~ e dez-Gage, Flsher nd. ©. Dixon » Algorithms uidi 1 Tem,po R ion . 25th B
O Femander G o TR0 O Ot o oo At tetigenee
NICS Lab. Publicatiens:-—https+//fwwi-—nies-uma—es/publications

Algorithms for Guiding
Clausal Temporal Resolution*

M. Carmen Ferndndez Gago, Michael Fisher, and Clare Dixon

Department of Computer Science, University of Liverpool,
L69 7 ZF, United Kingdom
{M.C.Gago, M.Fisher, C.Dixon}@csc.liv.ac.uk

Abstract. Clausal temporal resolution is characterised by a translation
of the formulae whose satisfiability is to be established to a normal form,
step resolution (similar to classical resolution) on formulae occurring at
the same states and temporal resolution between formulae describing
properties over a longer period. The most complex part of the method
occurs in searching for candidates for the temporal resolution operation,
something that may need to be carried out several times.

In this paper we consider a new technique for finding the candidates for
the temporal resolution operation. Although related to the previously
developed external search procedure, this new approach not only allows
the temporal resolution operation to be carried out at any moment,
but also simplifies any subsequent search required for similar temporal
formulae.

Finally, in contrast with previous approaches, this search can be seen
as an inherent part of the resolution process, rather than an external
procedure that is only called in certain situations.

1 Introduction

The effective mechanisation of temporal logic is vital to the application of tem-
poral reasoning in many fields, for example the verification of reactive systems
[12], the implementation of temporal query languages [4], and temporal logic
programming [1]. Consequently, a range of proof methods have been developed,
implemented and applied. The development of proof methods for temporal logic
has followed three main approaches: tableau [16], automates [14] and resolution
[2,3,10,15], the approach adopted here. Resolution based methods have the ad-
vantage that, as in the classical case [13], a range of strategies can be used.

A particularly successful strategy for classical resolution has been the set
of support strategy [17], which restricts the application of the resolution rule,
pruning the search space. Our aim is to develop a set of support (SOS) strategy
for propositional temporal logic, PTL, the logic used in this paper. The exten-
sion of the SOS strategy for the fragment of PTL without eventualities (clauses
involving the operator ‘{}>’, meaning sometime in the future) has been achieved

* This work was partially supported by EPSRC grant GR/M44859.

[7] using techniques developed from SOS for classical logic. The definition of the
strategy for full PTL is non trivial and we intend to achieve it using the algo-
rithms proposed in this paper together with the strategy defined for the case
without eventualities.

Clausal temporal resolution [10] is characterised by the translation to a nor-
mal form, the application of classical style resolution between formulae that occur
at the same moment in time (step resolution), together with a novel temporal
resolution rule, which derives contradictions over temporal sequences. Although
the clausal temporal resolution method has been defined, proved correct and
implemented, it sometimes generates an unnecessarily large set of formulas that
may be irrelevant to the refutation. Not only that, but temporal resolution op-
erations occur only after many step resolution inferences have been carried out.
This means that, in cases where a large amount of step resolution can occur, the
method may be very expensive.

As the search for the candidates for the temporal resolution operation is
the most expensive part of the method we need to guide it and, if possible,
avoid much unnecessary subsequent step resolution. In this sense, we propose
an algorithm based on step resolution to guide the search. In this approach, we
choose a candidate formula for the temporal resolution operation and we check
whether such a candidate is appropriated to perform the resolution operation.
Our intention is to re-use as much information as possible in those cases where
further searches are required. Thus, we propose a second algorithm which is
based on the original one and is used to guide further searches. The structure
of the paper is as follows. In Section 2 we define the temporal logic considered,
namely Propositional Temporal Logic [11]. In Section 3 we review the basic
resolution method. In Section 4 we describe an algorithm to find candidates for
the temporal resolution operation using only step resolution. Its completeness is
shown in Section 5. In Section 6 we propose a second algorithm algorithm for
the cases when further searches are needed. Completeness is also shown in this
section.

2 Syntax and Semantics of PTL

In this section we present the syntax and semantics of (PTL), based on a dis-
crete, linear temporal logic with finite past and infinite future. The future-time
connectives that we use include ‘>’ (sometime in the future), ‘O’ (in the next
moment in time), ‘[’ (always) ‘U’ (until), and ‘W’ (unless, or weak until) .
A choice for interpreting such temporal connectives is (IN, <), i.e., the Natural
Numbers ordered by the usual ‘less than’ relation.

2.1 Syntax

PTL formulae are constructed using the following connectives and proposition
symbols.

— A set, P, of propositional symbols.

— Nullary connectives: true and false.
— Propositional connectives: =, V, A, = and &.

— Temporal connectives: O, <>, [], U, and W and the nullary temporal
connective start.

The set of well-formed formulae of PTL!, denoted by WFF,, is defined as the
set satisfying:

— Any element of P is in WFF,.
— true, false and start are in WFF),.

— If ¢ and ¢ are in WFF, then so are =g, ¢ Vb, A, ¢ = 9, ¢ & 1, O,
Lo, U, oW, O¢

2.2 Semantics

We define a model, M, for PTL as a structure (D, R, m,) where

— D is the temporal domain, e.g, the natural numbers and
— R is the ordering relation, e.g. <.

— 7p : DxP — {T, F}is afunction assigning T or F' to each atomic proposition
at each moment in time.

As usual we define the semantics of the language via the satisfaction relation ‘=’
For PTL, this relation holds between pairs of the form (M, u) (M is a model and

u € IN) and well-formed formulae. The rules defining the satisfaction relation
are as follows.

(M,u) Ep iff mp(u,p) =T (where p € P)
(M,u) = true

(M, u) [~ false

(M,u) = start iff u=0

(Mu) b= oA iff (M, u) [6 and (M,u) =

(Mu) b= 6V iff (M) |= 6 or (M,u) F o

(4,0) 0= 01 (6, g ox O - 0

(Myu) b= o i (M u) | 6

<M,u>»=¢<:>wlff<) = 6= and (M, u) = = ¢

(M,u) E O iff (M,u+1) ¢

(M,u) = <>¢ iff there exists a k € IN such that k > u (M, k) E ¢
(M,u) = ¢ iffforall j € IN,if j > u then (M,j) E ¢

(M,u) E ¢U 1 iff there exists a k € IN, s.t. k > v and (M, k) =9 and

forall j e N,if u < j < k then (M,j) |=¢
(M, u) = oW iff (M, u) |= U P or (M,u) |= [1¢

! As usual, parentheses are also allowed to avoid ambiguity

3 Clausal Resolution Method for PTL

The resolution method presented here is clausal, that means that to assure the
validity of some PTL formula we negate it and translate into a normal form.
Then, both step resolution and temporal resolution are applied. We terminate
when either a contradiction has been derived or no new information can be
derived.

3.1 Separated Normal Form

The resolution method depends on formulae being transformed into a normal
form (SNF). The normal form, which is presented in [9], comprises formulae that
are implications with present-time formulae on the left-hand side and (present or)
future-time formulae on the right-hand-side. The transformation of formulae into
SNF depends on three main operations: the renaming of complex subformulae;
the removal of temporal operators; and classical style rewrite operations. In this
section we review SNF but do not consider the transformation procedure (we
note that the transformation to SNF preserves satisfiability [10]).

Formulae in SNF are of the general form [] A;(¢: = v;), where each ¢; = 1;
is known as a clause and is one of the following forms

start = \/ le (an initial clause)
/\ ko = O \/ lqg (a step clause)

a d
/\ ky = Ol (a sometime clause)
b

where each kg, kp, l., | and I represent literals.

To apply the temporal resolution operation described below, one or more step
clauses may need to be combined. Then a variant on SNF called merged-SNF
(SNF,,)[8] is also defined. Given a set of clauses in SNF, any clause in SNF is
also a clause in SNF,,,. Any two clauses in SNF,,, may be combined to produce
a clause in SNF,,, as follows.

$1 = OYn
d2 = Oo
(91 A g2) = O(h1 A ¢2)

3.2 Resolution Operations

Step resolution consists of the application of the standard classical resolution
rule in two different contexts. Pairs of initial or step clauses may be resolved as

follows:
start = ¢, V1 ¢ = O VI)

start = 1y V —l $2 = Oy V Al)
start = Y1 V iy (p1 A p2) = Ot Vaha)

The simplification operations are similar to those used in the classical case, con-
sisting of both simplification and subsumption. An additional operation is re-
quired when a temporal contradiction is produced:

¢ = Ofalse

start = ¢
true = O—¢

This means that, if a formula ¢ leads to a contradiction in the next moment,
then ¢ must never be satisfied.

Temporal resolution operations resolve one sometime clause with a set of merged
step clauses [10] as follows:

o1 = O
bn = O
x = O-l

= (= \/ oWl
i=1

w1th the side condition that for all i, 1 <i<mn, then EvY; =1l and E ¢ =
\/ ¢;, from which we can derive /\ ¢ = O A \/ ¢;)). This side condition

j=1 i=1 j=1

n
ensures that the set of ¢; = O; merged clauses together imply \/ o = O .
i=1
Such a set of clauses is known as a loop in I. The resolvent produced includes
an Y operator that must be translated into SNF before any further resolution
steps can be applied.

Termination. If start=- false is produced, the original formula is unsatisfiable
and the resolution process terminates.

Correctness. The soundness and (refutation) completeness of the original tem-
poral resolution method have been both established in [10].

4 Algorithm for Searching for Loops

In order to apply the resolution rule presented in Section 3 a loop must be
detected. Thus, given an eventuality <)—l, our aim is to detect a set of merged
step clauses that comprises a loop to be resolved with .

4.1 Motivation

In [5] a breadth-search approach is used to detect loops. Although this algorithm
is correct, in some cases, when further searches for loops need to be carried out,
the information obtained in a previous search is not reused. Our approach here
is based on step resolution and allows us to re-use previous search information.
Assume we are searching for a loop in [, our search produces a sequence of
guesses, G;, which are DNF formulae. We show that these are equivalent to
the DNF formulae H; output by the Breadth-First Search algorithm (see [5]). In
Breadth-First Search each new DNF formula H;,1 satisfies the property H;;1 =
O(H; Al). Similarly we also have G;1+1 = O(G; Al). In order to find G+ we
add true = O(—G; Vv —l) to the original set of clauses and resolve. The left
hand side of clauses Z = Ofalse satisfy Z = O(G; Al). As we want to save
clauses derived during this process and possibly use them later, we add the clause
57! = O(=G; vV ~l) and thus search for clauses s;' A Z = Ofalse, derived from
resolving with s;! = O(=G; V —l) or its resolvents with other clauses which are
rewritten as true = O(—s;! vV -2).

4.2 Step Loop Search Algorithm

In this section we propose an algorithm to search for a loop. For each eventu-
ality <>—l occurring on the right hand side of a sometime clause, the algorithm
constructs a sequence of DNF formulae, G;, by using the previous guess together
with F}, where Fj are disjunctions of literals derived by the application of the
algorithm to G;. The algorithm is the following.

1. Choose G_; & true
2. Given a guess G; add the clause s;! = O(=G; V —l) and apply Step Reso-
lution.
3. For all clauses true = O(-s;! V F}) obtained during the generation of
m

resolvents, let Gi11 < G; A (\/ -Fj).
j=1
4. Go to 2 until either
(a) G; & Gi11 (we terminate having found a loop).
(b) Giy1 is empty. (we terminate without having found a loop).

4.3 Example
Let the loop be (a AbAcAd) = O [, derived from the following SNF clauses.

a= Ol
.bAe= Od
cNd= Qa
.dANa= Ob
aANb= QOc

x = Ol

S

According to algorithm 1 the first guess is G_; < true. For such a guess we
add the clause s™ = O(false V —l). Some of the resolvents derived by applying
step resolution among this clause and 1-6 are

7. s:ll = Ol
8. 574 Aa = Ofalse [1,7]
9. true = O(-s_} V -a) [Simp.8]

Therefore, the next guess will be, Gy & true A a & a.

10. 5ol = O(=l V —a)
11. s AaAecAd = Ofalse [1,3,10]
12. true = O(-sy!' V —a V —c V —d) [Simp.11]

Next guessis Gy @ aA(aAcAd) &S ancAd.

13. 57t = O(=lV =aV =cV ~d)
4. 57" AaAbAcAd= Ofalse [1,2,3,5,13]
15. true = O(=s;'V-aV -bV —cV —d) [Simp.14]

According to the algorithm the next guess is

Go& (anehAd)AN(aANbAcANd) S aNecAdND

16. syl = O(=lV =aV —cV —~dV -b)
17.s5' AaAbAcAd= Ofalse [1,2,3,4,5,16]
18. true = O(-sy! V-a VvV —bV —cV —d) [Simp.17]

If we apply the algorithm to G5 then the next guess will again be

Gs o (aANbAcAd)A(aANbAcAd) & (aNDAcAd).
Gs & Gy

which means termination as G3 < G5 and so Gs is a loop, i.e, Go = O []I.

5 Completeness

In the following we will prove completeness for this algorithm by relating it to
the completeness of the Breadth-First Search Algorithm [5]. We first introduce
the Breadth-First Search Algorithm.

5.1 Breadth-First Search Algorithm

The Breadth-First Search Algorithm constructs a sequence of formulae, H; for
i > 0, that are formulae in Disjunctive Normal Form and contain no temporal
operators. They are constructed from the conjunctions of literals on the left hand
sides of step clauses or combinations of step clauses in the SNF-clause-set that
satisfy certain properties (see below). Assuming we are resolving with >l each

formula H; satisfies H; = Ol and given H; each new formula H;;; satisfies
H;y; = OH; and H;+1 = H;. When termination occurs we have H; 1 < H;
so that H; = O [for resolution with <)—l. The algorithm assumes that all
necessary step resolution has been carried out.

Breadth-First Search Algorithm For each eventuality {>—l occurring on the
right hand side of a sometime clause do the following.

1. Search for all the step clauses of the form Cy = Ol, for £ = 0 to b, disjoin
b

the left hand sides and generate the Hy equivalent to this, i.e. Hy < \/ Ck.
k=0
Simplify Hy. If = Hy we terminate having found a loop-formula (true).

2. Given formula H;, build formula H;4q for ¢ = 0,1,... by looking for step
clauses or combinations of clauses of the form A; = OB;, for j = 0toc
where |= B; = H; and |= A; = Hy. Disjoin the left hand sides so that

C

Hiy1 & \/ A; and simplify as previously.
j=0
3. Repeat (2) until

(a) = H;. We terminate having found a loop-formula and return true.

(b) = H; & H;t1. We terminate having found a loop-formula and return
the DNF formula H;.

(¢c) The new formula is empty. We terminate without having found a loop-
formula.

Soundness, Completeness and Termination for the BFS-algorithm [5]
Given a set of SNF clauses R, that contains a loop A = O [, applying BFS
algorithm will output a DNF formula A’ such that A’ = O [l and A = A'.
Termination of the BFS algorithm is also established.[5]

5.2 Completeness of the Step Loop Search Algorithm

To show the completeness of the new algorithm we will prove that for all i > 0,
G < H; by induction. Let R be a set of SNF-clauses and >l be the right hand
side of a sometime clause, we assume that R contains a loop in [.

Lemma 1. Gy & Hy

Proof. In order to obtain Gy, according to the algorithm, the clause

st = O(~l V —true) is added, which is the clause s~} = Ol (1).

As R contains a loop, in the initial set of clauses there must be some clauses
such that they may be resolved together to obtain 4; = Ol, 1 <i <k.

By resolution with clause (1) the resolvents are s_} A 4; = Ofalse, 1 <i < k
and by simplification true = O (—=s2} vV =4;).

These last clauses are used in order to obtain Gy as Gy < trueA(A;V...VA;) &
AL V...V A

For building Hy by the Breadth-First Search Algorithm, the left hand sides of
the clauses A; = Ol are disjoined, giving , Hy < A; V...V Ay, and so, Gy & Hy
]

Theorem 1. For alln € N H, & G,.

Proof. Base case: By Lemma 1, Hy & Gp.

Induction case: We assume Hp < Gy for all £ < i, k € IN and we prove the
hypothesis for i + 1. We know the following valid statements about H;y; from
the definition of the Breadth First Search algorithm:

G; < H; (Induction Hypothesis)
d) Hi+1 = H;

Assume we have generated guess GG; and we are about to derive G; 1. From the
algorithm the clause s;! = O (=l V —G;) is added. Using property (c) the clause
1 is transformed into

57t = O(-l VvV —H;). (1)

Then, applying step resolution, we obtain:

3.57' ANHipy = O-H; [b, 1]
4. 57" A Hipy = Ofalse [3,a]
5. true = O(-s;'V-H;y) [Simp. 4]

In order to obtain G;1 the algorithm is applied, where the clauses

true = O(-s;' V Fj) considered in this case just consist of clause 5 and thus
Gi+1 & G A [Hi+1] &GN Hi 1 H NH;y,.

By property (d) (H; A Hiy+1) & H;y1, and then G141 < Hipq O

Theorem 2. If G; is a loop, then G; < Giy1.

Proof. Let G; < D1V Dy V ...V D, be a loop.
As usual for the application of the algorithm the clause

570 = O(-lV -Gy) (2)
is added.

As G is a loop, there must be a set of clauses in the initial set of clauses that
together represent G; = Ol and G; = OG;.

Resolution can be applied among these clauses and clause 2 producing
s;' A G; = Ofalse. By applying simplification this latter clause is transformed
into true = O("Si_'l Vv —|Gi). Then, Gi+1 & G NG and so Gz’—i—l s G]

Theorem 3. The Step Loop Search Algorithm is complete.

Proof. By Theorem 1 and 2.

Theorem 4. The algorithm terminates.

Proof. 1. If there exists a loop in the initial set of clauses, then we know that
Breadth Search Algorithm terminates finding a loop H,,. By Theorem 1,
H, & G,, so G, is a loop and then by Theorem 2 G,, & G,,41. Thus, the
algorithm terminates by 2 (a).

2. If there does not exist a set of clauses which comprise a loop in the initial set
of clauses then, at some point, it will not be possible to produce the clause
s;l A C; = Ofalse and therefore no clauses true = O(ﬂs;l V F;) will be
derived during the proof and G;41 will be empty.

O

6 The Search for a Subsequent Loop

We assume that we have detected a sequence of guesses by applying the previous
algorithm to a set of SNF-clauses, X, with an eventuality <) but, later we
need to apply temporal resolution again to {>-l. Further, the application of the
temporal resolution rule to this or other eventualities has led to the generation
of new clauses which we may use in order to generate a new loop. Let Y be the
set of new SNF-clauses generated. Thus the set of SNF-clauses is now updated
as X UY.

Rather than carrying out the full loop search again, our intention is to re-use
the original loop search, even though a loop may not have been detected in the
first search.

6.1 Repeated Step Loop Search Algorithm

Assume we have Gy, ..., G, guesses from a previous search for a loop and, the
added set of clauses is Y. We can generate a new sequence of DNF formula, K;
as follows:

1. Guess K_; & false.

2. Given a guess K; add the clause s;' = O(~l V =K;) to the piece of proof
of the previous search corresponding with s;, together with the clauses Y.
Apply Step Resolution.

4. For all new clauses true = O (=s;! Vv FY) obtained during the proof, let

Ki+1 -~ (Gl VK,‘) A (\/ —|FJI)

Jj=1

w

5. Go to 2 until either
(a) K; = KH-l \ GH-I where K; 7‘—5? false or
(b) Ki VG & Kiy1V Giga,
whatever is the earliest.

6.2 Example

We now consider the example in Section 4.3 where clause 4 has been deleted.
In this case, all the guesses remain the same except the last one which now will
be the following

16. syl = O(=lV =aV —cV-dV -b)
17.s5' AanbAcAd= O-b [1,2,3,5,16]

As there are not clauses true = O(=s,' V), then G3 < false.

Thus, the search for a loop failed as the set of clauses did not comprise a loop but
we still can use these previous guesses in order to find a loop if the appropriate
clause is later added.

Now we consider the same example but we add clause 4, that is, d A a = Ob.
Algorithm 2 is now applied, with K _; < false. The new clause added is

18. s:ll = QOtrue

Nothing new is added and no clauses from 7-9 in example 4.3 can be resolved
with 4. Thus, Ky & false and Ty < a V false < a.

19. sal = Otrue

Again nothing new is added and no clauses from 10-12 in the example 4.3 can
be resolved with 4. Thus, K; < false and 71 < (a A b) V false < (a A D).

20. sfl = Otrue

As happened in the previous cases no new clauses are added from resolution
between 13-15 and 4, so Ky < false and T» < (aAbAcAd)Vialse & aAbAcAd.

20. s;l = Otrue
21.s5' AaAbAcAd= Ofalse [17,4]
22. true = O(—=s3' V-aV -bV —cV —d) [Simp.22]

Ks s (aAbAeANd)A(aAbAcAd) & (aANbAcAd).
T3 & (aAbAcAd).
Ty < T3. Then T3 is a loop.

6.3 The New Guess

Let G_1,Go,...,G; be the guesses generated by applying Algorithm 1 to a set
of clauses X. Let Y be the new set of clauses added to X and T_q,Tp, ..., T; be
the guesses obtained by applying Algorithm 1 to X UY. K_;, Ky, ..., K, are the
guesses obtained by applying Algorithm 2.

Theorem 5. The new guess T;, such that T; & G;, K; £ false has the property
T, & G;V K;.

Proof. We assume that the new guess is generated from the fragment of proof
corresponding to s;!; and K; impfalse whereas K_1, Ky, ..., K;_1 < false.
Let true = O(-s;; V Fj) be the clauses used for Algorithm 1 in order to
generate G;.

As aresult of adding the new clauses Y, if step resolution is applied among these
clauses, X or those containing s; 1 on the left hand side, clauses

true = O(—s;!; V ;) may be generated, where F; ¢ Cj. N.B. that Cj, must
exist as we are assuming K; ¢ false.

By applying algorithm 1, the new guess will be
m p

T & Gia A\ -Fy) v (\ ~Cp)]

j=1 k=1
m P O

& (G A (.\/ —Fj) V(G A\ =Ck))
& GV K;. "~ =

We have shown that the first new guess is like T; < G; V K;. If K; ¢ false then
trivially T; < G; V false. Next we will show that this is the case for all the new
guesses.

Theorem 6. Let i the first index such that T; & G;. Then for all j, j > i,
Tj -~ Gj \Y Kj.

Proof. We assume that T < GV K;. We will prove that 111 < G411V Kj11.
In order to obtain T}, the original algorithm must be applied to Tj. Thus, the
clause added is 57" = O(=IV —T}). As we know that T < G;V K the previous
clause can be rewritten as

57t = O(-l v =Gy) (1)

s;' = O(-lV-K;) (2)
As clause (1) was produced while obtaining G441, the clauses
true = O(ﬂs;l V Fji1) that appeared in the original search will be generated
again. From clause (2) and X UY new clauses true = O(ﬂs;l V Cj41) may be

derived. Then by applying algorithm 1.
P

Ty & T A\ ~Fis) vV (\ 2Cri1)]
j=1 k=1
& (G VKA [(v =Fj1) vV (\/ ~Cri1)]

k=1
m m m

& G5 A\ ~E)l VK A\ =F)] VGG v E) A\ =Cria)]
j=1 j=1 j=1
&G VK
As Kj/\(\/—' i+1) is subsumed by (GjVKj)/\(\/—ICkH). o
j=1 j=1

6.4 Completeness of the Repeated Step Loop Search Algorithm
Theorem 7. Algorithm 2 is complete.

Proof. The proof follows Theorem 5 and Theorem 6 and completeness of the
Step Loop Search Algorithm. O

Termination

Lemma 2. For all i, K;11 = K; VG;.

Proof. Let T_1,Tp,...,T541 be the guesses from applying Algorithm 1 to the
clauses X UY.

By Theorem 1 and definition of Breadth-First Search algorithm, ;1 = Tj.
By Theorem 6 T; < G; V K;. Then K;1 V Gi41 = K; V G;. Therefore, K; 1 =
K; VG, O

Theorem 8. The algorithm for searching for K; terminates.

Proof. We know that the search for 7; must terminate because of termination of
the algorithm described in section 4.2 when T; < T;41. By Lemma 2 we know
that K;11 = K; V G; if K; ¢ false. K; has the property that T; & G; V K;.
Then G; V K; & Giy1 V Kiq1. Therefore K; = G141 V Kiq1. O

7 Some Advantages of Algorithm 2

Let X be a set of SNF-clauses with an eventuality {>-/ when we apply Algorithm
1 to X, we obtain a sequence of guesses G_1,Go, ..., G-

Now we assume that some new set of SNF clauses, Y, have been added and we
intend to search for a loop in the set of clauses X UY.

As we have shown in section 6.3, if a new set of clauses is added the new guess
has the property T; & G; V K;, where K is given by Algorithm 2. Applying the
algorithm 1 to X UY for every new guess T}, the clauses that we must add for
generating the next guess are

s;7t = OV -G))
st = Ol V-K;)

Thus, all step resolution amongst clauses s;' = O(=l V =K;) and the set of
clauses X will be produced again, as they were produced when Algorithm 1 was
applied just to X.

If we apply Algorithm 2 instead, we can save all those resolution steps as we
only add clauses of the form s;' = O(~l V —K;).

8 Conclusions and Future Work

In this paper we have presented two algorithms for searching for loops based
upon step resolution.

The first algorithm uses outputs from the previous guess to guide the choice
for the next guess and its correctness is shown with respect to an existing loop
search algorithm. The second algorithm is based on the first one and allows us
search for a second loop without having to carry out a whole search again, since
it uses clauses generated during previous searches.

In the future we intend to apply these results to the development of strategies

for temporal resolution that allows us to reduce the search space. In particular,
we are interested in incorporating the set of support strategy [17,6]. In [7] the
set of support is defined for the case without eventualities. For full temporal
resolution the situation is more complex and we intend to achieve it combining
and extending the results presented in [7] and the results in this paper.
Even though the algorithms presented are used in order to search for loops
for the application of the temporal resolution operation, we can still guide this
search. Thus, our intention is to define a set of support strategy for temporal
resolution which involves a set of support for the search for loops process and
then combines it with the set of support for step resolution. Thus, if we consider
the example in Section 6.2 the Set of Support (SOS) for searching for a loop will
include clauses of the form s;! = O (=l V —K;).

The practical efficiency of the algorithms is part of current work. It is ex-
pected to be examined while updating an existing implementation for temporal
resolution where the search for a loop process is substituted with the algorithms
presented here.

We also intend to investigate the detailed complexity of this approach.

References

1. M. Abadi and Z. Manna. Temporal Logic Programming. Journal of Symbolic
Computation, 8: 277-295, 19809.

2. M. Abadi and Z. Manna. Nonclausal Deduction in First-Order Temporal Logic.
ACM Journal, 37(2):279-317, April 1990.

3. A. Cavalli and L. Farinas del Cerro. A Decision Method for Linear Temporal
Logic. In R.E.Shostak, editor, Proceedings of the 7th International Conference on
Automated Deduction, volume 170 of Lecture Notes in Computer Science, pages
113-127. Springer-Verlag, 1984.

4. J. Chomicki and D. Niwinski. On the Feasibility of Checking Temporal Integrity
Constraints. Journal of Computer and System Sciences, 51(3):523-535, December
1995.

5. C. Dixon. Temporal Resolution using a Breadth-First Search Algorithm. Annals
of Mathematics and Artificial Intelligence, 22:87-115, 1998.

6. C. Dixon and M. Fisher. The Set of Support Strategy in Temporal Resolution. In
Proceedings of TIME-98 the Fifth International Workshop on Temporal Represen-
tation and Reasoning, Sanibel Island, Florida, May 1998. IEEE Computer Society
Press.

10.

11.

12.

13.

14.

15.

16.

17.

M.C. Fernandez-Gago. Efficient Control of Temporal Reasoning. Transfer Report,
Manchester Metropolitan University, 2000.

M. Fisher. A Resolution Method for Temporal Logic. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI), pages 99-104,
Sydney, Australia, August 1991. Morgan Kaufman.

M. Fisher. A Normal Form for Temporal Logic and its Application in Theorem-
Proving and Execution. Journal of Logic and Computation, 7(4):429-456, August
1997.

M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. In Transactions
on Computational Logic 2(1), January 2001.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal Analysis of Fair-
ness. In Proceedings of the 7th ACM Symposium on the Principles of Programming
Languages, pages 163-173, Las Vegas, Nevada, January 1980.

Z. Manna and A. Puueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1992.

J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
ACM Journal, 12(1):23-41, January 1965.

A. P. Sistla, M. Vardi, and P. Wolper. The Complementation Problem for Buchi
Automata with Applications to Temporal Logic. Theoretical Computer Science,
49:217-237, 1987.

G. Venkatesh. A Decision Method for Temporal Logic based on Resolution. Lecture
Notes 1 Computer Science, 206:272—-289, 1986.

P. Wolper. The Tableau Method for Temporal Logic: An overview. Logique et
Analyse, 110-111:119-136, June-Sept 1985.

L. Wos, G. Robinson, and D. Carson. Efficiency and Completeness of the Set of
Support Strategy in Theorem Proving. ACM Journal, 12:536-541, October 1965.

