
Theoretical

ELSEVIER Theoretical Computer Science 202 (1998) 23 l-244

Computer Science

Note

Comparisons of Parikh’s condition to other conditions
for context-free languages

G. Ramos-Jimenez, J. Lopez-Muiioz, R. Morales-Buena*

E. T.S. de Ingenieria Infornuitica, Universidad de Mrilaga, Dpto. Lenguajes y Ciencias de la Computacibn,
P.O.B. 4114. 29080-Mblaga, Spain

Received May 1997; revised July 1997
Communicated by M. Nivat

Abstract

In this paper we first compare Parikh’s condition to various pumping conditions ~ Bar-
Hillel’s pumping lemma, Ogden’s condition and Bader-Moura’s condition; secondly, to inter-
change condition; and finally, to Sokolowski’s and Grant“s conditions. In order to carry out
these comparisons we present some properties of Parikh’s languages. The main result is the
orthogonality of the previously mentioned conditions and Parikh’s condition. 0 1998-
Elsevier Science B.V. All rights reserved

Keywords: Context-free languages; Parikh’s condition; Pumping lemmas; Interchange condi-
tion; Sokolowski’s and Grant’s condition

1. Introduction

The context-free grammars and the family of languages they describe, context free
languages, were initially defined to formalize the grammatical properties of natural
languages. Afterwards, their considerable practical importance was noticed, specially
for defining programming languages, formalizing the notion of parsing, simplifying
the translation of programming languages and in other string-processing applications.
It is very useful to discover the internal structure of a formal language class during its
study. The determination of structural properties allows us to increase our knowledge
about this language class. An additional benefit is obtained when a particular
property is found to be easily testable; it then becomes a convenient tool for proving
that some languages do not belong to this class. In Fig. 1 we show a classification of
the most well-known conditions for context free languages.

* Corresponding author. E-mail: morales@lcc.uma.es.

0304-3975/98/$19.00 0 1998 - Elsevier Science B.V. All rights reserved

PII SO304-3975(97)00262-4

G. Ramos, J. Lopez, and R. Morales, “Comparisons of Parikhs conditions to other conditions for context-free
languages”, Theoretical Computer Science, vol. 202, pp. 231-244, 1998.
NICS Lab. Publications: https://www.nics.uma.es/publications

232 G. Ramos-Jiminez et al. / Theoretical Computer Science 202 (1998) 231-244

Conditions
for CEL.

I

Necessary
Conditions

I

Gene&Ion of
new strings

I

t

PUMPING

Iteration OGDEN

BAOER-MOURA

Same length : INTERCHANGE

t

SOKOLOWSKI
New one

GRANT

Number of ocmences : PARIKH

Necessary and stnlicient condition : WSE

Fig. 1. Classification of conditions for context-free languages.

When there are several conditions in the deepest level, within this classification,
each of them is a generalization of the previous condition. So, Bader-Moura’s
condition is a generalization of Ogden’s, and this in turn is a generalization of the
pumping condition. In the same way, Grant’s condition is a generalization of
Sokolowski’s.

We observe that most of the lemmas provide only necessary conditions, except
Wise’s condition [19] but this result includes a construction that is not effective.
Therefore, every condition characterizes a family of languages that strictly includes
the CFL (context-free languages) class. Thus, it is interesting to compare different
conditions in order to show their relationships of inclusion or intersection.

Some of the comparative studies concerning the different conditions are
[4,5,10,12]. Among these we recommend [S, lo]. Boonyavatana and Slutzki [5]
compare the interchange condition of Ogden, Ross and Winklmann to various
pumping conditions: the classic pumping condition of Bar-Hillel, Perles and Shamir;
Ogden’s condition; generalized Ogden’s condition of Bader and Moura; linear ver-
sions of the previously mentioned conditions and the Sokolowski-type conditions.
Also, they formulated an interchange condition for linear context-free languages and
compared it to the other conditions. The same authors [lo] carry out a systematic
investigation of the relationships between various pumping properties, the inter-
change condition, and Sokolowski’s and the extended Sokolowski’s condition of
Grant.

G. Ramos-Jim&e2 et al. /Theoretical Computer Science 202 (1998) 231-244 233

Fig. 2. Comparisons of Parikh’s condition.

None of these articles have compared Parikh’s condition to the other ones. That is
the aim of our paper. We compare Parikh’s condition to pumping conditions (Bar-
Hillel’s, Ogden’s and Bader-Moura’s), the interchange condition and Sokolowski’s
and Grants’s conditions, and we prove that Parikh’s condition is orthogonal to all of
them, as shown in Fig. 2. Specifically, we find languages for each of the zones of that
figure, where the significance of each zone is described in the subsequent paragraph
concerning notation.

The paper is organized as follows: in Section 2 we present the basic definitions and
the introductory results. In Section 3, using the outcomes of Section 2, we compare
Parikh’s condition with the pumping condition. In Section 4, we briefly compare
Parikh’s condition with the interchange and, Sokolowski’s and Grant’s condition.
Each zone in Fig. 2 is identified by the following notation:

CFL: Context-Free languages
PC: Pumping condition
BMC: Bader-Moura’s condition
SC: Sokolowski’s condition

PKC: Parikh’s condition
OC: Ogden’s condition
IC: Interchange condition
GC: Grant’s condition

For any condition C, C = PKC, PC, . . . , GC, and any alphabet C,

C(C) = {L E C*/L satisfies C}.

So, as an example, CFL(C) is the set of context-free languages over C.
We omit Z when there is no ambiguity.

2. Definitions and preliminary results

In this section we present some basic definitions, notations and some preliminary
results. We assume that the reader is familiar with the basic theory of context-free

234 G. Ramos-Jim&z et al. / Theoretical Computer Science 202 (1998) 231-244

languages and so we will only define general concepts and formulate various pump-
ing-type conditions for this language class.

A context-free grammar is a construct G = (N, T, P, S) where N and T are two
disjoints sets of nonterminals and terminals, respectively [ll]; P is a finite set of
productions and each production is of the form A + a where A is a nonterminal
and u is a string of symbols from (N u T)*; and finally, S is a special nonterminal called
the start symbol or axiom. The language generated by G, L(G), is a context-free
language.

For a word w, Jw] denotes its length; and E is the empty word. For a set Q, l[Qil
denotes the cardinality of Q. For a language L, L, is the set of all words of length n
in L.

Bar-Hillel, Perles and Shamir (classical) pumping condition. A language L s C* satis-
fies PC if there exists a constant n such that if ZE L and 1 z I > n, then we may write

z = uvwxy such that

(i) 10x1 2 1,
(ii) 1 uwx 1 < n, and

(iii) Vi 2 0 uv’wx’y E L.

A language L E PC(C) if L satisfies the pumping condition. We omit Z when there

is no ambiguity.

Ogden’s condition. A language L E Z* satisfies OC ifthere exists a constant n such that

if z E L and we label in it d(z) “distinguished” positions, with d(z) > n, then we may write
z = uvwxy such that

(i) d(u) x d(u) x d(w) + d(w) x d(x) x d(y) 3 1,
(ii) d(vwx) < n, and

(iii) Vi 2 0, uu’wx’y E L.

A language L E OC(C) if L satisfies Ogden’s condition.

Bader-Moura’s condition. A language L E C* sati.$es BMC if there exists a constant

n such that if z E L and we label in it “distinguished” positions d(z) and e(z) “excluded”

positions, with d(z) > ne@)+ ‘, then we may write z = uvwxy such that:

(i) d(vx) 2 1 and e(ux) = 0
(ii) d(vwx) < r~~(““‘~)+~ and

(iii) for every i B 0, uv’wx’y is in L.

A language L E BMC(Z) if L satisfies Bader-Moura’s condition.

Pumping lemmas [2,3,15]: CFL(C) c BMC(Z) c OC(Z) c PC(C).

G. Ramos-Jidnez et al. 1 Theoretical Computer Science 202 (1998) 231-244 235

We now describe the Interchange condition. Put briefly this says that if a language
L satisfies it and contains many strings of some fixed length, then parts of these strings
may be interchanged, producing new strings which must also be in L. We observe that
the pumping conditions predict that increasingly longer strings will be found in the

language.

Interchange condition. A language L c Z* satisfies IC ifthere is a constant cL such that

for any integer n b 2, any subset Q. of L,, and any integer m with n 3 m > 2 there are

k > /I Q,, 11 /(cLnZ) strings Zi in Q,, with the following properties:

(i) zi = WiXiyi, i = 1, . . . , k,

(ii) l w1 1 = l w2 l = ... = l wk 1,
(iii) I yl I = I y2 I = ... = I yk I,

(iv) m 3 I x11 = lx21 = ... = I xk I > m/2, and

(v) wixjytEL”, V’i,jE{l, k}.

A language LEZC(C) if L satisfies the ZC condition.

Interchange lemma (Ogden, Ross, Winklmann [16]). CFL(C) c ZC(C).

The Sokolowski’s criterion says, informally, that if a language L satisfies it and a set
of strings A is included in L, then there exists a string that does not belong to A but
to L.

Sokolowski’s condition. A language L c C* satisjies SC if for every subset C’ E C,

containing at least two distinct symbols and for ~1, ~2, u3 EC*, if {U~XU~XU~ I

x E Z”} E L then there are two distinct words x’, X”E CI’, such that U~X’U~X”U~ EL.

A language LESC(C) if L satisfies the SC condition.

Sokolowski’s lemma (Sokolowski [18]). CFL(C) c SC(Z)

This result provides quick and clear proofs that languages like Pascal, Modula-2,
etc. are not context-free languages.

Grant observed that in the Sokolowski’s proof it is not neccesary to consider
strings of the form U~XU~XU~. Strings ~1~1~2x2~3 are sufficient with the condition
that x1 and x2 satisfies some binary relation which is verified for arbitrary long

strings.
We need two concepts:

_ v’ is previous to v, v’ < v, iff v’ is obtained from v by omission of at least one letter.
_ For u,v E z*, m > 0, End(u, u, m) (respectively Beg(u,v,m)) is true iff v is obtained from
u by omitting at least one letter from the last (resp. first) m elements of u.

236 G. Ramos-Jimknez et al. 1 Theoretical Computer Science 202 (1998) 231-244

Grant’s condition. A language L E Z* satisfies GC if for a binary relation R over C*,
satisfying

(i) vm 3xi3x~C I XI I, I xz I > m * WI, xdl,
(ii) {UIXIWZU~ I WI, 4) E L,
then

3m VXIXZ CR(XI,XZ) A I XII, I x2 I > m -, 3~1~2(~1~1ww4~L

A((cq <X~Aa2=X2)V(a2<X2Aa1 =x1)

v (End (x1, ~4 A Beg(x2, a2, Ml

A language L E GC(C) if L satisfies the GC condition.

Grant’s lemma [S]. CFL(C) c GC(Z) c SC(C).

We now consider Parikh’s condition. This condition refers to the global structure of
the strings of the language L. We consider the number of times that each symbol
appears in a string of L. Let us focus on those numbers forming a vector. If L is infinite
then we obtain infinite vectors. Parikh’s condition claims that such a set of vectors has
a simple structure.

For an alphabet C with I symbols, C = {al, . . . , a,), we define #i(w), w E Z*, as the
number of times that ai occurs in w.

We also define II/ : Z* -+ N’, called Parikh’s application, as

$64 = (# 1(w), #z(w), . . . 9 #r(w)).

Let L be a language, L E C*, we define II/(L) = {I,?(W): WEL}.

Let the vectors be V,, V,, . . . , V, E N’. The subset A E N’ is linear if

A={l/,+X,l’i+ ... +X,T/,:XiEN,i=l,..., k}.

One set S is semilinear if it is a finite union of linear sets.

Parikh’s condition. A language L c Z* satisfies PKC if$(L) is semilinear. A language

L E PKC(C) if L satisjies PKC; i.e.,

PKC(Z) = (L 5 C* IL is Parikh) = {L c C* I t++(L) is semilinear}.

Trivially, C* and C+ belong to PKC(Z).

Parikh’s lemma [17]. CFL(C) c PKC(C).

Parikh’s lemma has a pumping character because for its proof, a pumping process is
necessary in the derivation trees; nevertheless, this condition is different from pumping
conditions as we will see in Section 3.

G. Ramos-Jimknez et al. /Theoretical Computer Science 202 (1998) 231-244 231

It is known [7, 131 that Parikh’s languages over C are the rational subsets of the free
commutative monoid generated by C; and so, Parikh’s results can be stated in the
following form [l, Theorem 2.81: “Any context-free set in the commutative monoid is
rational.”

We show now closure results of Parikh’s languages. Considering the definition and
properties of the rational sets we state the following results [7, 131.

Theorem 1. (a) The rational sets are closed under concatenation and union;

(b) The rational sets are closed under direct morphisms;
(c) The intersection of a rational set with a recognizable set is a rational set.

We show now the converse with respect to concatenation and union over disjoint
alphabets.

Theorem 2. Let L1 G Z: and L2 G Cz be two languages over disjoint alphabets, where
11 Cl 1) = r and 11 C2 II = s:

(a) if LILZ E PKC(C,uCJ then L1 E PKC(C1) and Lz E PKC(C&
(b) ifL1uL2~PKC(C1uC1) then L1 EPKC(CJ and L2~PKC(Cz).

Proof. Let $t,S: Nr+s + N’and &;,r+s: N’+” -+ N” be the projections with respect to
the first r components and the last s components, respectively. These projections are
morphisms and can be extended to sets of vectors. Thus, by Theorem l(b) we obtain:

(a) %~~(+V&)) = II/ is semilinear, hence L, E PKC(C&

%+ I,r+ML,L2)) = IcI(L2) is semilinear, hence L2 E PKC(Zz).

(‘4 %;ry(LIuLZ)) = w4J~(E is semilinear, hence L1 EPKC(C& 1

71 ,.+ 1.r +,($(L,uL,)) = I&L&I&) is semilinear, hence Lz E PKC(Cz). 0

Definition 1 (Hewett and Slutzki [lo]). Let C be an alphabet. Letf, g be two symbols,
f, g 4 C. Let p(Z*) be the class of languages over Z. We define four operations from
p(C*) to l@‘(C*) as follows: For each L E p(C*)

a(L) = L{fn g” 1 n 2 l}uC*{f” gm 1 n,m B 1, n # m}uC*,

r(L) = L{f” g” 1 n Z l}uC*(f” gm I n # m},

e(L) = L{f” g” 1 n 2 l}uC*,

s(L) = {f” zg”lzEL, n 2 l}uC*.

Notation. In the following pages we will represent x(L) as L”, for x = a, r, e, s.

Lemma 1. Jf LEPKC(C) then L{f”g” I n 2 l}, C*{f”gm I n # m; n,m 2 I} and
C*{f”g” l n # m} E PKC(C).

238 G. Ramos-Jim&e2 et al. /Theoretical Computer Science 202 (1998) 231-244

Proof. The sets {f”g” (n 2 l}, {f”g”) n # m; n, m B l} and {f”g” 1 n # m} are con-
text-free languages, hence they verify PKC. The PKC class is closed under concatena-
tion (Theorem 1). 0

Theorem 3. Z~LEPKC(C) then L”, L’ EPKC(ZU{J g}).

Proof. From Lemma 1 and Theorem 1. 0

The following result is stronger than previous ones because it provides a necessary
and sufficient condition relating L and L”.

Theorem 4. LePKC(C) if and only if Lee PKC(C u{f, g}).

Proof. The “only if” is from Theorem l(a) and Lemma 1.

(If) We suppose that L”ePKC(Cu{J; g}).

L” = LIuLz, where L1 = L{f”g” 1 n 2 l} and L2 = C*.

Let $:C*u{f, g} + Nrf2, where lIZI/ = r.
Ic/(L”) = X is semilinear (by hypothesis) and Ic/(L,) = I,@*) = Y,

which is obviously semilinear. Thus, by Theorem 5.8.2 [6],
X - Y is semilinear.

X - Y = t,b(L,), hence L1 EPKC(Cu{f,g}) and, by Theorem 2,
L E PKC(C). cl

Finally, we study the s-operation.

Lemma 2. $(L’) = I&L”).

Proof. Each word belonging to L” is, obviously, simply a permutation of one word
belonging to L”, and viceversa. 0

Theorem 5. L E PKC(Z) if and only if LS~ PKC(Zu{f, g}).

Proof. From Theorem 4 and Lemma 2. 0

3. Comparison of Parikh’s condition to pumping conditions

In this section we will compare Parikh’s condition to pumping conditions. The final
results are depicted in Fig. 3. In this figure, each rectangle represents the set of
languages that satisfy the corresponding condition. We show that none of the zone
Al, Bl, Cl, Dl, El, Fl, Gl and Hl are empty.

G. Ramos-Jimknez et al. / Theoretical Computer Science 202 (1998) 231-244 239

Cl

Bl

Al

El Fl Gl

Fig. 3. Parikh’s condition compared to pumping conditions.

Proposition 1. Ll E PKCn(BMC-CFL); i.e., to zone Al, where Ll is dejined as follows
[a]: Ll = {z E {a, b}* I(3q : z = (ab)4) *(q prime)}.

Proof. Ll E (BMC-CFL) [2].
We show now that Ll E PKC: we notice that, e.g., words of the form (ab)“$Ll if n is

not a prime number, but words of the form a”b”E Ll. So, $(L,) = N2 - {(O,O)} is
semilinear with only two linear sets. 0

Proposition 2. L~EPKC-PC; i.e., to zone Dl, where L2 is dejined as follows [lo]:

L2 = (aPbPc*dr (1 6 p < r} u{aPb4c”ds) 1 G q < p and p - q < max(r, s)}

u(aPb4crdS) 1 <Y < s and s - I d max(p,q))u{aPb4c”“d”)p,q,s > l}.

Proof. L2$PC [lo]. It is an easy exercise to verify that L~EPKC. q

Proposition 3. L3 E PKCn(OC-BMC); i.e., to zone Bl, where L3 is defined as follows
[lo]: L3 = L2’.

Proof. L3 c(OC-BMC) [lo]. L3 E PKC, from Proposition 2 and Theorem 3. 0

Proposition 4. L~EPKC~(PC-OC); i.e., to zone Cl, where L4 is dejined as follows
[lo]: L4 = L2”.

Proof. L4 E (PC-OC) [lo]. L4 E PKC, from Theorem 3. 0

240 G. Ramos-JimCnez et al. /Theoretical Computer Science 202 (1998) 231-244

Proposition 5. L5 E(PKCUPC); i.e., to zone Hl, where L5 = (a” 1 p prime}.

Proof. Regular, context-free and Parikh’s languages define the same class if we
consider alphabets with only one letter [9, 141.

L5 does not verify the pumping lemma for regular languages [14]. Then L5 is not
a regular language; therefore LS#PC and LS$PKC. q

Proposition 6. L6 E(PC-OC)-PKC; i.e., to zone Cl, where L6 is dejined as follows [S]:

L6 = L5’.

Proof. L6 E (PC-OC) [S]. L6$PKC, from Theorem 4 and Proposition 5. 0

Proposition 7. L~E(OC-BMC)-PKC; i.e., to zone Fl, where L8 is dejned as follows
[lo]: L8 = LT; L7 = {a”) k # n!, ‘dn 2 1).

Proof. L8 E (OC-BMC) [lo].
We show that L84PKC: L8 = L7(f”g” 1 n > l}u,Z*{f”gm 1 n # m}.

Let us suppose that $ (LB) is semilinear; i.e., rational.

$(L8) = {(x, n, m) I n # m} u{(x, n, m) I x # k!}.

Let us K be the set K = {(z, 1, 1)). K is a reconizable set (it corresponds to the
regular language a*fg). Then II/(L8)nK = {(z, 1,l) (z # k!} is rational (Theorem 1).

By projecting with respect to the first component, we obtain that S = {z) z # k!) is
rational. S is a subset of N, then S must be recognizable and S = {z (z = k!} too. But
this is absurd because the language {an!} is not regular [9]. 0

We study now the zone El. We need some previous results.

Definition 2. Let a > 1 and b 2 0 be two integers and let c,f and g tree letters. We

define the following language:

PRIMES(a, b) = (ficpgi 1 i > 1, p prime and p d ai + b}

u{f “ckgm (n # m and k 3 O}.

We show now that the language PRIMES(a, b) is in zone El; i.e., PRIMES(a, b)
verifies Bader-Moura’s condition, but it does not verify the Parikh’s condition. The
proof is structured in three lemmas. The first one shows that the language
PRZMES(a, b) E BMC; the second one is intermediate to show in the third lemma that
language does not verify Parikh’s condition.

G. Ramos-Jimkez et al. /Theoretical Computer Science 202 (1998) 231-244 241

Lemma 3. PRIMES@, b) E BMC.

Proof. Since the second “part” of PRIMES@, b) is a context-free language, we only
need to consider z =ficpgi where p is a prime, p < ai + b for some i 2 1 and z has
a marking such that d(z) > ne@)+ ’ where n = max {u + 2, b} + 1.

If there exist some distinguished non excluded positions amongf’s, then let u be the
leftmost distinguished non excluded position inf’, let w the symbol that follow u, x = e
and define u and y accordingly.

So, the three conditions of BMC are verified:
(i) d(vx) = d(u) = 1 and e(ux) = e(v) = 0

(ii) d(uwx) d 2 6 ne(uwx)+l, because n > 4 and
(iii) for every i 2 0, uv’wx’y is in L, because for i # 1 the number off’s is different of

the number of g’s, and the pumped word belongs to the second “part”.
If there exist some distinguished non excluded positions among g’s, then let x be the

rightmost distinguished non excluded position in gi, let w be the symbol before x, v = E
and define u and y accordingly.

Thus, the three conditions of BMC are verified (similar to the above reasoning).
Finally, if there are no distinguished non-excluded positions amongf’s or g’s, then

there must exist some non excluded position amongf’s (otherwise we would have
e(z) 3 i which implies that ne(‘)+’ > nit1 > n(i + 1) = ni + n > (a + 2)i + b = ai + b

+ 2i > p + 2i = 1 z 1 3 d(z), contradicting our assumption d(z) > n@)+ ‘). Thus, let u be
the leftmost non excluded position in fi. Let x be the leftmost distinguished non
excluded position in cp (since if all positions in cp are distinguished and excluded, and
these are the only ones distinguished, our assumption d(z) > n@)+’ is not verified; the
same contradiction is obtained if we consider the positions amongf’s and g’s, that can
be distinguished and excluded, or excluded and non distinguished). Finally, we define
U, w, y accordingly.

In this way, the three conditions of BMC are verified:
(i) d(ox) = 1 (u is non distinguished, and x is distinguished) and e(ux) = 0 (u and

x are non excluded)
(ii) d(vwx) < e(uwx) + 1 < ne(“wx)+l and

(iii) for every i z 0, uu’wx”y is in L, because for i # 1 the number off’s is different of
the number of g’s, and the pumped word belongs to the second “part”. 0

Definition 3. Let a, b E N, a 2 1, b 2 0. We define

P(u,b)={(i,p,i)EN3/i>1,pisprime,p<ui+b}.

Lemma 4. Vu >, 1, Vb > 0, P(u, b) is not semilinear.

Proof. Let us suppose that P(a, b) is semilinear. Then, the projection with respect
to the second component must be semilinear (Theorem 1). But this projection is

242 G. Ramos-Jimbnez et al. /Theoretical Computer Science 202 (1998) 231-244

{pi N (p prime), that is not semilinear (Proposition 5). Therefore, P&b) is not
semilinear. 0

Lemma 5. PRIMES@, b) $ PKC.

Proof. Let us suppose that PRZMES(a, b) E PKC; then, X = $(PRIMES(a,b)) is
semilinear. Let Y = $({f”ckgm (n # m, k > 01). We know that Y is semilinear because
the language is context-free. By Theorem 5.8.2 [6], X-Y is semilinear. Since the
elements of the second part of PRIMES@, b) do not overlap with those of the first
part, we obtain that X - Y = P(a, b) is semilinear, which is a contradiction in respect
to the previous lemma. 0

Theorem 6. PRIMES(a, b) E BMC-PKC; i.e., to zone El.

Theorem 7. Zones Al, Bl, Cl, Dl, El, Fl, Gl and Hl, in Fig. 3 are non-empty.

4. Comparison of Parikh’s condition to interchange condition, and
Sokolowski’s and Grant’s condition

In a similar way to Section 3 we do other comparisons. The final results are
depicted in Fig. 4.

This section is very brief. The proofs of the following two theorems only includes the
relation of languages that are in each zone. The languages used are in the literature.
The complete proofs use the closure results of Section 2 and, in order to prove that
a language verifies PKC, it is an easy exercise to obtain the suitable semilinear set.

The notation Li;Lj (disjoint union) represents: Li E CT, Lj s Cl, ClnCz = 0.

82 D2 F3

83 E3

c2

Fig. 4. Parikh’s condition compared to Interchange, and Sokolowski’s and Grant’s condition.

G. Ramos-Jimbez et al. / Theoretical Computer Science 202 (1998) 231-244 243

Theorem 8. Zones A2, B2, C2 and 02 in Fig. 4 are not empty.

Proof (sketch).

L9 = {zE{a,b}*)(3q: 2 = abq) * (q prime)} [2]; L9 E PKC({a, b}).

LlO = {~~~~#uu~y~~,~,~,y~{a,b,c}*} [S]; LlO~cFL({a,b,c}).

Lll = L9GLlO is in zone A2.

L12 = {uxxy/x # ~~x,y,u~{a,b,c}*} [S]; L12EPKC({a,b,c}).

L13 = L9GL12 is in zone B2.

L14 = L5GLlO is in zone C2.

L15 = L5bL12 is in zone 02. 0

Theorem 9. Zones A3, B3, C3, 03, E3 and F3 in Fig. 4 are not empty.

Proof (sketch).

L12 is in zone A3.

L16 = {a”b”c” 1 n 2 0} is in zone 83.

L17 = {xx~xE{~,~,~}*} is in zone C3.

L5 = {aPIp prime} is in zone 03.

L18 = L5GL16 is in zone E3.

L19 = L5GL17 is in zone F3. •!

Acknowledgements

The authors thanks the anonymous referee for his comments and suggestions which
improved the presentation as well as the correctness of this paper; specially in
Theorem 2, Proposition 7 and Lemma 4.

References

[l] J. Autebert, J. Berstel, L. Boasson, Context-free languages and pushdown automata, in: G. Rozenberg,

A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Berlin, 1997.

[2] C. Bader, A. Moura, A generalization of Ogden’s lemma, J. ACM 29 (1982) 404-407.

[3] Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase-structure grammars,
Zeitschrift fur Phonetik, Sprachwissenschaft, und Kommunikationsforschung, 14 (1981) 143-177.

244 G. Ramos-Jimt5ne.z et al. 1 Theoretical Computer Science 202 (1998) 231-244

[4] R. Boonyavatana, G. Slutzki, A generalized Ogden’s lemma for linear context-free languages, EATCS
Bull. 28 (1985) 20-28.

[S] R. Boonyavatana, G. Slutzki, The interchange or pump (di)lemmas for context-free languages,
Theoret. Comput. Sci. 58 (1988) 321-338.

[6] S. Ginsburg, The Mathematical Theory of Context Free Languages, McGraw-Hill, New York, 1988.
[7] J.S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer

Science. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 54, Longman Sci.
Tech., 1992.

[S] P.W. Grant, Extensions of Sokolowski’s theorem to prove languages are not context-free or not
regular, Internat. J. Comput. Math. 11 (1982) 187-198.

[9] M.A. Harrison, Introduction to Formal Languages Theory, Adisson-Wesley, Reading, MA, 1978.
[lo] R. Hewett, G. Slutzki, Comparison between some pumping conditions for context-free languages,

Math. Systems Theory 21 (1989) 223-233.
[ll] J.E. Hopcroft, J.D. Ullman, Introduction to automata theory, languages, and Computation,

Addison-Wesley, Reading MA, 1979.
[121 S. Horvath, A comparison of iteration conditions on formal languages, Proc. Coll. Algebra, Combina-

torics and Logic in Computer Science, 1983, pp. 453-483.
[13] W. Kuich, A. Salomaa, Semirings, Automata and Languages, Springer, Berlin, 1988.
[14] H.R. Lewis, C.H. Papadimitriou, Elements of the Theory of Computation, Prentice-Hall, Englewood

Cliffs, NJ, 1981.
[lS] W. Ogden, A helpful result for proving inherent ambiguity, Math. Systems Theory, 2(3) (1988)

191-194.
[16] W. Ogden, R.J. Ross, K. Winklmann, An “interchange lemma” for context-free languages, SIAM J.

Comput., 14(2) (1985) 41&415.
[17] R.J. Parikh, On context-free languages, J. ACM 13(4) (1988) 570-581.
[18] Sokolowski, S., A method for proving programming languages non-context-free, Inform. Process.

Lett. 7(3) (1978) 151-153.
[19] D.S. Wise, A strong pumping lemma for context-free languages, Theoret. Comput. Sci. 3 (1978)

359-389.

