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Abstract

The class of Trustworthy Autonomous Systems (TAS) includes cyber-
physical systems leveraging on self-x technologies that make them capable
to learn, adapt to changes, and reason under uncertainties in possibly crit-
ical applications and evolving environments. In the last decade, there has
been a growing interest in enabling artificial intelligence technologies, such
as advanced machine learning, new threats, such as adversarial attacks,
and certification challenges, due to the lack of sufficient explainability.
However, in order to be trustworthy, those systems also need to be de-
pendable, secure, and resilient according to well-established taxonomies,
methodologies, and tools. Therefore, several aspects need to be addressed
for TAS, ranging from proper taxonomic classification to the identifica-
tion of research opportunities and challenges. Given such a context, in
this paper address relevant taxonomies and research perspectives in the
field of TAS. We start from basic definitions and move towards future per-
spectives, regulations, and emerging technologies supporting development
and operation of TAS.

Keywords: Trustworthy Autonomous Systems, Dependability, Cyber-
Resilience, Cybersecurity, Artificial Intelligence, Intelligent Systems

1 Introduction

The rapid technological evolution in Artificial Intelligence (AI) and the con-
vergence of cyber and physical elements into Cyber-Physical Systems (CPS)
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[1] have enabled a deeper integration of AI within complex systems that can
take decisions and act without human intervention, possibly supported by other
promising technologies such as Digital Twins (DT) [2]. This results in Au-
tonomous Systems (AS), such as collaborative robots, which must be trustwor-
thy when deployed in critical applications, such as transportation and produc-
tion systems. For that reason, the area of Trustworthy Autonomous Systems
(TAS) has emerged in recent years as a new paradigm and a key research domain
involving multiple interdisciplinary communities.

TAS can be effectively presented from the perspective of CPS, which have
evolved from the traditional class of embedded systems, where physical and
cyber components are strictly interacting, analyzed and controlled by using
holistic models and AI, possibly adopting. From such perspective, TAS are
autonomous CPS operating in critical environments where failures can have
serious consequences including loss of human lives. In this respect, TAS require
a convergence of Infrastructure, Computing and Intelligence and the related key
enabling technologies are represented by: :

• Infrastructure: the Internet of Things (IoT) or Internet of Everything
(IoE) [3], which attracted many researchers working in the areas of Wire-
less Sensor Networks (WSN), connected and distributed systems;

• Computing: Edge-Fog-Cloud, the latter allowing engineers to leverage
on computation resources well beyond the ones available in local devices,
with a paradigm shift towards unprecedented scenarios of digital twinning,
including predictive maintenance and proactive safety.

• Intelligence: Data Science and Machine Learning (ML), including Big
Data analytics, which attracted and extended the interest of researchers
in AI, as well as in many related areas, towards data-driven approaches;

The main inter-relations among the concepts of AI/ML, (autonomous) CPS,
and (cognitive) DT are summarized in the class diagram of Fig. 1.

A set of new threats, vulnerabilities, and risks emerged with those new
paradigms and technologies, due to systems growth into open and large System-
of-Systems (SoS) [4], showing ubiquity, heterogeneity and pervasiveness of cyber-
components, which became increasingly intelligent, adaptive, and evolving, also
due to Software Over The Air (SOTA) dynamic updates, and hence more com-
plex and less predictable. That has posed many challenges, especially for the
certification of safety-critical systems featuring difficult to explain behaviors,
such as those originated by Artificial Neural Networks (ANN) and Deep Learn-
ing (DL) [5]. One additional implication is on the evolution of standards and
regulations to cope with intelligent, adaptive, and evolving systems in critical
applications.

Although AI is mostly seen as a threat to safety, due to its possible unpre-
dictability and new adversarial attacks it is vulnerable to, it is also true that
AI enables self-protecting systems featuring on-line data-driven risk assessment
for autonomous threat detection and counteraction; we will discuss some of
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Figure 1: Class diagram for CPS, IoT, DT, and related concepts

those opportunities in the second part of this paper. Thus, this paper aims
at identifying and systematically presenting the taxonomies from the domains
that mainly contribute to TAS domain, and at detailing the fundamental and
promising research areas that have emerged to enable effective design and oper-
ation of TAS in real-world applications. In particular, we consider dependable
and resilient computing, cybersecurity and cyber-resilience, trustworthy AI and
safe autonomy, as the primary concepts – or “building blocks” – covering the
main aspects of interest when dealing with emerging intelligent and adaptive
systems operating in critical applications and environments, as represented by
TAS.

For the sake of clarity, the main contributions of the paper are as fol-
lows. In order to highlight the connections of concepts related to dependable
and resilient computing, as well as to cybersecurity and cyber-resilience, with
TAS properties and technologies, with a focus on classification of changes, evo-
lution, and assessability, we provide a novel structured representation of those
taxonomies by using class diagrams (first contribution). We address and dis-
cuss the most reputable taxonomies developed by diverse scientific communities,
in connection with the emerging concepts of trustworthy artificial intelligence.
We show how those communities addressed similar yet separate concerns, with
many substantial but few formal overlaps in reference concepts and taxonomies;
therefore, we try to bridge those differences and provide connections between
the most relevant concepts and terminologies (second contribution). Finally, we
investigate main challenges and promising research directions associated with
TAS, based on recent developments within working groups addressing guidelines
and regulations for trustworthy autonomy (third contribution).

The rest of this paper is structured as follows: Section 2 provides related
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works on taxonomies and perspectives that are relevant for TAS, ranging from
resilient computing to trustworthy autonomy; Section 3 provides a brief de-
scription, structured representation and interconnection of fundamental and
emerging concepts in those relevant areas; Section 4 focuses on challenges and
promising research directions within TAS as complex, autonomous and adaptive
systems; finally, Section 5 draws conclusions.

2 Related Works

In this section we mention some works contributing to the definition of tax-
onomies and research trends within TAS, and more specifically about resilient
computing, cybersecurity and trustworthy autonomy. To the best of our knowl-
edge, no work exists providing and interconnecting the relevant concepts and
perspectives by using semantic diagrams or structured representations such as
class diagrams as we do in this paper. Since we mention related works in the
specific subsections of this paper, in this section we only discuss a selection of
sources featuring a higher level of generality.

In addition to the seminal papers representing cornerstones in computer de-
pendability and resilience taxonomies (i.e., references [6, 7]), there have been
several recent attempts to provide definitions, surveys and reviews about secu-
rity, resilience and trust, mainly focusing on CPS and IoT (see, e.g., references
[8, 9, 10]). A survey paper that is oriented to analyze the different definitions
and measures of system resilience is represented by reference [11].

Some related works such as reference [12] study the issue of resilience from
algebraic-theoretical perspectives, also relating to concepts such as anti-fragility
[13]. In [14], the authors start from the need highlighted in reference [15], and
propose a comprehensive metamodel, expressed in GraphQL, which captures the
different aspects (from technical to organizational) of CPS resilience. The main
goal of this work is to adapt an assessed approach as Systems-Theoretic Accident
Model and Processes (STAMP) [16], making connections between classical safety
and security concepts.

Within SoS and Critical Infrastructure (CI), resilience is seen as a crucial
aspect to deal with emergent threats related to the interrelationships and inter-
dependencies among the different systems and infrastructures. Two references
are reported as examples of definition of domain models and metamodels. In
reference [4], a comprehensive cyber-physical SoS metamodel and a related Sys-
tem Modelling Language (SysML) profile have been proposed in the framework
of the European Union (EU) FP7 project Architecture for Multi-criticality Ag-
ile Dependable Evolutionary Open System-of-Systems (AMADEOS). Different
aspects that are close to the scope of this paper are considered: evolution in
time, behavior emergence, and system interdependencies.

In [17], Security Analysis and Modelling (SecAM) is introduced as a Unified
Modelling Language (UML) profile for the modelling and quantitative analysis
of CI. Such a profile represents a convergence between dependability concepts,
derived from the Modeling and Analysis of Real-time and Embedded systems -
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Figure 2: The approach for selecting relevant taxonomies for TAS

Dependability Analysis and Modelling (MARTE-DAM) UML profile [18], and
cybersecurity.

The scientific community manifested the need for novel holistic approaches
to guarantee the resilience and trustworthiness of increasingly smart, complex
and autonomous CPS [15, 19]; however, many basic obstacles need to be tack-
led, including a common understanding of reference taxonomies and promising
directions, which is a gap we aim to fill with this paper.

3 Relevant taxonomies for TAS

In order to mature and evolve, a technical domain needs an aggregation of an
appropriate scientific community based on a shared and unambiguous language
allowing the exchange of knowledge and experiences between its members. The
first step in structuring such as language is the definition of a taxonomy, i.e.,
a scientific classification of objects, subjects, and concepts into possibly hierar-
chical groups, types and categories, within a certain area of interest. Therefore,
in this section, we identify and discuss relevant taxonomies related to the TAS
domain. We identified four core concepts driving TAS taxonomy: Trustworthi-
ness, Security, Resilience and Dependability. Such core concepts have guided the
selection of taxonomic sub-areas in connection with TAS enabling technologies
as depicted in Fig. 2.

These taxonomies have been developed by different research communities,
with limited overlaps with each other; particularly, they are: (i) dependable and
resilient computing; (ii) cybersecurity and cyber-resilience; and (iii) trustworthy
AI and safe autonomy.

3.1 Dependable and Resilient Computing

Since its publication in 2004, the taxonomy of dependable and secure comput-
ing [6], with its thousands of citations, has defined a de facto standard termi-
nology in the research community of safety-critical, real-time, embedded and
fault-tolerant computer systems. Dependability was presented as a complex
integrative concept, shortly defined as “the delivery of service that can justifi-
ably be trusted” [6]. In the same year, another seminal paper was published
about model-based evaluation of dependable and secure computer systems [20].
Four years after, Jean-Claude Laprie, at the time director of research at LAAS-
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CNRS (France), published an extension of the dependability taxonomy to ac-
count for changes, which the author summarized with the word resilience [7],
and is nowadays essential to address dependability in intelligent, adaptive and
evolving computer systems and environments.

This is the reference taxonomy that is most commonly used by the research
community working on safety-critical, real-time, embedded, and fault-tolerant
computer systems. A comprehensive description of this taxonomy is reported
on references [6], [21], and [7]. For the sake of brevity, we just recall here that
dependability is an integrated concept putting together attributes (i.e., main-
tainability, reliability, availability, safety, confidentiality, and integrity), threats
(i.e., faults, errors, and failures), and means (prevention, tolerance, removal,
and forecasting). It is worth mentioning that according to this taxonomy, faults
are the causes of errors, which are alterations of system state that can generate
failures, i.e., effects on system interface. Such a propagation can be subject
to different latency. Faults can be classified according to several parameters,
including origin (internal vs external), intention (random vs deliberate), etc.
Computer security can be seen as a sub-area within computer dependability
where the attributes of interest are availability, integrity and confidentiality,
while classes of failures are mainly human-made and deliberately malicious.

Resilience is defined in work [7] as the persistence of dependability when
facing functional, environmental, or technological changes. In Fig. 3, we have
sketched a class diagram providing a compact yet meaningful representation of
resilience in relation to dependability, which is expanded into its three main pil-
lars through a composition relationship; changes, which are classified according
to their nature, prospect and timing; and technologies, specialized in evolv-
ability, assessability, usability, and diversity, which are put in formal relation
with corresponding dependability means. We have also related dependability
attributes that were dependent from each other. Such a formal representation,
which is missing from the original taxonomy papers, might be further expanded
and also detailed with additional interrelationships. However, we prefer to keep
the present level of detail that provides good readability and allows defining
parallelisms and interconnections with concepts derived from other taxonomies
described in the following sections.

While all concepts of dependable and resilient computing are essential to
build TAS, some of them are particularly tailored to cope with adaptation to
possibly unforeseen environmental changes. We will see how resilience technolo-
gies also play an essential role within TAS due to the support for: Evolution –
i.e., long-term adaptation; assessability – including explainability; and usability
– including interpretability, which is especially important when humans are in
the loop to supervise TAS operation such as in semi-autonomous applications
or in fall-back operating modes. We will come back to those connections to TAS
when addressing specific taxonomies for trustworthy AI and safe autonomy.
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Figure 4: Class diagram for cybersecurity

3.2 Cybersecurity and Cyber-Resilience

The concepts of cybersecurity and cyber-resilience enable the creation of trust-
worthy hyper-connected smart and autonomous systems [22]. The taxonomy
outlined in Fig. 4 highlights three cybersecurity pillars that any organization
designing, developing, or operating TAS should consider: (i) Process-related
aspects such as regulations, procedures, etc., to manage threats [23] [24], also
involving governance frameworks to guide the regulatory and ethical principles
[25], best practices, certification, audit and accountability, security engineering,
and trust and privacy principles [26, 27]); (ii) security technologies (ranging
from offensive measures to defensive ones, whether proactive, preventive and
reactive) with application in hardware - HW, software - SW, and network); and
(iii) people (training and awareness, professional skills and qualifications, etc.).

Those three pillars are essential in new operational ecosystems to dynam-
ically cope with security attacks caused by HW/SW failures possibly coming
from the supply chain [28]. In the context of TAS, multiple attacks at SW,
HW and network level may arise as detailed in [22], but also as consequences
of human-machine interaction — corresponding to point (iii) mentioned above.
Any human-made fault generates errors that can lead to security breaches in
TAS, thus creating new cyber and physical risks that may impact continuity of
operation [29]. Under these circumstances, cybersecurity is a priority condition
for deploying TAS in critical operating environments. Because of the complex-
ity of the TAS domain, it is also necessary to consider an extended taxonomy
of cybersecurity that includes the holistic concept of “cyber-resilience”. In fact,
while cybersecurity focuses on attack avoidance and immediate response ac-
tions against known risks and vulnerabilities, cyber-resilience extends the focus
on strategies and policies to sustain a continuous adaptation to deliver accept-
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able operational level against unwanted changes and unexpected environmental
conditions.

Due to their complexity and heterogeneity, TAS present an increased sur-
face exposed to cyber-threats, suffer from the under-specified nature of their
operation [30], and are prone to the risks of discovered zero-day (i.e., previously
unknown and immediately exploitable) vulnerabilities, classified as “unknown
unknowns” [31].

Several definitions of cyber-resilience exist. According to reference [32],
cyber-resilience refers to the system “ability to continuously deliver the intended
outcome despite adverse cyber-events”. Such a definition is similar to the one
provided by Laprie [7], although the focus is more general, on any type of
outcome and entities, especially complex and hierarchically structured organi-
zations, as well as SoS. In reference [33], cyber-resilience is considered in the
context of complex systems including cognitive and social domains.

Attempts towards a standardized definition and related taxonomy have come
out only recently from NIST [34], hence sometimes terms such as robustness,
business continuity and antifragility, used in different domains, have been con-
sidered as synonyms although actually representing different meanings. For
example, in the Institute of Electrical and Electronics Engineers (IEEE) Stan-
dard 610.12.1990, “robustness is defined as the degree to which a system operates
correctly in the presence of exceptional inputs or stressful environmental condi-
tions”. Likewise, business continuity (International Organization for Standard-
ization (ISO) 22301:2019) is process-centric, and it is mostly related to a set of
rules and procedures driven by the results of risk assessment to properly react
in case pre-identified critical scenarios [35, 36].

Finally, in Taleb’s work [13], the concept of antifragility presents strong
similarities with the one of resilience. Antifragility is associated with bi-modal
risk strategy called “The Barbell”, which manifests itself as a good balance
between: (i) Strong and weak interactions in network topology; (ii) adaptability
and robustness (criticality); and (iii) ascendancy and overhead. Moreover, the
work presented in reference [37] mentions that systems should be designed to
be antifragile, in the sense that the system has to learn from its experience,
adapt to unforeseen events, and grow stronger in the face of adversity. This is
especially relevant for TAS due to their ability to learn an adapt through AI
and ML.

Regardless of those different definitions, a convergence in a taxonomy for
TAS can be foreseen regarding the aspects of bounce-forward (or Building Back
Better, BBB), learning for “evolvability” and the emergence of a resilient be-
havior as a result of a continuous adjustment to seek a dynamic equilibrium in
the system [38]. In TAS, such a continuous adjustment is expected to be per-
formed by leveraging on AI and ML, which are therefore enablers for advanced
cyber-resilience.
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3.3 Trustworthy AI and Safe Autonomy

In this section, we address the taxonomy of “Trustworthy AI”, also named with
slightly different terms such as safe/trusted autonomy, which has been associ-
ated a different and specific meaning compared to the trustworthiness mentioned
in [6]. Such a taxonomy has been recently developed by a community of AI
experts dealing with threats and challenges of autonomous robots and vehicles,
including ethical dilemmas and legal issues such as accountability in case of
accidents. Most of the resilience-related issues addressed by those experts have
been summarized with the term “robustness” [39], which seems to be a syn-
thesis of attributes such as reliability, safety and security, plus fault-tolerance,
although no formal or structured definition exists of robustness in the context of
trustworthy AI, especially in connection with learning, adaptation and evolution
capabilities. Although robustness and resilience may sound similar, the former
is more focused on managing input data perturbation, and does not necessarily
include all the resilience aspects we have addressed in the previous sections.
Another common term in the field of trustworthy AI is “explainability”, which
refers to the possibility of explaining the inner behavior of intelligent systems,
although ML might behave as a “black-box” compared to traditional control
algorithms and engineering models. Such an issue with unpredictability of ma-
chine learning systems is sometimes also referred to as “opacity”. Explainability
is not an attribute or property defined within the other taxonomies introduced
in the previous sections, however it can be associated with “assessability” [7]
that is in turn connected with the dependability means of “fault-removal” and
“fault-forecasting” (see Fig. 3): having an AI which can be explained allows
to assess models, predict failures at run-time before they can generate severe
consequences, and also allow forensic investigations in case of accidents.

To be trusted, AI should also be “ethical” [40], which is an attribute address-
ing aspects such as non-discrimination and proportionality, which is difficult to
associate to any of the cyber-resilience concepts introduced in the previous sec-
tions. A connection can be made with the “confidentiality” attribute of AI if the
focus is on non collecting and disclosing any private information and sensitive
user data if not strictly required. However, all the aspects related to possible
ethical bias and dilemmas when autonomous systems must take important deci-
sions are not addressed in traditional cyber-resilience taxonomies that were not
focused on managing high-level intelligent behaviors and full autonomy.

In Fig. 5, we summarize the three main characteristics of trustworthy AI
that are essential within TAS. We connect robustness to reliability, safety, and
security, the latter including both cyber- and physical security; usability (which
is an attribute also introduced in the computer resilience taxonomy), needed to
consider human-factors, social implications, and ergonomics, as indicated by rel-
evant expert groups [39]; accuracy, which is a fundamental trustworthiness char-
acteristic of intelligent classifiers when taking decisions supporting or replacing
humans; and interpretability, which is essential for the humans to understand,
trust, and validate automatic decisions. We connect legality to accountabil-
ity, explainability (which might be essential to obtain safety certification, as
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discussed above), and privacy, which is intended here as confidentiality from
a legal perspective. We connect ethical aspects to fairness (integrating equity,
equality, non-discrimination, absence of bias, inclusiveness, etc.), respect (for
diversity, freedom, etc.), and transparency in providing evidence of the afore-
mentioned ethical attributes such as non-discrimination. We made an effort to
limit redundancies in such classification, considering that several characteris-
tics have similar meanings. However, note that there are several meaningful
overlaps and interconnections between those concepts: For instance, privacy —
in addition to be a legal requirement — can be classified in relation with its
ethical dimension and the more general attribute of respect, i.e., respect for pri-
vacy; interpretability, explainability, and transparency, as explained above, are
clearly interrelated, although they represent different views on the same issue,
respectively, from robustness, legal, and ethical perspectives.

4 TAS Challenges and Research Directions

In this section, we identify relevant challenges in the TAS domain, as well as the
related opportunities and promising research directions. Those research direc-
tions have been mainly derived from the IEEE Approved Draft about “Standard
for Transparency of Autonomous Systems” [41].

As discussed in the previous section, the lack of widely accepted guidelines
and regulations has been a big hurdle to the development of TAS. Since tradi-
tional standards for critical systems cannot be easily applied to intelligent sys-
tems due to their limitations in transparency and predictability, development of
new standards – which is a challenge itself – is essential to define key challenges
and research directions depending on real-world objectives and non-functional
requirements. In such a context, it is worth mentioning the IEEE Approved
Draft “Standard for Transparency of Autonomous Systems” [41], which stresses
the concept of transparency as the prime driver in achieving trust from final
user, as well as from system assessor during validation activities. The standard
defines different levels of transparency depending on involved stakeholders and
also proposes a System Transparency Assessment (STA) and a System Trans-
parency Specification (STS).

The theme of transparency is also central in DIN SPEC 92001-2:2020-12
[42], although applied to the development process rather than on intelligent
applications. Robustness is considered as a primary mean to achieve trustwor-
thiness and six steps are defined, including the one identified with “define AI
malfunction per automated task”. Likewise, a recent deliverable of the SCSC
Safety of Autonomous Systems Working Group (SASWG) is the third release of
the “Safety Assurance Objectives for Autonomous Systems” [43]. This compre-
hensive work addresses the problem of confidence in Trustworthy Autonomous
Systems (TAS) within three different frameworks of growing levels of abstraction
and complexity:

• Computation level, addressing implementation at the software and hard-
ware levels (associated to fault prevention);
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• Autonomy architecture level, addressing how computations can be inte-
grated into a system, or platform including fault-tolerance;

• Platform level, addressing what the TAS should (and should not) do, and
related effects on the operational environment (requirements engineering).

Such a document represents an effective synthesis of the traditional safety-
critical principles and the challenges originated by AI technologies. For all three
mentioned levels, the SASWG defines different objectives, including the relevant
ones reported in Table 1, where the first column is related to future research
directions mentioned in this paper.

4.1 Mitigating Threats to TAS

Challenges: Mitigating emerging threats is currently one of the most crucial
challenges within TAS. All countries, including EU member states, showed
an increasing interest in the possible implications and misuse of AI in critical
applications, in terms of safety, data privacy, and homeland security. In 2021,
a task force of the Centre for European Policy Studies (CEPS) published a
report addressing the most important cyber-threats to AI systems [44]. Other
valuable documents have been published by the European Union Agency for
Cybersecurity (ENISA) in 2021 [45], and by the European Telecommunications
Standards Institute (ETSI) [46] in 2020.

The greater vulnerability to cyber-attacks is due to the larger attack surface
of ML systems, which can suffer from both traditional HW/SW threats and
new threats related to the training processes, the interaction with the external
environments (i.e., sensing and actuation), and system adaptation and evolution
at run time. Emerging AI threats, which may be launched in different scales
in TAS depending on the adversary’s ability to gain access to data and models
(black, gray and white box) [47], include but are not limited to:

• Input attacks/evasion, where input to the ML systems are intercepted and
changed — in a perceivable or unperceivable manner — into those data
patterns in order to generate a failure;

• Poisoning attacks, where training datasets, learning algorithms, or models
are “poisoned” — i.e., corrupted — to compromise learning;

• Backdoor attacks, where attackers insert some sort of “smart backdoor”
(also employing special data patterns) to be exploited at run-time;

• Reverse engineering, aimed at extracting input-output pairs from ML
models.

A comprehensive survey of those attacks can be found in reference [48], while
an ENISA technical report frames the attacks described above into a framework
addressing AI threats. Such framework embraces different phases of system life-
cycle and includes several non-technical aspects as legal threats against ML
systems.
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Table 1: SASWG objectives.
TAS Fu-
ture re-
search
direction

SASWG objective

Threat Miti-
gation

COM1-4 Adverse effects arising from
distribution shift are protected against
COM3-2 Typical errors are identified
and protected against
ARC1-4 Adversarial attempts to dis-
rupt the computation are tolerated

Explainability
of au-
tonomous
decisions

COM3-3 The algorithm’s behaviour is
explainable
ARC2-1 Relevant information is pre-
sented to interacting parties
PLT3-2 Suitable interfaces are provided
for people that may interact with the
platform

Resilience
assessment

COM2-2 Non-functional requirements
imposed on the algorithm are defined
and satisfied.
COM2-3 Algorithm performance is
measured objectively
COM4-1 The software is developed
and maintained using appropriate stan-
dards
PLT1-6 Operational monitoring is suf-
ficient to identify and support the miti-
gation of new hazards, including emerg-
ing cybersecurity threats.

Intelligent
cybersecu-
rity

ARC1-4 Adversarial attempts to dis-
rupt the computation are tolerated
PLT1-4 The specified behaviour is safe
in the presence of faults and failures, as
well as foreseeable misuse and abuse.

Digital
Twins

COM2-6 The test environment is ap-
propriate
ARC3-1 Inappropriate or unauthorised
adaptations do not occur
PLT1-5 The behaviour of the platform
is verified.

Self-Healing ARC1-1 Failures of sub-systems that
provide computation inputs are toler-
ated
ARC1-2 Operational inputs inconsis-
tent with training inputs are tolerated
ARC1-3 Faults and failures internal to
the computation are tolerated
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Research perspectives: As shown above, there are some efforts to ex-
ploit AI threats, but not so much to mitigate them. In reference [49], the
authors identify some security challenges for autonomous systems and robots,
where security-by-design, access control, and automation for prevention (as dis-
cussed below) are current priority research lines. Also, the survey on AI threats
and countermeasures detailed in [47] points out the relevance of protection in
software- and hardware-based data collection, malware control, and the rele-
vance of understanding the behavior of each attack to derive defensive measures.
Thus, the survey identifies for each AI attack possible mitigation strategies (e.g.,
data poisoning could be mitigated by data sanitization), and lists a set of defense
methods for ML models and data.

4.2 Explainability of autonomous decision in TAS

Challenges: The explainability of autonomous decisions taken by the em-
bedded AI is a fundamental feature that AS have to exhibit for the sake of
trustworthiness. However, eXplainable AI (XAI) is one of the paramount open
challenges within TAS. XAI aims to mitigate issues related to predictability
of intelligent systems, and to manage the problem of avoiding “super-human”
agents, as discussed in reference [50]. Recent advancements in this field are
summarized by state-of-art papers such as work [51], which investigates the
issue from a general perspective, and work [52], which focuses on medical XAI.
From those references, we highlight the main challenges listed below.

• Clear definition of explainability: The literature reports different XAI
approaches, and there are only a few attempts to provide a unifying vision
[53]. The problem is mainly related to the definition of a set of metrics
and performance indices related to explainability.

• Interpretability confidence: To improve trustworthiness and foster the
adoption of XAI approaches, solutions that can provide a possibly quanti-
tative estimation of the likelihood and the uncertainty of such explanation
should be pursued. Papers addressing such problem are listed as references
[54] and [55], where Bayesian Networks are used as probabilistic ML mod-
els.

• Trade-offs between interpretability and performance: In reference [51], a
general law of balance between is proposed, showing that ML models that
perform better (e.g., DL) are less explainable.

• Confidentiality: As AI systems are developed by companies with large
financial investments, there should be an equilibrium between how much
such algorithms should be transparent to a final user and the protection
of the Intellectual Property, since adversarial networks can also infer in-
formation by reverse engineering (see Subsection 4.1).

• Standardisation: There is a necessity to define standards and guidelines to
certify explainable systems. One attempt in this direction is constituted by
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the XAI standard under development by the Computational Intelligence
Society Standards Committee (CIS/SC) Working Group of the IEEE [56].

• Legal and ethical aspects: As a fundamental objective of XAI is to in-
crease the level of trust in autonomous systems, one paramount goal is
to understand the boundaries and constraints under which explanation of
intelligent machines could be used in a legal lawsuit. The discussion of AI
ethics is also open and very much debated [57].

Research perspectives: The research community working on XAI has defined
some techniques and practical frameworks to develop interpretable models and
explanations of ML decisions that can be comprehensible to humans. Such
solutions are framed into the two main approaches of XAI: model-agnostic,
which do not require knowledge about the internal structure of the ML algorithm
(i.e., black box), and model-specific, which require knowledge about how the
algorithms are structured (i.e., white/grey box). Most widespread tools are
both model-agnostic and model-specific, such as LIME1, SHAP2, and ELI53.

4.3 Resilience Assessment of TAS

Challenges: In AS, self-awareness [58] allows systems to dynamically adapt to
changing situations in order to survive to external stressors. To that aim, the
holistic estimation and quantification of resilience in TAS through data-driven
appropriate metrics is necessary and crucial to enable specific warnings and re-
sponse actions. Dependability attributes such as reliability and safety can be
used to provide quantitative indicators of certain system properties; however,
they focus on specific parameters and are unable to capture the appropriate level
of complexity of the system needed for an effective adaptation to changing and
unwanted conditions. In fact, basic dependability attributes do not take into
account all resilience and performability-related aspects, such as response times,
time to reach the expected dynamic equilibrium after a disruption, or opera-
tional capacity after reconfiguration. Unfortunately, no single widely accepted
metric exists for a consistent, quantitative measurement of TAS resilience, but
several have been proposed in the scientific literature [59]. For example, TAS
data-driven resilience measurement can be:

• Direct, based on time-dependent performance assessment of critical func-
tionalities [60], where the functionality of a system is defined as a non-
stationary stochastic process and each ensemble is a piece-wise continuous
function [61] [62]. This approach requires online computation, sufficient
data availability and completeness, as well as a very detailed system spec-
ification and modeling knowledge. Direct resilience assessment metrics in-
clude measures of: time, e.g., when performance degrades below a thresh-
old, and when it is restored above the threshold; performance, e.g., the

1https://homes.cs.washington.edu/ marcotcr/blog/lime/
2https://github.com/slundberg/shap
3https://eli5.readthedocs.io/
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area under the performance curve from the time when performance degra-
dation starts and the time when recovery is complete; resources, available
and consumed for adaptation and recovery; and impact, e.g., number of
users affected [63].

• Indirect, by analyzing only the potential for resilience represented by sys-
tem capabilities [64]. For instance, in reference [65] the Functional Res-
onance Analysis Method has been adopted to estimate the System Re-
silience Index (SRI), a proxy indicator to assess system resilience before a
critical event happens. It is computed by analyzing the four resilience ca-
pabilities (anticipate, respond, monitor, and learn) available in the system
at a certain instant of time by using a data-driven approach.

Unfortunately, each of those approaches presents limitations and provide a par-
tial understanding of the system with the risk of not taking well-informed deci-
sions.

Research perspectives: One of the most promising research line able to
overcome the limitations of the current approaches is represented by the attempt
of merging them into a single holistic view where resilience is considered as a
property that emerges from an interaction dynamics between adaptive capacity
and coping ability of a system as elaborated in references [38] and [66] It is
necessary to reconcile concepts and terminologies among the different domains
involved in TAS to define an cross-domain and wider accepted ontology able to
drive the development of metrics for resilience.

Moreover, all those measures should be put in relation with a service level
acceptance criteria. Namely, a set of constraints and relationships enabling
identification of the subset of system state space consisting of all those states
where the service delivered can be considered correct and acceptable by the
users [67]. Acceptability can be regulated by agencies and reference standards
[68], or by market/customer demand through Service Level Agreements (SLA),
but when operations are supported by multiple components interacting each
other in a multi-stakeholder scenario, the definition of service level acceptance
becomes blurred and subjective; that prevents the adoption of the autonomous
evidence-driven decision making mechanisms required for TAS.

In summary, in TAS domain we identify the need for defining:

• Unified holistic models of cyber-resilience, accommodating different at-
tributes and metrics, combining direct and indirect resilience assessment
methods.

• Novel and standardised sets of cost-effective quali-quantitative metrics to
allow a cyber-resilience self-assessment, possibly merging data analytics
and expert judgment combining together data-driven and model-driven
approaches.

• Relations between service level acceptance and service disruption impact,
which is defined as a set of objective impact metrics (e.g., the extent of
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the network impacted in terms of users) that can be used as a computable
fast-forward proxy indicators for resilience.

• Transparent, consensus-driven and reliable methods to select the perti-
nent indicators from relevant standards and guidelines, and to extend the
selected set with specific resilience indicators proposed by experts.

4.4 Intelligent cybersecurity for TAS

Challenges: As discussed in Section III.B, cybersecurity is essential for TAS
in order to provide optimal and increased protection against potential threats
[22], such as stealthy attacks, malware or zero-day HW/SW attacks. AI tech-
nologies for cybersecurity can be used to dynamically improve detection and
response processes. According to the European Union Agency for cybersecurity
(ENISA) [69], there are three main dimensions of application: (i) AI to support
cybersecurity, (ii) attacks to AI technology, and (iii) cybersecurity for AI.

The former dimension is one of the most widespread research areas in the cur-
rent literature [70, 71], which focuses on improving cybersecurity by applying
advanced techniques capable of detecting, locating and neutralizing potential
threats. Reference [72] explicitly highlights the current trends to design ad-
vanced ML intrusion detection systems in the new industrial ecosystems; and
work [49] in TAS operational environments, detailing AI opportunities for de-
fense automation at multiple levels. Anomaly detection approaches based on
ML techniques are also emerging to identify unexpected fluctuations in nominal
behavior of complex systems due to unknown threats of random or malicious
origin [73]. There exist multiple studies in the literature exploring the role of
ML for intrusion and anomaly detection, contemplating various techniques such
as traditional ML models, DL, federated learning or collaborative detection
[72, 74, 75, 76, 77]. The use of these techniques should be limited to a phase
of training, learning and continuous readjustment to reduce the false positive
rate as proposed in [78], where the goal is to provide collaborative strategies for
retraining of ML models. Other works consider AI and ML to support Security
Information and Event Management (SIEM) operations [79] used at Security
Operation Centers (SOC); cyber-threat intelligence [80]; situational awareness
[71, 81]; self-testing [44]; and self-healing [70]. We will address the latter in
Section 4.6.

There are, however, certain limitations when adapting automated techniques
for cybersecurity. According to references [70] and [71], the use of AI leads to the
need to rely on highly powerful HW/SW resources to manage large volumes of
heterogeneous data, which in turn forces the usage of specific big data techniques
to clean noise and duplication, and manage and normalize multi-source data.
This data management and the inherent complexities of ML models may further
limit the system’s rapid response to anomalous events. In such a process, the
reaction can consist from simple notifications to automated responses based
on intelligent and collaborative methods supported by complex risk assessment
processes [82]. The work in reference [71] highlights the lack of transparency in
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decision-making processes, which makes it difficult to trust automated decisions
in critical contexts.

Regarding the second dimension, ENISA highlights the weakness of ML
models in the face of various adverse scenarios. In [69], a taxonomy of attacks
is presented, ranging from attacks related to data interference, data theft and
model disclosure, to attacks related to sample and model manipulation, illicit
access and analysis, privacy leakage during data operations, among other kinds
of attacks; as also stated in Section 4.1. For that reason, there is still a need for
addressing those accesses that can violate data privacy and integrity of samples
and models [71] to generate high rates of false positives and negatives.

Research perspectives: According to the challenges identified, the emerg-
ing research lines are focused on adjusting ML models to maximize detection
accuracy [71, 78]. In addition, research on robustness and protection (corre-
sponding to the third dimension given by ENISA) are still necessary to avoid
illegitimate accesses or exploits that can impact on automation and decision-
making, as well as on detection and prediction accuracy to get correct analysis
and responses against potential threats. Experts also need new models that
are resilient to noisy and incomplete data, flexible and adaptable to unforeseen
changes, and collaborative (e.g., agent-based intelligent systems) to avoid incon-
sistencies [44].

4.5 Digital Twins for TAS

Challenges: DT have emerged as a valuable paradigm for online predictive
analytics and prognostics in TAS, e.g., for optimizing safety and security in
self-driving vehicles and autonomous robots, as shown in references [83, 84, 85].
These approaches are mainly powered by AI and ML [86] to create predictive
models for run-time analysis and proactive response, in order to automatically
anticipate and respond to errors and failures, possibly including safety hazards.
In fact, the application of formal verification methods to TAS is a well-known
challenge due to complexity and unpredictability4, therefore detailed run-time
models based on simulation can help cope with online anomaly detection and
management, e.g., by implementing safety-cages/envelopes [87].

Experts have studied the effectiveness of DT technology to support cyber-
resilience in critical contexts there TAS can be required to operate. For example,
in [88] DT are used for incident prevention and response to maximize cyber-
resilience in the context of power grid. In [89], the authors propose DT in the
context of smart-cities to model spatial, logical and temporal interdependencies
in urban environments modelled as multi-layered CPS. Policies for obtaining
a resilient behavior from the system in face of changing conditions are calcu-
lated by simulating multiple scenarios based on DT. In [2], a conceptual DT
framework is presented that can be applied to monitor and improve resilience
of autonomous CPS, supported by edge-fog-cloud computing. In reference [90],

4Shonan Meeting on ”Formal Methods for Trustworthy AI-based Autonomous Systems”,
https://shonan.nii.ac.jp/seminars/178/
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the authors present the benefits of simulation to manage crisis situations by
analyzing how technology can impact the different resilience phases, such as
anticipation, monitoring, response and learning. The works in references [91]
and [92] focus on DT for online cyber-defense, and the challenges that the tech-
nology can bring to such a application area. A set of cybersecurity use cases
are described in reference [92], such as anomaly and intrusion detection, event
management to improve situation awareness, testing, training, privacy and legal
compliance.

Research perspectives: In order to fully leverage on DT potential and
create TAS-based operating environments, some relevant aspects must be con-
sidered as research directions, such as accuracy, usability, expandability, and
security [93]. In this case, accuracy refers to how digital models must char-
acterize the specific configuration, topology, traffic load and dynamics of the
physical system with sufficient accuracy to reproduce the behavior of the phys-
ical system. Usability is associated with the ease of creation, maintenance and
final use (e.g., for operators/maintainers attending emergency scenarios), bear-
ing in mind the degree of data computation and interpretation within DT, as
well as its heterogeneity. Expandability is relevant to ensure effectiveness in
industrial contexts. DT must scale up easily to simulate increasingly complex
CPS. As for cybersecurity, the objective is protect DT themselves, as digital
models might be integrated using insecure architectures. This is detailed in
reference [93], where a comprehensive taxonomy of DT threats along with se-
curity measures can be found. Some of these measures are: (i) access control
to protect critical resources and decision making, since DT can be targets for
attackers interested in sabotage or in getting valuable information about phys-
ical components; (iii) advanced intrusion detection; (iv) cryptography; and (v)
appropriate auditing measures, especially when DT is applied for emergency
response and crisis management.

4.6 Self-Healing TAS

Challenges: Self-healing is not a completely new concept, since it has been
mentioned even in the seminal dependability taxonomies mentioned at the be-
ginning of this paper, as an extension of — or rather a perspective over —
fault-tolerance, in order to achieve resilience and plasticity. According to re-
cent surveys on the subject, first adoptions of self-healing — a specialization of
self-management/self-adaptation — can be associated with Defense Advanced
Research Projects Agency (DARPA) projects and with the concept of auto-
nomic computing. Recent worth mentioning papers addressing self-healing in
CPS and IoT are: reference [94], where self-healing is embedded into “smart-
troubleshooting” to improve resilience of interconnected and heterogeneous de-
vices in a holistic system-of-systems perspective, including pragmatic aspects of
human-based information processing and security management; and reference
[95], where several relevant self-* mechanisms have been addressed.

The challenges related to self-healing for TAS can be addressed at the fol-
lowing levels.
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• Software. In self-healing software, fixes are applied to solve run-time
problems. Challenges include dynamic generation, verification of correct-
ness (and related testing), and evaluation of non-functional properties [96].

• Computing. . The open challenges identified at this level are as follows:
state-flapping, an emergent behaviour related to the presence of oscilla-
tions occurring between states (and related actions) with and impact on
optimal system operation; benchmarking, i.e., how the performance of the
system can be evaluated, focusing on the evaluation of different and con-
trasting features in few global indices; interoperability, i.e., how different
autonomic systems interact among them [97].

• Critical infrastructures. At this level, the implementation of self-healing
is extremely challenging in terms of: required redundancy, i.e., the pres-
ence of up-to-date replicas of running components to duplicate functionali-
ties; coordination, due to synchronization problems in concurrent systems;
and self-stabilization, i.e., the capability to dynamically control transient
faults by reaching a safe state into a finite number of steps [26].

As a general consideration, as the size of the system increases (e.g., from
software to CI), it is hard to define and assess effective self-healing mechanisms.
As realistic test benches are not possible for CI, DT might represent a valid
approach to support self-healing (see Subsection 4.5) [2].

Research perspectives: On the base of the challenges identified above,
future research directions in self-healing TAS include improvement of off-line
design methods for maintainability, as well as definition of proper metrics to
trigger healing procedures (benchmark problem). The Monitor, Analyse, Plan,
Execute, Knowledge (MAPE-K) control loop [98] is also expected to evolve as a
general framework to develop self-* systems in order to address computing and
critical infrastructure challenges such as state-flapping and self-stabilization.
Another planned advancement focuses on ML for smarter threat management
(i.e., intelligent detection, diagnosis, and reconfiguration/response) in order to
enable sophisticated and holistic approaches to fault-tolerance and resilience,
including those based on on-line conformance checking [99].

5 Conclusions

In this paper, we have provided a compendium of terms and concepts to address
relevant aspects within TAS. In addition, we used structured representations of
related taxonomies to highlight the crucial concepts connected to TAS, espe-
cially regarding intelligent and adaptive behaviors in presence of changes and
evolution. We have also presented the most challenging research directions
to cope with predictability and assessability in presence of opacity and uncer-
tainties; those properties are vital, as well as essential to support trust and
certification of those complex and heterogeneous systems against international
standards and regulations. Moreover, in this study we have shown that the
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paradigm of trustworthy autonomy, which applies to intelligent systems oper-
ating in critical applications, includes and extends the concepts addressed in
existing taxonomies, such as the ones addressing computer dependability and
cyber-resilience. We made an effort towards providing a more systematic pre-
sentation and mapping of those concepts, and also addressed some of the main
research challenges that must be tackled to increase trust in autonomous CPS
in presence of rapidly evolving functionalities, new environments, uncertainties,
emerging threats, and “unknown unknowns”.

We believe that proper knowledge and awareness of the concepts, perspec-
tives and opportunities presented in this paper is a prerequisite for a fur-
ther formalization into comprehensive TAS domain representations, based on
ontologies, specification languages, and semantic models, to support model-
based/model-driven engineering at all phases of TAS life-cycle, and possibly
enable paradigms such as trustworthiness-by-design [100].
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J. B. Bernabe, G. Baldini, and A. Skarmeta, “Evaluating federated learn-
ing for intrusion detection in internet of things: Review and challenges,”
Computer Networks, p. 108661, 2021.

[78] J. Cumplido, C. Alcaraz, and J. Lopez, “Collaborative anomaly detection
system for charging stations,” in Computer Security – ESORICS 2022,
V. Atluri, R. Di Pietro, C. D. Jensen, and W. Meng, Eds. Cham: Springer
Nature Switzerland, 2022, pp. 716–736.
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