
Algorithms for Guiding

Clausal Temporal Resolution

?

M. Carmen Fern�andez Gago, Mi
hael Fisher, and Clare Dixon

Department of Computer S
ien
e, University of Liverpool,

L69 7 ZF, United Kingdom

fM.C.Gago, M.Fisher, C.Dixong�
s
.liv.a
.uk

Abstra
t. Clausal temporal resolution is 
hara
terised by a translation

of the formulae whose satis�ability is to be established to a normal form,

step resolution (similar to 
lassi
al resolution) on formulae o

urring at

the same states and temporal resolution between formulae des
ribing

properties over a longer period. The most 
omplex part of the method

o

urs in sear
hing for 
andidates for the temporal resolution operation,

something that may need to be 
arried out several times.

In this paper we 
onsider a new te
hnique for �nding the 
andidates for

the temporal resolution operation. Although related to the previously

developed external sear
h pro
edure, this new approa
h not only allows

the temporal resolution operation to be 
arried out at any moment,

but also simpli�es any subsequent sear
h required for similar temporal

formulae.

Finally, in 
ontrast with previous approa
hes, this sear
h 
an be seen

as an inherent part of the resolution pro
ess, rather than an external

pro
edure that is only 
alled in 
ertain situations.

1 Introdu
tion

The e�e
tive me
hanisation of temporal logi
 is vital to the appli
ation of tem-

poral reasoning in many �elds, for example the veri�
ation of rea
tive systems

[12℄, the implementation of temporal query languages [4℄, and temporal logi


programming [1℄. Consequently, a range of proof methods have been developed,

implemented and applied. The development of proof methods for temporal logi


has followed three main approa
hes: tableau [16℄, automates [14℄ and resolution

[2, 3, 10, 15℄, the approa
h adopted here. Resolution based methods have the ad-

vantage that, as in the 
lassi
al 
ase [13℄, a range of strategies 
an be used.

A parti
ularly su

essful strategy for 
lassi
al resolution has been the set

of support strategy [17℄, whi
h restri
ts the appli
ation of the resolution rule,

pruning the sear
h spa
e. Our aim is to develop a set of support (SOS) strategy

for propositional temporal logi
, PTL, the logi
 used in this paper. The exten-

sion of the SOS strategy for the fragment of PTL without eventualities (
lauses

involving the operator `}', meaning sometime in the future) has been a
hieved

?

This work was partially supported by EPSRC grant GR/M44859.

C. Fernandez-Gago, M. Fisher, and C. Dixon , Algorithms for Guiding Clausal Temporal Resolution , 25th Con-
ference on Artificial Intelligence (KI’02) , LNAI , 2479 , 235-249 , Aachen, Germany , 2002

C. Fernandez-Gago, M. Fisher, and C. Dixon, “Algorithms for Guiding Clausal Temporal Resolution”, 25th Conference on Artificial Intelligence
(KI02), LNAI vol. 2479, pp. 235-249, 2002.
NICS Lab. Publications: https://www.nics.uma.es/publications



[7℄ using te
hniques developed from SOS for 
lassi
al logi
. The de�nition of the

strategy for full PTL is non trivial and we intend to a
hieve it using the algo-

rithms proposed in this paper together with the strategy de�ned for the 
ase

without eventualities.

Clausal temporal resolution [10℄ is 
hara
terised by the translation to a nor-

mal form, the appli
ation of 
lassi
al style resolution between formulae that o

ur

at the same moment in time (step resolution), together with a novel temporal

resolution rule, whi
h derives 
ontradi
tions over temporal sequen
es. Although

the 
lausal temporal resolution method has been de�ned, proved 
orre
t and

implemented, it sometimes generates an unne
essarily large set of formulas that

may be irrelevant to the refutation. Not only that, but temporal resolution op-

erations o

ur only after many step resolution inferen
es have been 
arried out.

This means that, in 
ases where a large amount of step resolution 
an o

ur, the

method may be very expensive.

As the sear
h for the 
andidates for the temporal resolution operation is

the most expensive part of the method we need to guide it and, if possible,

avoid mu
h unne
essary subsequent step resolution. In this sense, we propose

an algorithm based on step resolution to guide the sear
h. In this approa
h, we


hoose a 
andidate formula for the temporal resolution operation and we 
he
k

whether su
h a 
andidate is appropriated to perform the resolution operation.

Our intention is to re-use as mu
h information as possible in those 
ases where

further sear
hes are required. Thus, we propose a se
ond algorithm whi
h is

based on the original one and is used to guide further sear
hes. The stru
ture

of the paper is as follows. In Se
tion 2 we de�ne the temporal logi
 
onsidered,

namely Propositional Temporal Logi
 [11℄. In Se
tion 3 we review the basi


resolution method. In Se
tion 4 we des
ribe an algorithm to �nd 
andidates for

the temporal resolution operation using only step resolution. Its 
ompleteness is

shown in Se
tion 5. In Se
tion 6 we propose a se
ond algorithm algorithm for

the 
ases when further sear
hes are needed. Completeness is also shown in this

se
tion.

2 Syntax and Semanti
s of PTL

In this se
tion we present the syntax and semanti
s of (PTL), based on a dis-


rete, linear temporal logi
 with �nite past and in�nite future. The future-time


onne
tives that we use in
lude `}' (sometime in the future), `

g

' (in the next

moment in time), ` ' (always) `U ' (until), and `W ' (unless, or weak until) .

A 
hoi
e for interpreting su
h temporal 
onne
tives is (IN; <), i.e., the Natural

Numbers ordered by the usual `less than' relation.

2.1 Syntax

PTL formulae are 
onstru
ted using the following 
onne
tives and proposition

symbols.

{ A set, P , of propositional symbols.



{ Nullary 
onne
tives: true and false.

{ Propositional 
onne
tives: :, _, ^, ) and ,.

{ Temporal 
onne
tives:

g

, }, , U , and W and the nullary temporal


onne
tive start.

The set of well-formed formulae of PTL

1

, denoted by WFF

p

, is de�ned as the

set satisfying:

{ Any element of P is in WFF

p

.

{ true, false and start are in WFF

p

.

{ If � and  are in WFF

p

then so are :�, � _  , � ^  , � )  , � ,  , }�,

�, �U  , �W ,

g

�

2.2 Semanti
s

We de�ne a model, M , for PTL as a stru
ture hD, R, �

p

i where

{ D is the temporal domain, e.g, the natural numbers and

{ R is the ordering relation, e.g. <.

{ �

p

: D�P ! fT; Fg is a fun
tion assigning T or F to ea
h atomi
 proposition

at ea
h moment in time.

As usual we de�ne the semanti
s of the language via the satisfa
tion relation `j='.

For PTL, this relation holds between pairs of the form hM;ui (M is a model and

u 2 IN) and well-formed formulae. The rules de�ning the satisfa
tion relation

are as follows.

hM;ui j= p i� �

p

(u; p) = T (where p 2 P)

hM;ui j= true

hM;ui 6j= false

hM;ui j= start i� u = 0

hM;ui j= � ^  i� hM;ui j= � and hM;ui j=  

hM;ui j= � _  i� hM;ui j= � or hM;ui j=  

hM;ui j= �)  i� hM;ui 6j= � or hM;ui j=  

hM;ui j= :� i� hM;ui 6j= �

hM;ui j= �,  i� hM;ui j= �)  and hM;ui j=  ) �

hM;ui j=

g

� i� hM;u+ 1i j= �

hM;ui j=}� i� there exists a k 2 IN su
h that k � u hM;ki j= �

hM;ui j= � i� for all j 2 IN, if j � u then hM; ji j= �

hM;ui j= �U  i� there exists a k 2 IN, s.t. k � u and hM;ki j=  and

for all j 2 IN, if u � j < k then hM; ji j= �

hM;ui j= �W i� hM;ui j= �U  or hM;ui j= �

1

As usual, parentheses are also allowed to avoid ambiguity



3 Clausal Resolution Method for PTL

The resolution method presented here is 
lausal, that means that to assure the

validity of some PTL formula we negate it and translate into a normal form.

Then, both step resolution and temporal resolution are applied. We terminate

when either a 
ontradi
tion has been derived or no new information 
an be

derived.

3.1 Separated Normal Form

The resolution method depends on formulae being transformed into a normal

form (SNF). The normal form, whi
h is presented in [9℄, 
omprises formulae that

are impli
ations with present-time formulae on the left-hand side and (present or)

future-time formulae on the right-hand-side. The transformation of formulae into

SNF depends on three main operations: the renaming of 
omplex subformulae;

the removal of temporal operators; and 
lassi
al style rewrite operations. In this

se
tion we review SNF but do not 
onsider the transformation pro
edure (we

note that the transformation to SNF preserves satis�ability [10℄).

Formulae in SNF are of the general form

V

i

(�

i

)  

i

), where ea
h �

i

)  

i

is known as a 
lause and is one of the following forms

start)

_




l




(an initial 
lause)

^

a

k

a

)

g

_

d

l

d

(a step 
lause)

^

b

k

b

)}l (a sometime 
lause)

where ea
h k

a

, k

b

, l




, l

d

and l represent literals.

To apply the temporal resolution operation des
ribed below, one or more step


lauses may need to be 
ombined. Then a variant on SNF 
alled merged-SNF

(SNF

m

)[8℄ is also de�ned. Given a set of 
lauses in SNF, any 
lause in SNF is

also a 
lause in SNF

m

. Any two 
lauses in SNF

m

may be 
ombined to produ
e

a 
lause in SNF

m

as follows.

�

1

)

g

 

1

�

2

)

g

 

2

(�

1

^ �

2

))

g

( 

1

^ �

2

)

3.2 Resolution Operations

Step resolution 
onsists of the appli
ation of the standard 
lassi
al resolution

rule in two di�erent 
ontexts. Pairs of initial or step 
lauses may be resolved as

follows:

start)  

1

_ l

start)  

2

_ :l

start)  

1

_  

2

�

1

)

g

( 

1

_ l)

�

2

)

g

( 

2

_ :l)

(�

1

^ �

2

))

g

( 

1

_  

2

)



The simpli�
ation operations are similar to those used in the 
lassi
al 
ase, 
on-

sisting of both simpli�
ation and subsumption. An additional operation is re-

quired when a temporal 
ontradi
tion is produ
ed:

�)

g

false

start) :�

true)

g

:�

This means that, if a formula � leads to a 
ontradi
tion in the next moment,

then � must never be satis�ed.

Temporal resolution operations resolve one sometime 
lause with a set of merged

step 
lauses [10℄ as follows:

�

1

)

g

 

1

.

.

.

.

.

.

.

.

.

�

n

)

g

 

n

� ) }:l

�) (:

n

_

i=1

�

i

)W:l

with the side 
ondition that for all i, 1 � i � n, then j=  

i

) l and j=  

i

)

n

_

j=1

�

j

, from whi
h we 
an derive

n

^

i=1

(�

i

)

g

(l ^

n

_

j=1

�

j

)). This side 
ondition

ensures that the set of �

i

)

g

 

i

merged 
lauses together imply

n

_

i=1

�

i

)

g

l.

Su
h a set of 
lauses is known as a loop in l. The resolvent produ
ed in
ludes

an W operator that must be translated into SNF before any further resolution

steps 
an be applied.

Termination. If start) false is produ
ed, the original formula is unsatis�able

and the resolution pro
ess terminates.

Corre
tness. The soundness and (refutation) 
ompleteness of the original tem-

poral resolution method have been both established in [10℄.

4 Algorithm for Sear
hing for Loops

In order to apply the resolution rule presented in Se
tion 3 a loop must be

dete
ted. Thus, given an eventuality }:l, our aim is to dete
t a set of merged

step 
lauses that 
omprises a loop to be resolved with }:l.



4.1 Motivation

In [5℄ a breadth-sear
h approa
h is used to dete
t loops. Although this algorithm

is 
orre
t, in some 
ases, when further sear
hes for loops need to be 
arried out,

the information obtained in a previous sear
h is not reused. Our approa
h here

is based on step resolution and allows us to re-use previous sear
h information.

Assume we are sear
hing for a loop in l, our sear
h produ
es a sequen
e of

guesses, G

i

, whi
h are DNF formulae. We show that these are equivalent to

the DNF formulae H

i

output by the Breadth-First Sear
h algorithm (see [5℄). In

Breadth-First Sear
h ea
h new DNF formula H

i+1

satis�es the propertyH

i+1

)

g

(H

i

^ l). Similarly we also have G

i+1

)

g

(G

i

^ l). In order to �nd G

i+1

we

add true )

g

(:G

i

_ :l) to the original set of 
lauses and resolve. The left

hand side of 
lauses Z )

g

false satisfy Z )

g

(G

i

^ l). As we want to save


lauses derived during this pro
ess and possibly use them later, we add the 
lause

s

:l

i

)

g

(:G

i

_:l) and thus sear
h for 
lauses s

:l

i

^Z )

g

false, derived from

resolving with s

:l

i

)

g

(:G

i

_:l) or its resolvents with other 
lauses whi
h are

rewritten as true)

g

(:s

:l

i

_ :Z).

4.2 Step Loop Sear
h Algorithm

In this se
tion we propose an algorithm to sear
h for a loop. For ea
h eventu-

ality }:l o

urring on the right hand side of a sometime 
lause, the algorithm


onstru
ts a sequen
e of DNF formulae, G

i

, by using the previous guess together

with F

j

, where F

j

are disjun
tions of literals derived by the appli
ation of the

algorithm to G

i

. The algorithm is the following.

1. Choose G

�1

, true

2. Given a guess G

i

add the 
lause s

:l

i

)

g

(:G

i

_ :l) and apply Step Reso-

lution.

3. For all 
lauses true )

g

(:s

:l

i

_ F

j

) obtained during the generation of

resolvents, let G

i+1

, G

i

^ (

m

_

j=1

:F

j

).

4. Go to 2 until either

(a) G

i

, G

i+1

(we terminate having found a loop).

(b) G

i+1

is empty. (we terminate without having found a loop).

4.3 Example

Let the loop be (a^ b^ 
^d) )

g

l, derived from the following SNF 
lauses.

1: a)

g

l

2: b ^ 
)

g

d

3: 
 ^ d)

g

a

4: d ^ a)

g

b

5: a ^ b)

g




6: �)}:l



A

ording to algorithm 1 the �rst guess is G

�1

, true. For su
h a guess we

add the 
lause s

:l

�1

)

g

(false_:l). Some of the resolvents derived by applying

step resolution among this 
lause and 1-6 are

7: s

:l

�1

)

g

:l

8: s

:l

�1

^ a)

g

false [1; 7℄

9: true)

g

(:s

:l

�1

_ :a) [Simp.8℄

Therefore, the next guess will be, G

0

, true ^ a, a.

10: s

:l

0

)

g

(:l _ :a)

11: s

:l

0

^ a ^ 
 ^ d)

g

false [1; 3; 10℄

12: true)

g

(:s

:l

0

_ :a _ :
 _ :d) [Simp.11℄

Next guess is G

1

, a ^ (a ^ 
 ^ d), a ^ 
 ^ d.

13: s

:l

1

)

g

(:l _ :a _ :
 _ :d)

14: s

:l

1

^ a ^ b ^ 
 ^ d)

g

false [1; 2; 3; 5; 13℄

15: true)

g

(:s

:l

1

_ :a _ :b _ :
 _ :d) [Simp.14℄

A

ording to the algorithm the next guess is

G

2

, (a ^ 
 ^ d) ^ (a ^ b ^ 
 ^ d), a ^ 
 ^ d ^ b

16: s

:l

2

)

g

(:l _ :a _ :
 _ :d _ :b)

17: s

:l

2

^ a ^ b ^ 
 ^ d)

g

false [1; 2; 3; 4; 5; 16℄

18: true)

g

(:s

:l

2

_ :a _ :b _ :
 _ :d) [Simp.17℄

If we apply the algorithm to G

2

then the next guess will again be

G

3

, (a ^ b ^ 
 ^ d) ^ (a ^ b ^ 
 ^ d), (a ^ b ^ 
 ^ d).

G

3

, G

2

whi
h means termination as G

3

, G

2

and so G

2

is a loop, i.e, G

2

)

g

l.

5 Completeness

In the following we will prove 
ompleteness for this algorithm by relating it to

the 
ompleteness of the Breadth-First Sear
h Algorithm [5℄. We �rst introdu
e

the Breadth-First Sear
h Algorithm.

5.1 Breadth-First Sear
h Algorithm

The Breadth-First Sear
h Algorithm 
onstru
ts a sequen
e of formulae, H

i

for

i � 0, that are formulae in Disjun
tive Normal Form and 
ontain no temporal

operators. They are 
onstru
ted from the 
onjun
tions of literals on the left hand

sides of step 
lauses or 
ombinations of step 
lauses in the SNF-
lause-set that

satisfy 
ertain properties (see below). Assuming we are resolving with }:l ea
h



formula H

i

satis�es H

i

)

g

l and given H

i

ea
h new formula H

i+1

satis�es

H

i+1

)

g

H

i

and H

i+1

) H

i

. When termination o

urs we have H

i+1

, H

i

so that H

i

)

g

l for resolution with }:l. The algorithm assumes that all

ne
essary step resolution has been 
arried out.

Breadth-First Sear
h Algorithm For ea
h eventuality}:l o

urring on the

right hand side of a sometime 
lause do the following.

1. Sear
h for all the step 
lauses of the form C

k

)

g

l, for k = 0 to b, disjoin

the left hand sides and generate the H

0

equivalent to this, i.e. H

0

,

b

_

k=0

C

k

:

Simplify H

0

. If j= H

0

we terminate having found a loop-formula (true).

2. Given formula H

i

, build formula H

i+1

for i = 0; 1; : : : by looking for step


lauses or 
ombinations of 
lauses of the form A

j

)

g

B

j

, for j = 0 to 


where j= B

j

) H

i

and j= A

j

) H

0

. Disjoin the left hand sides so that

H

i+1

,




_

j=0

A

j

and simplify as previously.

3. Repeat (2) until

(a) j= H

i

. We terminate having found a loop-formula and return true.

(b) j= H

i

, H

i+1

. We terminate having found a loop-formula and return

the DNF formula H

i

.

(
) The new formula is empty. We terminate without having found a loop-

formula.

Soundness, Completeness and Termination for the BFS-algorithm [5℄

Given a set of SNF 
lauses R, that 
ontains a loop A )

g

l, applying BFS

algorithm will output a DNF formula A

0

su
h that A

0

)

g

l and A ) A

0

.

Termination of the BFS algorithm is also established.[5℄

5.2 Completeness of the Step Loop Sear
h Algorithm

To show the 
ompleteness of the new algorithm we will prove that for all i � 0,

G

i

, H

i

by indu
tion. Let R be a set of SNF-
lauses and}:l be the right hand

side of a sometime 
lause, we assume that R 
ontains a loop in l.

Lemma 1. G

0

, H

0

Proof. In order to obtain G

0

, a

ording to the algorithm, the 
lause

s

:l

�1

)

g

(:l _ :true) is added, whi
h is the 
lause s

:l

�1

)

g

:l (1).

As R 
ontains a loop, in the initial set of 
lauses there must be some 
lauses

su
h that they may be resolved together to obtain A

i

)

g

l, 1 � i � k.

By resolution with 
lause (1) the resolvents are s

:l

�1

^ A

i

)

g

false, 1 � i � k

and by simpli�
ation true)

g

(:s

:l

�1

_ :A

i

).

These last 
lauses are used in order to obtain G

0

as G

0

, true^(A

1

_:::_A

k

),

A

1

_ ::: _ A

k

.



For building H

0

by the Breadth-First Sear
h Algorithm, the left hand sides of

the 
lauses A

i

)

g

l are disjoined, giving , H

0

, A

1

_ :::_A

k

, and so, G

0

, H

0

ut

Theorem 1. For all n 2 IN H

n

, G

n

.

Proof. Base 
ase: By Lemma 1, H

0

, G

0

.

Indu
tion 
ase: We assume H

k

, G

k

for all k � i, k 2 IN and we prove the

hypothesis for i + 1. We know the following valid statements about H

i+1

from

the de�nition of the Breadth First Sear
h algorithm:

(a): H

i+1

)

g

H

i

(b): H

i+1

)

g

l

(
): G

i

, H

i

(Indu
tion Hypothesis)

(d): H

i+1

) H

i

Assume we have generated guess G

i

and we are about to derive G

i+1

. From the

algorithm the 
lause s

:l

i

)

g

(:l_:G

i

) is added. Using property (
) the 
lause

1 is transformed into

s

:l

i

)

g

(:l _ :H

i

): (1)

Then, applying step resolution, we obtain:

3: s

:l

i

^H

i+1

)

g

:H

i

[b, 1℄

4: s

:l

i

^H

i+1

)

g

false [3,a℄

5: true )

g

(:s

:l

i

_ :H

i+1

) [Simp. 4℄

In order to obtain G

i+1

the algorithm is applied, where the 
lauses

true )

g

(:s

:l

i

_ F

j

) 
onsidered in this 
ase just 
onsist of 
lause 5 and thus

G

i+1

, G

i

^ [H

i+1

℄, G

i

^H

i+1

, H

i

^H

i+1

.

By property (d) (H

i

^H

i+1

), H

i+1

, and then G

i+1

, H

i+1

ut

Theorem 2. If G

i

is a loop, then G

i

, G

i+1

.

Proof. Let G

i

, D

1

_D

2

_ ::: _D

n

be a loop.

As usual for the appli
ation of the algorithm the 
lause

s

:l

i

)

g

(:l _ :G

i

) (2)

is added.

As G

i

is a loop, there must be a set of 
lauses in the initial set of 
lauses that

together represent G

i

)

g

l and G

i

)

g

G

i

.

Resolution 
an be applied among these 
lauses and 
lause 2 produ
ing

s

:l

i

^G

i

)

g

false. By applying simpli�
ation this latter 
lause is transformed

into true)

g

(:s

:l

i

_ :G

i

). Then, G

i+1

, G

i

^G

i

and so G

i+1

, G

i

. ut

Theorem 3. The Step Loop Sear
h Algorithm is 
omplete.



Proof. By Theorem 1 and 2.

ut

Theorem 4. The algorithm terminates.

Proof. 1. If there exists a loop in the initial set of 
lauses, then we know that

Breadth Sear
h Algorithm terminates �nding a loop H

n

. By Theorem 1,

H

n

, G

n

, so G

n

is a loop and then by Theorem 2 G

n

, G

n+1

. Thus, the

algorithm terminates by 2 (a).

2. If there does not exist a set of 
lauses whi
h 
omprise a loop in the initial set

of 
lauses then, at some point, it will not be possible to produ
e the 
lause

s

:l

i

^ C

i

)

g

false and therefore no 
lauses true )

g

(:s

:l

i

_ F

i

) will be

derived during the proof and G

i+1

will be empty.

ut

6 The Sear
h for a Subsequent Loop

We assume that we have dete
ted a sequen
e of guesses by applying the previous

algorithm to a set of SNF-
lauses, X , with an eventuality }:l but, later we

need to apply temporal resolution again to }:l. Further, the appli
ation of the

temporal resolution rule to this or other eventualities has led to the generation

of new 
lauses whi
h we may use in order to generate a new loop. Let Y be the

set of new SNF-
lauses generated. Thus the set of SNF-
lauses is now updated

as X [ Y .

Rather than 
arrying out the full loop sear
h again, our intention is to re-use

the original loop sear
h, even though a loop may not have been dete
ted in the

�rst sear
h.

6.1 Repeated Step Loop Sear
h Algorithm

Assume we have G

0

; :::; G

n

guesses from a previous sear
h for a loop and, the

added set of 
lauses is Y . We 
an generate a new sequen
e of DNF formula, K

i

as follows:

1. Guess K

�1

, false.

2. Given a guess K

i

add the 
lause s

:l

i

)

g

(:l _ :K

i

) to the pie
e of proof

of the previous sear
h 
orresponding with s

i

, together with the 
lauses Y .

3. Apply Step Resolution.

4. For all new 
lauses true)

g

(:s

:l

i

_ F

0

j

) obtained during the proof, let

K

i+1

, (G

i

_K

i

) ^ (

m

_

j=1

:F

0

j

)

5. Go to 2 until either

(a) K

i

) K

i+1

_G

i+1

where K

i

6) false or

(b) K

i

_G

i

, K

i+1

_G

i+1

,

whatever is the earliest.



6.2 Example

We now 
onsider the example in Se
tion 4.3 where 
lause 4 has been deleted.

In this 
ase, all the guesses remain the same ex
ept the last one whi
h now will

be the following

16: s

:l

2

)

g

(:l _ :a _ :
 _ :d _ :b)

17: s

:l

2

^ a ^ b ^ 
 ^ d)

g

:b [1; 2; 3; 5; 16℄

As there are not 
lauses true)

g

(:s

:l

2

_ ::::), then G

3

, false.

Thus, the sear
h for a loop failed as the set of 
lauses did not 
omprise a loop but

we still 
an use these previous guesses in order to �nd a loop if the appropriate


lause is later added.

Now we 
onsider the same example but we add 
lause 4, that is, d ^ a)

g

b.

Algorithm 2 is now applied, with K

�1

, false. The new 
lause added is

18: s

:l

�1

)

g

true

Nothing new is added and no 
lauses from 7-9 in example 4.3 
an be resolved

with 4. Thus, K

0

, false and T

0

, a _ false, a.

19: s

:l

0

)

g

true

Again nothing new is added and no 
lauses from 10-12 in the example 4.3 
an

be resolved with 4. Thus, K

1

, false and T

1

, (a ^ b) _ false, (a ^ b).

20: s

:l

1

)

g

true

As happened in the previous 
ases no new 
lauses are added from resolution

between 13-15 and 4, so K

2

, false and T

2

, (a^b^
^d)_false, a^b^
^d.

20: s

:l

2

)

g

true

21: s

:l

2

^ a ^ b ^ 
 ^ d)

g

false [17; 4℄

22: true)

g

(:s

:l

2

_ :a _ :b _ :
 _ :d) [Simp.22℄

K

3

, (a ^ b ^ 
 ^ d) ^ (a ^ b ^ 
 ^ d), (a ^ b ^ 
 ^ d).

T

3

, (a ^ b ^ 
 ^ d).

T

2

, T

3

. Then T

3

is a loop.

6.3 The New Guess

Let G

�1

; G

0

; :::; G

j

be the guesses generated by applying Algorithm 1 to a set

of 
lauses X . Let Y be the new set of 
lauses added to X and T

�1

; T

0

; :::; T

i

be

the guesses obtained by applying Algorithm 1 to X [Y . K

�1

;K

0

; :::;K

p

are the

guesses obtained by applying Algorithm 2.

Theorem 5. The new guess T

i

, su
h that T

i

6, G

i

, K

i

6, false has the property

T

i

, G

i

_K

i

.



Proof. We assume that the new guess is generated from the fragment of proof


orresponding to s

:l

i�1

and K

i

6 impfalse whereas K

�1

;K

0

; :::;K

i�1

, false.

Let true )

g

(:s

:l

i�1

_ F

j

) be the 
lauses used for Algorithm 1 in order to

generate G

i

.

As a result of adding the new 
lauses Y , if step resolution is applied among these


lauses, X or those 
ontaining s

i�1

on the left hand side, 
lauses

true )

g

(:s

:l

i�1

_ C

k

) may be generated, where F

j

6, C

k

. N.B. that C

k

must

exist as we are assuming K

i

6, false.

By applying algorithm 1, the new guess will be

T

i

, G

i�1

^ [(

m

_

j=1

:F

j

) _ (

p

_

k=1

:C

k

)℄

, (G

i�1

^ (

m

_

j=1

:F

j

)) _ (G

i�1

^ (

p

_

k=1

:C

k

))

, G

i

_K

i

:

ut

We have shown that the �rst new guess is like T

i

, G

i

_K

i

. If K

i

6, false then

trivially T

i

, G

i

_ false. Next we will show that this is the 
ase for all the new

guesses.

Theorem 6. Let i the �rst index su
h that T

i

6, G

i

. Then for all j, j � i,

T

j

, G

j

_K

j

.

Proof. We assume that T

j

, G

j

_K

j

. We will prove that T

j+1

, G

j+1

_K

j+1

.

In order to obtain T

j+1

the original algorithm must be applied to T

j

. Thus, the


lause added is s

:l

j

)

g

(:l_:T

j

). As we know that T

j

, G

j

_K

j

the previous


lause 
an be rewritten as

s

:l

j

)

g

(:l _ :G

j

) (1)

s

:l

j

)

g

(:l _ :K

j

) (2)

As 
lause (1) was produ
ed while obtaining G

j+1

, the 
lauses

true )

g

(:s

:l

j

_ F

j+1

) that appeared in the original sear
h will be generated

again. From 
lause (2) and X [ Y new 
lauses true)

g

(:s

:l

j

_C

k+1

) may be

derived. Then by applying algorithm 1.

T

j+1

, T

j

^ [(

m

_

j=1

:F

j+1

) _ (

p

_

k=1

:C

k+1

)℄

, (G

j

_K

j

) ^ [(

m

_

j=1

:F

j+1

) _ (

p

_

k=1

:C

k+1

)℄

, [G

j

^ (

m

_

j=1

:F

j+1

)℄ _ [K

j

^ (

m

_

j=1

:F

j+1

)℄ _ [(G

j

_K

j

) ^ (

m

_

j=1

:C

k+1

)℄

, G

j+1

_K

j+1

As K

j

^ (

m

_

j=1

:F

j+1

) is subsumed by (G

j

_K

j

) ^ (

m

_

j=1

:C

k+1

). ut



6.4 Completeness of the Repeated Step Loop Sear
h Algorithm

Theorem 7. Algorithm 2 is 
omplete.

Proof. The proof follows Theorem 5 and Theorem 6 and 
ompleteness of the

Step Loop Sear
h Algorithm. ut

Termination

Lemma 2. For all i, K

i+1

) K

i

_G

i

.

Proof. Let T

�1

; T

0

; :::; T

i+1

be the guesses from applying Algorithm 1 to the


lauses X [ Y .

By Theorem 1 and de�nition of Breadth-First Sear
h algorithm, T

i+1

) T

i

.

By Theorem 6 T

i

, G

i

_K

i

. Then K

i+1

_G

i+1

) K

i

_G

i

. Therefore, K

i+1

)

K

i

_G

i

. ut

Theorem 8. The algorithm for sear
hing for K

i

terminates.

Proof. We know that the sear
h for T

i

must terminate be
ause of termination of

the algorithm des
ribed in se
tion 4.2 when T

i

, T

i+1

. By Lemma 2 we know

that K

i+1

) K

i

_ G

i

if K

i

6, false. K

i

has the property that T

i

, G

i

_ K

i

.

Then G

i

_K

i

, G

i+1

_K

i+1

. Therefore K

i

) G

i+1

_K

i+1

. ut

7 Some Advantages of Algorithm 2

Let X be a set of SNF-
lauses with an eventuality}:l when we apply Algorithm

1 to X , we obtain a sequen
e of guesses G

�1

; G

0

; :::; G

n

.

Now we assume that some new set of SNF 
lauses, Y , have been added and we

intend to sear
h for a loop in the set of 
lauses X [ Y .

As we have shown in se
tion 6.3, if a new set of 
lauses is added the new guess

has the property T

i

, G

i

_K

i

, where K

i

is given by Algorithm 2. Applying the

algorithm 1 to X [ Y for every new guess T

i

, the 
lauses that we must add for

generating the next guess are

s

:l

i

)

g

(:l _ :G

i

)

s

:l

i

)

g

(:l _ :K

i

)

Thus, all step resolution amongst 
lauses s

:l

i

)

g

(:l _ :K

i

) and the set of


lauses X will be produ
ed again, as they were produ
ed when Algorithm 1 was

applied just to X .

If we apply Algorithm 2 instead, we 
an save all those resolution steps as we

only add 
lauses of the form s

:l

i

)

g

(:l _ :K

i

).



8 Con
lusions and Future Work

In this paper we have presented two algorithms for sear
hing for loops based

upon step resolution.

The �rst algorithm uses outputs from the previous guess to guide the 
hoi
e

for the next guess and its 
orre
tness is shown with respe
t to an existing loop

sear
h algorithm. The se
ond algorithm is based on the �rst one and allows us

sear
h for a se
ond loop without having to 
arry out a whole sear
h again, sin
e

it uses 
lauses generated during previous sear
hes.

In the future we intend to apply these results to the development of strategies

for temporal resolution that allows us to redu
e the sear
h spa
e. In parti
ular,

we are interested in in
orporating the set of support strategy [17, 6℄. In [7℄ the

set of support is de�ned for the 
ase without eventualities. For full temporal

resolution the situation is more 
omplex and we intend to a
hieve it 
ombining

and extending the results presented in [7℄ and the results in this paper.

Even though the algorithms presented are used in order to sear
h for loops

for the appli
ation of the temporal resolution operation, we 
an still guide this

sear
h. Thus, our intention is to de�ne a set of support strategy for temporal

resolution whi
h involves a set of support for the sear
h for loops pro
ess and

then 
ombines it with the set of support for step resolution. Thus, if we 
onsider

the example in Se
tion 6.2 the Set of Support (SOS) for sear
hing for a loop will

in
lude 
lauses of the form s

:l

i

)

g

(:l _ :K

i

).

The pra
ti
al eÆ
ien
y of the algorithms is part of 
urrent work. It is ex-

pe
ted to be examined while updating an existing implementation for temporal

resolution where the sear
h for a loop pro
ess is substituted with the algorithms

presented here.

We also intend to investigate the detailed 
omplexity of this approa
h.

Referen
es

1. M. Abadi and Z. Manna. Temporal Logi
 Programming. Journal of Symboli


Computation, 8: 277{295, 1989.

2. M. Abadi and Z. Manna. Non
lausal Dedu
tion in First-Order Temporal Logi
.

ACM Journal, 37(2):279{317, April 1990.

3. A. Cavalli and L. Farinas del Cerro. A De
ision Method for Linear Temporal

Logi
. In R.E.Shostak, editor, Pro
eedings of the 7th International Conferen
e on

Automated Dedu
tion, volume 170 of Le
ture Notes in Computer S
ien
e, pages

113{127. Springer-Verlag, 1984.

4. J. Chomi
ki and D. Niwinski. On the Feasibility of Che
king Temporal Integrity

Constraints. Journal of Computer and System S
ien
es, 51(3):523{535, De
ember

1995.

5. C. Dixon. Temporal Resolution using a Breadth-First Sear
h Algorithm. Annals

of Mathemati
s and Arti�
ial Intelligen
e, 22:87{115, 1998.

6. C. Dixon and M. Fisher. The Set of Support Strategy in Temporal Resolution. In

Pro
eedings of TIME-98 the Fifth International Workshop on Temporal Represen-

tation and Reasoning, Sanibel Island, Florida, May 1998. IEEE Computer So
iety

Press.



7. M.C. Fern�andez-Gago. EÆ
ient Control of Temporal Reasoning. Transfer Report,

Man
hester Metropolitan University, 2000.

8. M. Fisher. A Resolution Method for Temporal Logi
. In Pro
eedings of the Twelfth

International Joint Conferen
e on Arti�
ial Intelligen
e (IJCAI), pages 99{104,

Sydney, Australia, August 1991. Morgan Kaufman.

9. M. Fisher. A Normal Form for Temporal Logi
 and its Appli
ation in Theorem-

Proving and Exe
ution. Journal of Logi
 and Computation, 7(4):429{456, August

1997.

10. M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. In Transa
tions

on Computational Logi
 2(1), January 2001.

11. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal Analysis of Fair-

ness. In Pro
eedings of the 7th ACM Symposium on the Prin
iples of Programming

Languages, pages 163{173, Las Vegas, Nevada, January 1980.

12. Z. Manna and A. Pnueli. The Temporal Logi
 of Rea
tive and Con
urrent Systems:

Spe
i�
ation. Springer-Verlag, New York, 1992.

13. J. A. Robinson. A Ma
hine{Oriented Logi
 Based on the Resolution Prin
iple.

ACM Journal, 12(1):23{41, January 1965.

14. A. P. Sistla, M. Vardi, and P. Wolper. The Complementation Problem for Bu
hi

Automata with Appli
ations to Temporal Logi
. Theoreti
al Computer S
ien
e,

49:217{237, 1987.

15. G. Venkatesh. A De
ision Method for Temporal Logi
 based on Resolution. Le
ture

Notes in Computer S
ien
e, 206:272{289, 1986.

16. P. Wolper. The Tableau Method for Temporal Logi
: An overview. Logique et

Analyse, 110{111:119{136, June-Sept 1985.

17. L. Wos, G. Robinson, and D. Carson. EÆ
ien
y and Completeness of the Set of

Support Strategy in Theorem Proving. ACM Journal, 12:536{541, O
tober 1965.


