+ = |m1|+ |m2|+ . . . + |mn|
– |C|max = max(|m1|, |m2|, . . . , |mn|)

The first two are decreasing metrics3, and the last two are increasing metrics.
With the help of these metrics we can define an order in the paths as follows:

C > C′ if |C| > |C′| (2)

Although there is a variety of orders that can be defined in this way, others
can not. One example is the lexicographic or dictionary order.

Definition 5. Given two paths C and C′, let n be the minimum length of the
two, n := min{lenght(C), lenght(C′)}, we say that C >L C′ if

C>L C′ if

(|m1| > |m′
1|)

or
(|m1| = |m′

1|) ∧ |m2| > |m′
2|

or
. . .
or
(|m1| = |m′

1|) ∧ . . . ∧ (|mn−1| = |m′
n−1|) ∧ |mn| > |m′

n|
or
|mi| = |m′

i| ∀i ∈ {1, . . . , n} ∧ n = lenght(C)
When inspecting paths from one node to another, not all the possible paths

need to be considered. It is necessary to define which are valid paths and which
are not. If A trusts B′s negative authorizations, then paths containing B′s pos-
itive authorizations over A′s resources have to be discarded. If A authorizes B
and B authorizes C, C is not authorized, as A does not trust B on positive
authorizations. He just authorizes him, thus this path is also discarded. Next we
define valid paths.

Definition 6. Given a path, C = m1m2 . . . mn, we say that C is valid or con-
sistent if any of the following conditions holds:

– length(C) = 1
– d(mi) = 1 for all i ∈ {1, .., n− 1} and s(mi) = −1 for all i ∈ {1, .., n}
– (d(mi) = 1) ∧ (s(mi) = 1)∀i ∈ {1, .., n− 1}

We define the function v to determine whether a path is valid or not,

v(C) :=
{

1 if C is consistent
0 in other case

3 | · |· is decreasing as we define 0 ≤ |m|· ≤ 1 for all credentials in the system (see
Definition 2)

We have to keep in mind that, when taking access decisions, the last link in
the path the user presents consists of an authorization and, therefore, provides
the sign (positive or negative) for the path. We will consider that a path is
positive/negative if the last link is positive/negative, respectively. We define,
based in a given metric, a pseudo-metric, that takes into account all the details
we have defined before. We denote it with double lines.

Definition 7. Given a metric | · |, a sign function s(·), a validity function v(·)
and a path C = m1m2 . . . mn, we define the associated pseudo-metric as

‖C‖ = |C|s(mn)v(C)
As |C| ∈ [0, 1], ‖C‖ ∈ [−1, 1] then, given a number x ∈ [−1, 1], we define

‖x‖−1 as the set of all paths with pseudo-weight equal to x.

‖C‖−1 := {C ∈ G : ‖C‖ = x} (3)

We choose for our proposal the metric, |C| = |C|· and we omit the dot in the
following.

Definition 8. Given a set of paths S, and the pseudo-metric ‖C‖, we define the
highest and the lowest weight of the set S as,

H(S) := max{‖C‖ : C ∈ S}
and

L(S) := min{‖C‖ : C ∈ S}
respectively. If S = ∅ then they are defined to be equal to ’0’.

In particular, we can define the higher/lower weight between two nodes, as
shown next.

Definition 9. Let SAB be the set of all valid paths (v(C) 6= 0) from A to B,
then HAB := H(SAB) and LAB := L(SAB)

We can also define the average weight, compensating negative and positive
authorization.

Definition 10. Let SB be the set of all credentials issued over B, and let Xm

be the issuer of the credential m. Then, the average weight between principals A
and B is defined as,
MAB := average{|m|s(m)MAXm : m ∈ SB ∧MAXm > 0}
The initial case is MAA := 1.

Definition 10, is a recursive definition that can be seen as a graph exploration
using a branch and bound algorithm where the strict lower bound for MAX is
set to zero. If we calculate MAB from A to B, in the first step we inspect the
principals conected from A with a single arc. Then we mark the negatives as ”non
useful”, as they can not further delegate, so can not be part of any delegation

path. With the rest we repeat the argument until we reach B. At the end, we
have marked all the non useful nodes. When reasoning about two principals A
and B, the non useful nodes are omitted and we get an effective graph containing
only the useful nodes.The resulting graph is easier to inspect both visually and
aritmetically.

A C

B

D E

0.2

0.6

0.50.3

1

0.3
A

B

D E0.6

0.3

1

(a) Full Graph (b) Effective Graph

Fig. 5. An example of a Delegation Graph and the Effective Graph

In the following, we will explain how to calculate the previously defined
functions with an example. We are going to calculate MAX , for all relevant
nodes X in the full graph of Figure 5,

MAB = 1× 1×MAA = 1 (4)

MAD = 0.3× 1×MAA = 0.3 (5)

MAC =
0.3× (−1)×MAA + 0.2× 1×MAD

2
=
−0.3 + 0.2× 0.3

2
= −0.12

(6)

MAE = 0.6× (1)×MAD = 0.6× 0.3 = 0.18 (7)

What we actually do is the arithmetic average of all valid paths with all its
nodes, Xi, having a positiveMAXi . Note that we have not considered the path
ACE in the calculus of MAE as MAC < 0 (see Definition 10 for more details).
With the same example it is easy to calculate LAX and HAX .

With these three elements we can define several types of policies for autho-
rization. At this moment, we are working on a classification of the policies. One
of the simplest policies is the Mean Policy. Easy speaking, A grant access to
the resource to agent X if MAX > 0. Although this is an easy formula, there
are cases in which MAX = 0, thus this formula does not grant authorization
but, according to predecessor-takes-precedence method, we should grant it or
implicitly deny it.

WhenMAX = 0, it could happen that there is no path from A to X or that
they are both positive and negative. As the average is zero, we can not decide

whether to grant authorization or not. Other proposals keep this situation as
unsolvable. However, it is important to note that we try to solve it using the
lexicographic order to decide about granting authorization.

Given a set of paths, we can also define another subset, including all the
maximal elements according to the lexicographic order. We note it as maxL(AB).

Definition 11. Given a set of path, S, we define the maximal lexicographic
subset of S as maxL(S) := {C ∈ S : there are no C′ ∈ S with C′>LC}.

If the set S is the set of all paths from A to B, then we denote it as maxL(AB)

Using this set we can solve several cases in whichMAX = 0. We allow access
if any of the paths with the highest weight is greater (using the dictionary order)
than all the paths with the lowest weight. In other case, we say the conflict in
undecidable.

Now we can formally define this policy.

Definition 12. According to the Mean Policy, A grants access to their re-
sources to agent X if MAX > 0 or MAX = 0 and

∃ C ∈ ‖HAB‖−1 : C>L C′ ∀ C′ ∈ ‖LAB‖−1

Using this policy we can solve the problems mentioned when explaining Fig-
ure 2.

As mentioned in the introduction we also define a stronger principle than
predecessor-take-precedence. We call it strict-predecessor-take-precedence and we
implement it using the dictionary order. We order all path from A to X and
choose the maximal ones; these are the preferred paths. If all of them are positive,
then we grant authorization, but if there are positive and negative we can not
say anything4. If there are only negative authorizations we deny access.

Definition 13. According to strict-predecessor-take-precedence, A grants
access to their resources to agent X if maxL(AX) contains only positive autho-
rizations.

4 Implementation of our proposal using Attribute
Certificates

The last X.509 ITU-T Recommendation [7] introduces the concept of Privi-
lege Management Infrastructure (PMI) as the framework for the extended use
of attribute certificates. The Recommendation establishes four PMI models: (i)
General, (ii) Control, (iii) Roles and (iv) Delegation. The first one can be consid-
ered as an abstract model, while the other ones can be considered as the models
for implementation.

4 In fact, we can solve it combining the two policies presented in the paper or using
other policies we are working on.

The implementation of the Control and Roles models are feasible tasks,
though not free of complexity. However, the case of the Delegation model is sub-
stantially different because of the intrinsic difficult problems of the delegation
concept. In this section, we discuss about the implementation of the Delegation
model using our WTG solution in combination with attribute certificates.

The PMI area inherits many notions from the Public Key Infrastructure
(PKI) area. In this sense, an Attribute Authority (AA) is the authority that
assigns privileges (through attribute certificates) to users, and the Source of
Authorization (SOA) is the root authority in the delegation chain. A typical
PMI will contain a SOA, a number of AAs and a multiplicity of final users. As
regarding our scheme, we will represent the previous elements as the nodes of
the graph. The SOA will be the first node that outflows initial arcs. AAs will be
the intermediary nodes while the final users will be the leaf nodes (that is, the
nodes that do not outflow arcs but inflow authorization arcs only).

The ASN.1 [4] description of the structure of an attribute certificate is the
following:

AttributeCertificate ::= SIGNED {AttributeCertificateInfo}
AttributeCertificateInfo ::= SEQUENCE

{
version AttCertVersion, --version is v2
holder Holder,
issuer AttCertIssuer,
signature AlgorithmIdentifier,
serialNumber CertificateSerialNumber,
attrCertValidityPeriod AttCertValidityPeriod,
attributes SEQUENCE OF Attribute,
issuerUniqueID UniqueIdentifier OPTIONAL,
extensions Extensions OPTIONAL

}

Extensions ::= SEQUENCE OF Extension
Extension ::= SEQUENCE {

extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING

}

ExtensionSet EXTENSION ::= { ... }
EXTENSION ::= CLASS {

&id OBJECT IDENTIFIER UNIQUE,
&ExtnType }
WITH SYNTAX {
SYNTAX &ExtnType
IDENTIFIED BY &id
}

One of the fields is the extensions field. This is precisely the field than be-
comes essential for the practical implementation of our proposal. This field allows
us to include additional information into the attribute certificate. The X.509
standard provides the following predefined extension categories:

Basic privilege management: Certificate extensions to convey information
relevant to the assertion of a privilege.

Privilege revocation: Certificate extensions to convey information regarding
location of revocation status information.

Source of Authority: These certificate extensions relate to the trusted source
of privilege assignment by a verifier for a given resource.

Roles: Certificate extensions convey information regarding location of related
role specification certificates.

Delegation: These certificate extensions allow constraints to be set on subse-
quent delegation of assigned privileges.

We focus on the Delegation extension category, that defines different exten-
sion fields. Among them, the Recommendation includes:

Authority attribute identifier: In privilege delegation, an AA that delegates
privileges, shall itself have at least the same privilege and the authority
to delegate that privilege. An AA that is delegating privilege to another
AA or to an end-entity may place this extension in the AA or end-entity
certificate that it issues. The extension is a back pointer to the certificate in
which the issuer of the certificate containing the extension was assigned its
corresponding privilege. The extension can be used by a privilege verifier to
ensure that the issuing AA had sufficient privilege to be able to delegate to
the holder of the certificate containing this extension.

That extension is close to our goals. However, it does not define the weight
associated to the arc between the issuer and the holder of the certificate. There-
fore, we define our own extension, in ASN.1, based on the Authority attribute
identifier one.

This new extension determines a sequence between the SOA and the holder.
Each sequence includes other sequence, ArcsId, where to include the information
of the arcs in the graph, weight of the arc, origin node, and boolean information
about statements, delegation and sign. The destination node must coincide with
the serial number of the attribute certificate.

WeightPathIdentifier EXTENSION ::=
{

SYNTAX WeightPathIdentifierSyntax
IDENTIFIED BY { id-ce-WeightPathIdentifier }

}
WeightPathIdentifierSyntax ::= SEQUENCE SIZE (1..MAX) OF ArcsId

ArcsId ::= SEQUENCE {
Origin IssuerSerial,
Destination HolderSerial,
Weight REAL (0..1),
Delegable BIT,
Sign BIT

}

5 Conclusions and Ongoing Work

Delegation is increasingly becoming a basic issue in distributed authorization.
Actual systems do not represent delegation concepts in a correct way, and some

approaches have been proposed for the management of delegation. The tradi-
tional solution for knowledge reasoning is the use of logic, although there are
other proposals that use a graphical representation.

We have presented in this work the Weighted Trust Graphs (WTG) solution,
a graphical representation for authorization and delegation. There are other
solutions based on graphs. However, WTG provides a more flexible solution
because it is a generalization of the other proposals. Additionally, WTG allows
to define complex policies. Moreover, our solution can make use of authorization
and delegation separately, allowing to manage negative delegations, which stands
for trust on negative authorizations.

More complex policies than the one presented in the paper (at the end of
section 3) are part of our actual research. The key to define policies is the use
of general inequations on variables HAX , MAX and LAX . These equations can
be combined to produce more complex policies, using sequences of equations or
systems of equations. Another importan ingredient for constructing policies is
the use of the set maxL(AX), or more generally, the use of the dictionay order.

The Mean Policy we have presented is the simplest inequation one can con-
sider. Another simple policy, could be

LAX > 0

This equation holds only when there are no negative authorizations from
A to X and there is at least one positive authorization. We are working on a
classification of these policies, and are studying the efficiency of each solution.

In addition to the theoretic definition of the WTG scheme, this work has
shown how to perform a practical implementation based on attribute certificates
and the PMI framework defined by ITU-T.

6 Acknowledgements

This paper is an outcome of the work performed in three Research Projects
where the different co-authors have been involved. We very much thank the
support of: (i) the European Commission through the UBISEC Project (IST-
506926), (ii) the Japanese National Institute of Information and Communication
Technology (NICT) through the International Collaborative Research Project
“Secure Privacy Infrastructure” and, (iii) the Spanish Ministry of Science and
Technology through the project PRIVILEGE (TIC-2003-8184-C02-01). We also
thank the Andalusian Regional Government, that supports Isaac Agudo’s PhD
work.

References

1. V. Varadharajan, C. Ruan. Resolving conflicts in authorization delegations. In
ACISP, volume 2384 of Lecture Notes in Computer Science. Springer, 2002.

2. V. Varadharajan, C. Ruan. A weighted graph approach to authorization delegation
and conflict resolution. In ACISP, volume 3108 of Lecture Notes in Computer
Science. Springer, 2004.

3. Y. Zhang, C. Ruan, V. Varadharajan. Logic-based reasoning on delegatable autho-
rizations. In Foundations of Intelligent Systems : 13th International Symposium,
ISMIS, 2002.

4. B. Kaliski. A Layman’s Guide to a Subset of ASN.1, BER, and DER, 1993.
5. N. Li, J. C. Mitchell, W. Winsborough. Design of a role-based trust management

framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
pages 114–130. IEEE Computer Society Press, May 2002.

6. C. Ruan, V. Varadharajan, Y. Zhang. A logic model for temporal authorization
delegation with negation. In 6th International Information Security Conference,
ISC, 2003.

7. ITU-T Recommendation X.509. Information Technology - Open systems intercon-
nection - The Directory: Public-key and attribute certificate frameworks, 2000.

