C. Fernandez-Gago, M. Fisher, and C. Dixon, “An Algorithm for Guiding Clausal Temporal Resolution”, jth International Workshop on Strategies
in Automated Deduction (STRATEGIESO1), 2001.
NICS Lab. Publications: https://www.nics.uma.es/publications

An Algorithm for Guiding Temporal Resolution*

M. Carmen Fernandez Gago, Michael Fisher, and Clare Dixon

Department of Computer Science, University of Liverpool, L69 7ZF, United Kingdom
{M.C.Gago, M.Fisher, C.Dixon}@csc.liv.ac.uk

Abstract. The clausal resolution method developed for discrete temporal log-
ics involves translation to a normal form, classical resolution on formulae within
states (termed step resolution) and temporal resolution between states. Step res-
olution may generate an unnecessarily large set of clauses. In addition, the most
expensive part of the method is the application of the temporal resolution oper-
ation. In this paper we develop an algorithm to guide the search for the set of
clauses needed for the application of temporal resolution. The algorithm is based
on the outputs of a refined temporal resolution rule which allows us to generate
temporal resolvents earlier within the process. In particular, this can also help
us to avoid unnecessary step resolution and focus search for the most relevant
clauses.

1 Introduction

The effective mechanisation of temporal logic is vital to the application of tempo-
ral reasoning in many fields, for example the verification of reactive systems [11],
the implemention of temporal query languages [4], and temporal logic programming
citeAbadiManna89-templog. Consequently, a range of proof methods have been devel-
oped, implemented and applied. The development of proof methods for temporal logic
has followed three main approaches: tableau [17], automata [15] and resolution [2,3,9,
16]. Resolution based methods have the advantage that, as in the classical case [13], a
range of strategies can potentially be used. Also the complexity of satisfiability of PTL,
the logic used in this paper, is PSPACE-complete [14] which motivates the need for
strategies to guide proof search.

In classical resolution a popular strategy has been the set of support strategy [18],
which restricts the application of the resolution rule, pruning the search space. Our
general aim here is to develop a set of support strategy to temporal resolution. We have
extended this strategy for PTL without eventualities (‘{>’, meaning sometime in the
future) as this follows from the classical case. The extension of the strategy to full PTL
is non trivial and we intend to achieve it using the algorithm which we propose in this
paper together with the revised temporal resolution rule presented.

Throughout, we use a proof method for temporal logics based upon the use of
clausal resolution [9]. The resolution procedure is characterised by the translation to
a normal form, the application of a classical style resolution between formulae that
occur at the same moment in time (step resolution), together with a novel temporal

* This work was partially supported by EPSRC grant GR/M44859.

resolution rule, which derives contradictions over temporal sequences. Although the
clausal temporal resolution method has been defined, proved correct and implemented,
it sometimes generates an unnecessarily large set of formulas that may be irrelevant to
the refutation. Not only that, but temporal resolution operations occur only after all step
resolution inferences have been carried out. Thus no search for temporal resolution can
be made earlier in the process. This means that in cases where a large amount of step
resolution can occur the method may be very expensive.

The temporal resolution operation requires us to search for a set of clauses which
satisfy a specified condition. As the search for candidates for this operation is the most
expensive part but, is certain to be required for the temporal resolution process, our
intention is to try to avoid all unnecessary step resolution operations and apply tempo-
ral resolution earlier in the process. In this sense, we propose an algorithm (and show
soundness, completeness and termination of it) based on the outputs of a revised tem-
poral resolution rule [8]. This temporal resolution rule allows us to generate temporal
resolvents earlier, with the resolvents generated then being used in order to guide further
search.

The structure of the paper is as follows. In section 2 we define the temporal logic
considered, namely Propositional Temporal logic (PTL) [10]. In section 3 we review
the basic resolution method while in section 4 we introduce the refinement of the
temporal resolution rule which will be used in the rest of the paper. In the subsequent
sections we propose the algorithm for guiding the temporal resolution search and give
an example of its use.

2 Syntax and Semantics of PTL

In this section we present the syntax and semantics of a discrete, linear temporal logic
with finite past and infinite future (PTL). The future-time connectives that we use in-
clude ‘<>’ (sometime in the future), ‘O’ (in the next moment in time), <[]’ (always)
‘U’ (until), and ‘W’ (unless, or weak until). A choice for domain in which to interpret
such temporal connectives is IN , i.e., the Natural Numbers ordered by the usual ‘less
than’ relation.

Formulae are constructed using the following connectives and proposition symbols.

- A set, P, of propositional symbols.

- Nullary connectives: true and false.

- Propositional connectives: —, V, A and =

- Temporal connectives: O, <> L], U, and start.

The set of well-formed formulae of PTL!, denoted by W F'F,,, is defined as follows:

- Any element of P is in W F'F,.

- true, false and start are in W F'F),.

- If ¢ and 9 are in W F'F}, then so are

=¢, OV Y, , GAY, 9=, O, [, dUY, oW, O¢

We define a model, M, for PTL as a structure (IN, <, 7p,) where 7, : N x P — T, F
is a function assigning 7" or F' to each atomic proposition at each moment in time.

! As usual, parentheses are also allowed to avoid ambiguity

As usual we define the semantics of the language via the satisfaction relation ‘=’". For
PTL, this relation holds between pairs of the form (A, u) (M is a model and ue IN)
and well-formed formulae. The rules defining the satisfaction relation are as follows

(M,u) Ep iff mp(u,p) =T (where p € P)
(M,u) | true
(M,u) [start iffu =0
(M, u) = ¢ A iff (M, u) |= ¢ and (M, u) |= o)
(M,u) = ¢ iff (M, u) = ¢
(M,u)y =O¢ iff (M,u+1) ¢
(M,u) = ¢ iffforall j € IN,if j > wthen (M,u) = ¢
(M,u) E ¢U1p iff there exists a k € IN,s.t. k > wand (M, k) =1 and
forall j € IN,if i < j < k then (M, j) E ¢
We define ‘V’, ‘=7, ‘7, 7 and ‘W’ as follows:
PVY=a(-9 A1) doPp=(@=>)A W= 0) W= (oUY)V L9
=1 =-¢pV Qo =-11-¢ false = — true

3 Clausal Resolution Method for PTL

Discrete temporal logics are diffcult to reason about principally because we must make
sure that formulae being resolved holds at the same moment in time. Further problems
occur due to the inductive interaction between the [J-operator and O-operator. The
resolution method described in [9] addresses these problem, by utilising a normal form,
called Separated Normal Form (SNF), which separates out complex formulae from their
contexts through the use of renaming [12], and a new temporal resolution operation
introduced specifically for formulae in the normal form.

3.1 Separated Normal Form

The resolution method depends on formulae being transformed into a normal form
(SNF), inspired by Gabbay’s separation result [10]. The normal form, which is pre-
sented in [7], comprises formulae that are implications with present-time formulae on
the left-hand side and (present or) future-time formulae on the right-hand-side. The
transformation of formulae into SNF depends on three main operations: the renaming
of complex subformulae; the removal of temporal operators; and classical style rewrite
operations. In this section we review SNF but do not consider the transformation pro-
cedure (we note that the transformation to SNF preserves satisfiability [7]).

Formulae in SNF are of the general form [] A,(¢; = 4;), where each ¢; = 1); is
known as a clause and is one of the following forms

start = \/lC (an initial clause)
/\ k, = O \/ lg (a step clause)

a d
/\ ky = Ol (a sometime clause)
b

where each k, ky, [, [4 and [represent literals.

3.2 Resolution Operations

Step resolution consists of the application of the standard classical resolution rule in
two different contexts. Pairs of initial or step clauses may be resolved as follows:

start = 11 VI ¢1 = O VI)
start = 1, V -l $2 = O(¢2 vV l)
start = 11 V 1y (p1 A d2) = O Vi)

The simplification operations are similar to those used in the classical case, consisting
of both simplification and subsumption. An additional operation is required when a
contradiction in a state is produced:

¢ = Ofalse
start = —¢
true = O—¢

This means that, if a formula ¢ leads to a contradiction in the next moment, then ¢ must
never be satisfied.

Temporal resolution operations resolve one sometime clause with a set of step clauses
[9] as follows:

d1 = OYn
b = Oty
x = Ol

x= (= \/ o)Wl
i=1

with the side condition that for all 4,1 < i < n, then |= ¢; = [and = ¢; = \/ bis

i=1

n n

from which we can derive /\ (¢ = O A \/ ¢;)). This side condition ensures that
i=1 j=1

the set of ¢; = O1); clauses together imply \/?"_; ¢; = O [JI. Such a set of clauses
is known as a loop in [. The resolvent produced includes a VW operator that must be
translated into SNF before any further resolution steps can be applied.
Termination. If start=- false is produced, the original formula is unsatisfiable and the
resolution process terminates.
Correctness. The soundness and (refutation) completeness of the original temporal
resolution method have been established in [9].

4 A Refined Rule

In this paper we use a version of the temporal resolution operation described in [8].
The basic idea behind this operation is that, rather than insisting we already have a set

of clauses that characterise a loop, we derive a more complex resolvent that allows for
the possibility that such a loop does not exist. If the set of clauses chosen do comprise
a loop, then the new resolvent turns out to be the resolvent from the original temporal
resolution rule. More importantly, using this revised temporal resolution rule, if the
clauses chosen do not comprise a loop, we will show, in this paper, how the resolvents
produced can be used to guide further resolution in such a way that allows us to detect
a loop if possible.

This new temporal resolution rule is

$1 = Oy
b = Oty
x = Ol
x= [D(A(¢i =00UA\ ¢)) ==V ¢i)Wﬁll
i=1 j=1 i=1

Notice that there is no side-condition. This has been incorporated into the resolvent,
which can be further transformed using classical manipulation to

x:[@ﬂA%:fWAV@thV@MH]

i=1 j=1 i=1

This new resolvent can be seen to introduce a new eventuality, <>—looping, (where
looping is the side condition for the original resolution rule), that effectively provides
a check to establish that an appropriate loop was chosen. If an appropriate loop is not
present, then this check will fail.

Once we rename {y—looping as {}s and s = —looping then step resolution will
give us true=> (O-s if we have chosen the correct loop (as looping is valid. This
will be proved below) and the temporal check (essentially a minimal form of temporal
resolution) will take place between the clauses {>s and true= O -s.

As the choice of ¢; in temporal resolution is crucial, our main aim is to guide the
search for a loop using this new temporal resolution rule. More specifically, we will use
the output of a failed temporal check process to guide the subsequent search for loops.
We proceed as follows. We guess a formula for the ¢; such that if our guess is correct,

n

that is \/ ¢; = O [JI, then the loop search phase terminates. Otherwise we use output
i=1

from subsequent resolution steps to make a new guess based on the previous one. We

show that this process terminates with the detection of a loop if one exists.

We assume that correct loops are in their simplest form, that is, factoring rule (simi-
lar to the classical case) and sbsumption have been applied wherever possible.

5 Algorithm

In this section we propose an algorithm to guide the search for a loop based on the
temporal resolution rule introduced in section 4. For each eventuality <)—I occuring
on the right hand side of a sometime clause, the algorithm constructs a sequence of
DNF formulae, G;, using the previous one and F'j, where F}; are disjunctions of literals
which appear in the outputs of the revised temporal resolution rule. The algorithm is
the following.

1. Choose G_1 = true.
2. Given G; apply the revised temporal resolution rule to it.
3. For all clauses true = O(-s V Fj), 1 < j < m obtained during the last proof

attempt, then G ;1 is obtained as G; 11 = G; A (\/ -Fj).
j=1
4. Go to 2 until either
(a) true = (O s is obtained and, hence, a loop has been found or
(b) G;41 = false, in which case we terminate without having found a loop.

6 Completeness

In the following we will prove completeness for this algorithm by relating it to the
completeness of the Breadth-First Search Algorithm proposed in [5]. First, we introduce
the Breadth-First Search Algorithm.

6.1 Breadth-First Search Algorithm

The Breadth-First Search Algorithm constructs a sequence of formulae, H; for¢ > 0,
that are formulae in Disjunctive Normal Form and contain no temporal operators. They
are constructed from the conjunctions of literals on the left hand sides of step clauses or
combinations of step clauses in the SNF-clause-set that satisfy certain properties (see
below). Assuming we are resolving with <>l each formula H; satisfies H; = Ol and
given H; each new formula H;, satisfies H;y1 = (O H;. When termination occurs
we have H; 1 < H; so that H; = O [for resolution with {>—l. We assume that all
necessary step resolution has been carried out.

Breadth-First Search Algorithm For each eventuality) occuring on the right hand
side of a sometime clause do the following.

1. Search for all the step clauses of the form C, = OI, for & = 0 to b (called start
PTL-clauses), disjoin the left hand sides and generate the fop formula H ¢ equivalent

to this, i.e.
b

Hy & \/Ck

k=0

Simplify Hy. If | Hy we terminate having found a loop-formula (true).

2. Given formula H;, build formula H;; for< = 0,1, ... by looking for step clauses
or combinations of clauses of the form A; = OBj, for j = Omboztoc where
= Bj = H;and |= Aj; = Hy. Disjoin the left hand sides so that

c
Hi—i—l = \/ A]’
j=0

and simplify as previously.
3. Repeat (2) until
(a) E H;.We terminate having found a loop-formula and return true.
(b) = H; & H;y1. We terminate having found a loop-formula and return the DNF
formula H;.
(c) The new formula is empty. We terminate without having found a loop-formula.

Soudness, Completeness and Termination for the BFS-algorithm Given a set of
SNF clauses R, that contains a loop A = O []I, applying BFS algorithm will output
a DNF formula A’ such that A’ = O[]l and A = A'. Termination is also estab-
lished.[5]

6.2 Completeness of the New Algorithm

To show the completeness of the algorithm we will prove that foralli > 0,G ; < H; by
induction. Let R be a set of SNF-clauses and <)l be the right hand side of a sometime
clause, we assume that R contains a loop in /.

Lemma 1. Gy & Hy

Proof (Outline).In order to obtain G ¢, according to the algorithm, the revised temporal
resolution rule must be applied to G _; . Some of the clauses derived during the proof are
true = O (—s Vtrue) and s = O (=l V —true), which are the clauses true = Otrue
and s = O=l (1).

As R contains a loop, in the initial set of clauses there must be some clauses such
that they may be resolved together to obtain A; = OIl,1 < ¢ < k. By resolution
with clause (1) the resolvents are s A A; = Ofalse, 1 < i < k, and by applying
simplification to the above clauses, true = O(—sV —4;),1 < i < k, is obtained.
These latter clauses are used to obtain G as follows: Go = true A (4; V...V A;) =
A1 V...V A Inbuilding H, by Breadth-First Search Algorithm, the left hand sides of
the clauses A; = Ol are disjoined, giving, Hy < A1 V ...V Ag. Hence, Gy & Hy

Theorem 1. Foralli €e N H;11 < Giy1.

Proof (Outline).

Base case: By Lemma 1 Hy < Gy.

Induction case: We assume Hy, < G, forall £ < i,k € IN and we prove the hypothesis
for i + 1. We know the following valid statements about H ;1 from the definition of the
Breadth First Search algorithm:

(a). Hiy1 = OH; (¢). G; < H; (Induction Hypothesis)

Because of the translation into the normal form of the resolvent obtained from applying
the new temporal resolution rule to G ;, we obtain the clauses

1. s=O(-lV-G;)and2. true = O(-sV Gy).

Using property (c) these two clauses are transformed to

3. s=> O(=lV-H;)and4. true = O(-sV H;)

Then, applying step resolution, we obtain:

5.8 NH;y1 = O-H; [Step Resolution b,3]
6. s A Hipq = Ofalse [Step Resolution 5,a]
7. true = O(-sV -Hi) [Simp.6]

In order to obtain G; 41 the algorithm is applied, where the clauses true = O (—sV F})
considered in this case are 4 and 7.

Gi+1 =G; A [—IHZ' \Y Hi+1] =G; A [—|Gl \Y Hi+1] = (Gl A —le) \Y (Gl N Hi+1) =
false v (Hz AN Hi+1) =H;ANH;

and by property (d) H; A Hi+1 < H;11, which means G; 11 & H;yq

Theorem 2. Let L be a DNF formula. Then by applying the new temporal resolution
rule, the clause true = O s is obtained if L is a loop.

Proof (Outline). Let L = D1 V Dy V ...V D,. We are assuming L is a loop, i.e.,
(J[L = O(L Al)]. After renaming, the clauses ¢t = {>s and s = —[L = O (L Al)]
are obtained.

Because of the translation of the second clause into the normal form, the clauses
produced are s = L and s = O (—l V —L). The first clause produces
true = O (s V Dy V...V D,) (1) and the second one, s = O(~lV -D;) (B;)
1<i<n.

As L is a loop, there must be a set of clauses in the initial set of clauses such that
together represent L = Ol and L = O L. Clauses By, ..., B,, together with the previ-
ous ones produce the clauses s A D; = Ofalse, 1 < i < n. Applying simplification to
these clauses we obtain true = O (—s V =D;),1 < i < n. The previous clauses can
be resolved with clause (1) producing true= O —s.

Theorem 3. IfG; is a loop, then G; = Giy1.

Proof. By Theorem 2, if G; is a loop, then true = (O —s is generated, so according to
the algorithm G, 11 = G; A [false] = G; A true = G;

Theorem 4. The algorithm terminates.

Proof. 1. If there exists a loop in the initial set of clauses, then we know that Breadth
Search Algorithm terminates finding a loop H,,. By Theorem 1 H,, & G,,, 50 G, is a
loop and then by Theorem 2 true = O —s is obtained.

2. If there does not exist a set of clauses which comprise a loop in the initial set of
clauses, then at some point it will not be possible to produce the clause sAC; = Ofalse
and therefore no clauses true = O (—s V F;) will be derived during the proof apart
from the clause true = O (-s V G,,), then G, 11 = Gy, A [0G,,] = false

6.3 Example

Let the loopbe a Ab A ¢ Ad = O [JI and the set of SNF clauses be as follows:

1. a= 0Ol 4.dNa= Ob
2.0Ac= QOd 5.aAb=Oc
3.cAhd= Qa 6. x=Al

According to the algorithm the first choice is G 1 = true. So, some of the resolvents

are
7. true = O(-s V true)

8. S_1 = Ol

9. s_1 Aa = Ofalse [SRES 1,3]
10. true = O(—s_1 V-a) [SIMPY]
So, the next G; will be, Gg = true A a = a.

11. true = O(-so Va)

12. so = O(=lV —a)

13. sg Aa AcAd= Ofalse [1,3,12]

14. true = O (ﬂso V-aV-cV —|d) [SIMP 13]

15. true = O (=sp V e V d) [SRES 11,14]

Clause 15 subsumes clause 14,50 G1 = aA[~aV (cAd)] =aAcAd.

16. true = O(-s; Va)

17. true = O(-s1 Vo)

18. true = O(-s1 Vd)

19. s1 = OV -aV-eV-d)

20. st AaAbAcAd= Ofalse [SRES 1,2,3,5,19]
21 true = O(-s1 V-aV -bV eV —d) [SIMP 20]
22. true = O (-s; V -b) [SRES 16,17,18 21]

Clause 22 subsumes clause 21. According to the algorithm

G2 = (aNeAd)A(—aV—cV—dVD) = falseVfalseVfalseV(aAcAdAb) = (aAcAdAD),
which is the correct loop, so if the algorithm is applied again true = O-s will be
obtained, which means termination.

7 Conclusions and Future Work

In this paper we have presented an algorithm based upon a refined clausal temporal
resolution rule. This new rule has not only allowed us to develop such an algorithm, but
allows more flexibility in the search for a refutation.

The algorithm uses outputs from the previous attempt to select a loop to guide the
choice for the next guess and its correctenss is shown with respect to an existing loop
search algorithm.

In the future we intend to apply these results to the development of strategies for
temporal resolution that allow us to reduce the search space. In particular, we are in-
terested in incorporating the set of support strategy [18,6], which has been pariculary
successful in the classical case. The algorithm presented in this paper provides a basis
for such a strategy and allows the flexible interleaving of step resolution and loop search
operations.

As our main aim is to develop a set of support strategy for the temporal case, an

important task to carry out will be to combine and to compare such a strategy with
alternative proof strategies and to examine the practical efficiency of such combined
strategies. In this future work the results presented in this paper will be essential.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Abadi and Z. Manna. Temporal Logic Programming. Journal of Symbolic Computation,
8:277-295, 1989.

M. Abadi and Z. Manna. Nonclausal Deduction in First-Order Temporal Logic.

ACM Journal, 37(2):279-317, April 1990.

. A. Cavalli and L. Farinas del Cerro. A Decision Method for Linear Temporal Logic. In

R.E.Shostak, editor, Proceedings of the 7th International Conference on Automated Deduc-
tion, volume 170 of LNCS, pages 113—127. Springer-Verlag, 1984.

. J.Chomicki and D. Niwinski. On the Feasibility of Checking Temporal Integrity Constraints.

Journal of Computer and System Sciences, 51(3):523-535, 1995.

. C. Dixon. Temporal Resolution using a Breadth-First Search Algorithm. Annals of Mathe-

matics and Artificial Intelligence, 22:87-115, 1998.

. C.Dixon and M. Fisher. The Set of Support Strategy in Temporal Resolution. In Proceedings

of TIME-98 the Fifth Workshop on Temporal Representation and Reasoning, Sanibel Island,
Florida, May 1998. IEEE Computer Society Press.

. M. Fisher. A Normal Form for Temporal Logic and its Application in Theorem-Proving and

Execution. Journal of Logic and Computation, 7(4):429-456, 1997.

. M. Fisher and C. Dixon. Guiding Clausal Temporal Resolution. In Advances in Temporal

Logic, volume 16 of Applied Logic Series, pages 167-184. Kluwer, 2000.

. M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. In Transactions on Com-

putational Logic 2(1). January 2001.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal Analysis of Fairness. In
Proceedings of the 7th ACM Symposium on the Principles of Programming Languages, pages
163-173, Las Vegas, Nevada, January 1980.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1992.

D. A. Plaisted and S. A. Greenbaum. A Structure-Preserving Clause Form Translation.
Journal of Symbolic Computation, 2(3):293-304, September 1986.

J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. ACM Jour-
nal, 12(1):23—41, January 1965.

A. P. Sistla and E. M. Clarke. Complexity of propositional linear temporal logics. ACM
Journal, 32(3):733-749, July 1985.

A. P. Sistla, M. Vardi, and P. Wolper. The Complementation Problem for Buchi Automata
with Applications to Temporal Logic. Theoretical Computer Science,49:217-237, 1987.
G. Venkatesh. A Decision Method for Temporal Logic based on Resolution. Lecture Notes
in Computer Science, 206:272-289, 1986.

Pierre Wolper. The Tableau Method for Temporal Logic: An overview. Logique et Analyse,
110-111:119-136, June-Sept 1985.

L. Wos, G. Robinson, and D. Carson. Efficiency and Completeness of the Set of Support
Strategy in Theorem Proving. ACM Journal, 12:536-541, October 1965.

10

