
SMEPP: A Secure Middleware For
Embedded P2P

Rafael J. CARO BENITO1, Daniel GARRIDO MÁRQUEZ2, Pierre PLAZA TRON3,
Rodrigo ROMÁN CASTRO2, Nuria SANZ MARTÍN3, José Luis SERRANO MARTÍN1

1TECNATOM, S.A., Av.Montes de Oca, 1, S. Sebastián de los Reyes (Madrid), 28703, Spain
Tel: +34 916598600, Fax: + 34 916598677, Email: rcaro, jlserrano@tecnatom.es

2University of Málaga, Campus de Teatinos S/N, Málaga, Spain
Tel: +34 952133371, Fax: + 34 952131397, Email: roman, dgarrido@lcc.uma.es

3Telefónica I+D, C/ Emilio Vargas, 6 Madrid, 28043, Spain
Tel: +34 913374000, Fax: + 34 913374004, Email: pierre,nsanz@tid.es

Abstract: The increasing presence of embedded devices with internet access
capabilities constitutes a new challenge in software development. These devices are
now cooperating in a distributed manner towards what has been called as “Internet of
Things”. In this new scenario the client-server model is sometimes not adequate and
dynamic ad-hoc networks are more common than before. However, security poses as
a hard issue as these systems are extremely vulnerable. In this paper, we introduce
SMEPP project, which aims at developing a middleware designed for P2P systems
with a special focus on embedded devices and security. SMEPP is designed to be
deployed in a wide range of devices. It tries to ease the development of applications
hiding platforms details and other aspects such as scalability, adaptability and
interoperability. A full implementation of this middleware is already available that
incorporates security features specially designed for low-resource devices.
Moreover, we describe two business applications being developed using this
middleware in the context of “Digital Home” and “Environmental Monitoring in
Industrial Environments”.

Keywords: Middleware, security, P2P, embedded.

1. Introduction
Embedded peer-to-peer (EP2P) systems are emerging as a new scenario where limited
resource devices are accessing the network. One of the barriers preventing wider and faster
adoption of these systems is their intrinsic complexity. A middleware providing abstraction
is needed to ease application and service development. This middleware should include
mechanisms for secure interaction between peers and abstract developers from problems
such as lack of infrastructure or security vulnerabilities. It should also allow interaction
with third parties. The expected results of this middleware would therefore be a cost
reduction in the development of applications and services for EP2P systems.
 European Commission’s FP6-funded STREP project SMEPP (Secure Middleware for
Embedded Peer-to-Peer systems) [1] tries to develop such a middleware. It is specifically
designed for deployment in a range of different devices, from wireless sensor networks [2]
to full-featured computers. Energy consumption is therefore a key issue from the beginning.
Security is also considered from the design phase, including cryptography and prevention
of attacks, specifically those that are most relevant for resource-constrained devices.
Additionally, it interoperates with existing third party applications. This middleware is
being validated through its use in two business applications, leaving the client/server
paradigm to take advantage from the resources in the network.

R. J. Caro, et al., “SMEPP: A Secure Middleware for Embedded P2P”, ICT Mobile and Wireless Communications Summit (ICT-
MobileSummit09), 2009.
NICS Lab. Publications: https://www.nics.uma.es/publications

1.1 – Related work

Related work can be found in some projects. RUNES[3] project developed a software
architecture for embedded systems with network capabilities. It also introduces a
component model for the development of the architecture including an API that hides the
details of hardware that are specific to the device. MORE [4] is another research project
that proposes a service-based architecture similar to SMEPP. This architecture considers
three levels of devices including sensor networks, mobile devices and desktop computers.
MORE also includes simplified versions of some protocols for less-capable devices.
Finally, AMIGO [5] is oriented towards smart computing for home systems, smoothing the
integration of services in electronic devices using discovery mechanisms.
 All these projects have been considered. However, none of them covers all the topics
relevant to SMEPP, such as security, peer-to-peer communication, services, etc.

2. Objectives
The main objective of the SMEPP project is to develop a new middleware, based on a new
network centric abstract model, specially designed for embedded devices using the peer-to-
peer paradigm, and trying to overcome the main problems of the currently existing domain
specific middleware proposals. The middleware will be secure, generic and highly
customizable, allowing for its adaptation to different devices and domains.
 In order to achieve these generic objectives, the project research efforts and specific
project goals have been arranged around four main topics:

• Abstract Service and Interaction Model.
• Middleware Architecture and Infrastructure.
• Security.
• Applications.

3. Innovation
The study of the state of the art of middleware for EP2P systems [6] allowed detecting
necessities in this field which had not been covered by previous works. In addition, SMEPP
tried to use the best of the different existing approaches obtaining a solution for the
development of software in EP2P systems. Special attention has been paid to the WSN and
MANET technologies. Here is a summary of the strongest points of SMEPP:

• Security inside the middleware: Security has been considered at all levels of the

middleware, from the interaction model to the lower levels.
• Interoperability with internet standards/legacy systems.
• Adaptation and configuration to different devices/OS/ platforms: networking interfaces

and protocols, operating systems, hardware platforms and programming languages.
• Real-Time Requirements: maximum transmission rate, maximum amount of time that

the channel is being used during each transmission, etc.
• Other QoS Requirements: SMEPP can monitor the quality of resources and adapt,

depending on application constraints.
• Energy Awareness: The SMEPP architecture provides schemes to help developers

define energy requirements and schedules.
• Scalability from design.
• Requirements on the hardware: SMEPP can be executed in small devices such as sensor

nodes or in higher computer devices.

4. Technology Description
The work has been split into several work-packages. The most relevant activities for the
purpose of this paper are architecture, security and validation applications.

4.1 – Architecture

The software architecture for SMEPP middleware follows a component model. It also
contains a set of tools for adapting the middleware to different devices, applications and
networks. The idea is to produce a component framework where each component can be
efficiently adapted to its environment.
 Two key aspects have been considered: the management of security aspects and keeping
the architecture flexible, scalable and adaptable to different devices and platforms.
Architectural drivers were defined: Security, adaptability, scalability, interoperability and
platform heterogeneity.
 Interaction with third party systems, such as OSGi [7], has been taken into account. As
a result, SMEPP and OSGi coexist and cooperate in the same application.

Figure 1 shows a high-level view of the architecture. It is comprised of three functional
layers. Below these three layers there is an execution environment allowing all architecture
components to run. In the upper layer, SMEPP defines an abstract service model, on top of
which the applications are built. The main role of the Service Model Support block is to
provide the application developer with an API to access the middleware. The second block
in this upper layer is responsible for supporting extensions. These extensions allow the
service model to be enhanced with new functionalities and domain-specific features.

Figure 1: SMEPP Middleware Architecture in context

 The intermediate layer contains the SMEPP Common Services. It supports the core
functionality: event, group, service, message management, or network monitoring. This
layer uses a component-based technology. Different implementations of the same
component can exist for different devices or environments. Components in this layer are:

• Event Management: This component allows for creating, publishing, receiving or
subscribing events to the SMEPP network.

• Group Management: This component is responsible for handling groups inside the
middleware. The group concept is a key concept in SMEPP, as it glues peers together in
a basic entity. Peers are authenticated and authorised when entering a group.

• Service and Message Management: This component manages service contracts. It also
supplies the mechanisms for message exchange among peers and/or services.

• Extension Management: It provides the tools to add extensions to SMEPP (e.g. OSGi).
• Overlay Network Management: It is responsible for the acceptance of new peers to the

network. It also monitors of peer status, and notifies of peer (dis)connection.

 At a lower level we find the SMEPP Enabling Services. They include basic peer-to-peer
communication and underlying communication protocols, (e.g. secure routing). These
components depend heavily on the restrictions imposed by the infrastructure. The three
components available at this lower level are:

• Secure High-Level Peer Communication: It offers the above layer the ability to

communicate peers in a secure and abstract way.
• Secure Topology Management: It is in charge of security in the SMEPP network,

managing authentication of new peers, permissions to access the SMEPP network and
protection of routing information exchanged in the network.

• Adaptation layer: It is responsible for providing an abstract interface above the
execution infrastructure. It isolates the above layers from implementation details. It
offers primitives for sending messages and energy management.

 Security is taken into account from the start in the software architecture. It covers all the
architectural layers. Built-in security components in SMEPP architecture are:

• Group Security: Maintains security inside SMEPP groups. It is responsible for tasks

such as peer authentication trying to join a group.
• Cryptographic Services: Provides cryptographic primitives (encryption, decryption,

digital signature, etc.)
• Infrastructure Security: It uses special built-in features from specific devices. For

instance, it can take advantage of cryptographic primitives available in some processors.

4.2 – Security

Security is a critical issue for the correct performance of a embedded P2P network. This is
especially important in low-end devices as they are particularly weak when confronted to
external or internal security threats. One of the main goals of SMEPP is the seamless
integration of security mechanisms inside middleware architecture. These security
mechanisms must be transparent and adaptable.

Peer

Peer

Peer

Peer

1
0
1

GROUP

1 0 1

Figure 2: Group-oriented security

 Transparency is achieved by integrating security as an intrinsic part of group
functionality inside SMEPP (see figure 2). When joining a group, a peer must present some
security credentials. If they are valid, the peer will be allowed to access the secure
communications taking place inside the group. The application developer must only provide
those credentials when trying to join a SMEPP group. The middleware will be in charge of
implementing this admission mechanism and the secure communication inside the group.
 When a peer tries to join a group, the middleware executes a mutual authentication
mechanism based on challenge-answer protocols. A shared session key will provide
security for the communication channel. This session key is shared by all members of a
group and used by the cryptography symmetric-key primitives and hash functions. At the
same time, other transparent protection mechanisms allow to renew the session key when
necessary, detecting malicious behaviour of a group member, etc.

 Level 0 Level 1 Level 2

Group admission None Shared secret key Public key cryptography
Data security None Authentication Authentication and encryption

Session key protection None Global (key renewal) Global and Local (anti-SCA)

Table 1. Security levels inside SMEPP

 Respecting adaptability, security is not imposed to the developer. The desired security
level can be established (see Table 1). SMEPP allows configuration of the group admission
process and the security in information transmission as well as session key protection,
including protection against side channel attacks (SCA).
 SMEPP offers an additional tool for protection of communications: security domains. A
SMEPP network contains multiple security domains: A global domain (members of a
SMEPP network) and several group domains (members of a SMEPP group). An application
can make a SMEPP network accessible by any device or only some privileged devices.
 Resource-constrained devices, such as smart sensors are able to execute symmetric
cryptography via hardware [8] or software [9], and can also execute public key
cryptography through the use of elliptic curves [10]. Finally, as SMEPP follows a
component-based model, it is possible to dismiss security features not required in the final
deployment.

5. Business impact
Reduction of the life cycle time of software is a trend in the Internet and embedded domain.
This means that ROI must be obtained very quickly. A middleware abstracting the wide
range of OS and devices is required to speed up the process of development. This reduction
in development time can be translated directly to cost reduction. The training cost of the
developers will also decrease. Finally, when the need to tackle security and privacy issues is
mandatory, SMEPP appears as a very appealing solution [11, 12].

 SMEPP middleware looks promising for software development enterprises, from
companies specialized in small devices (e.g. sensors) to network operators. In the second
case, the interest comes from the development of applications for mobile devices with open
source operating systems (e.g. LiMo [13], Android [14], OpenMoko [15]).

6. Applications
Two application domains have been considered for validation purposes: Environmental
control in industrial environments and services for digital home using mobile devices.
Similar high-level requirements are found in both fields such as device management, alarm
generation, video-conference, message exchange, etc. Events can be generated in both
domains either by devices or by users.
 Both validation scenarios also have similar security and privacy requirements. They
need the notion of ‘groups’, where users need to authenticate themselves in order to access
to their services. In addition, all the information exchanged within the group must be
adequately protected. Finally, when sensitive information is processed (e.g. radiation dose,
patient data), a higher security level can be requested to the middleware.

6.1 –Environmental and radiological monitoring in industrial plants

This application [16] consists of two parts, the first one for Remote Control of Work and
the second one aimed at the Radiological Environmental Monitoring.
 The first part integrates data from area and personal dosimetry sensors in a single tool,
displaying all the available field information, including video and audio, as well as other
features (access to documentation, personal identification by biometric systems, etc.). This
means a breakthrough in nuclear safety, improving the radiological protection of workers. It
also is an efficiency improvement, with better control and supervision of work. The system
applies directly to various business areas in the nuclear sector.
 The second part (Radiological Environment Monitoring) allows the integration of
radiation measurements along with other variables of interest (primarily meteorological).
This part of the application also has a direct translation in other fields such as
environmental protection, infrastructure, facing the threat of terrorism or the smuggling of
radioactive materials.
 A first version [17] with three levels of devices for processing information has been
developed: (1) a network of Crossbow micaZ motes using 802.15.4, (2) PDA with WiFi
(802.11b / g) for itinerant workers and (3) laptop with WiFi for Radiological Protection
personnel responsible for monitoring environmental conditions and radiological equipment.

Figure 3. Prototype module integrating simple radiation sensor

 The current version includes a radiation sensor with a wireless transmitter (see Figure
3). At the application level, transmission of audio and video is also being included as well
as work-flow features. The software is deployed in a wireless sensor network supporting
groups of workers and staff of Radiological Protection. The goal is to reduce the radiation
received by staff and enable collaboration between teams working in harsh environments.

6.2 –Services for digital home systems

In the domain of digital home services, several applications are being developed. One of
them allows users to generate some events, such as alarms. The system can locate other
users that are best suited to manage the alarm depending on the context and route the alarm
to that user. If the alarm can not be handled by that user, the system automatically tries to
find a new user that can respond to the event. Once the alarm is received, users can
exchange text messages, send images or establish a video-conference.

 In the current version, users can generate alarms through a simple graphical interface in
a mobile device such as a PDA (see figure 4). This alarm is received by the rest of users in
the network. When a user confirms reception of the alarm, both users establish
communication. Other users are notified that the alarm is being handled by someone else.

Figure 4. Application prototype with alarm management and communication between relatives

 In the version of the application being developed at the moment, the alarm will not
reach all the users. The system will detect in real time in a context-sensitive way who is the
optimal user that can manage the alarm. In this way, the performance improves and users
are not informed of alarms that are of no relevant.
 Alarms can be generated also by sensors that communicate with the residential gateway.
This gateway forwards the information to SMEPP network. Sensors range from water or
gas leak detectors to biomedical devices measuring Blood pressure.

7. Conclusions
The amount of research works on middleware aiming at efficiency and reuse in software
development in the last years is very important. However, it is not usual to focus on devices
with few resources. At the same time, the number of “simple” devices with network access
is increasing at an enormous speed. If we try to find middleware focused on limited-
resource devices and peer-to-peer communication in an ad-hoc network, the number of
results with a functional implementation is very small.
 Security is one of the challenges in the near future for this kind of systems. A network
that is created dynamically without an underlying infrastructure or servers can not rely on
standard security schemes.

 In this paper, we have shown a high level view of the SMEPP project, where a
middleware for secure peer-to-peer communication among embedded devices has been
designed and built for development of secure embedded P2P applications. Currently, a full
implementation of the middleware is available, and work is still in progress with
performance improvements. The chosen language for the implementation is Java.
Interoperability with .Net is also provided. There is also a version in nesC[18] for
TinyOS[19], called “SMEPP Light”. SMEPP is running in devices such as smart sensors,
smart phones, PDAs, laptops or desktop PCs. The two validation applications are currently
being developed in an iterative approach. Prototypes of both applications are available.
 From the industrial point of view, the most interesting advantage of SMEPP
middleware is the possibility of abstraction for embedded P2P applications. This is not the
case with proprietary systems where each implementation requires an ad-hoc development.

References
[1] SMEPP Project website. http://www.smepp.org
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. “Wireless sensor networks: a survey”.

Computer Networks: The International Journal of Computer and Telecommunications Networking, vol.
38, no. 4, pp. 393-422, March 2002.

[3] Costa, P. et al. The RUNES Middleware: A Reconfigurable Component-based Approach to Networked
Embedded Systems. 16th Annual IEEE Internacional Symposium on Personal Indoor and Mobile Radio
Communications IMRC'05), Berlin, Germany. September 2005.

[4] MORE project, http://www.ist-more.org/
[5] Georgantas, N.; Ben Mokhtar, S.; Bromberg, Y.; Issarny, Valérie; Kalaoja, J.; Kantarovitch, J.; Gérodolle,

A.; Mevissen, R. 2005. The amigo service architecture for the open networked home environment.
Proceedings of 5th Working IEEE/IFIP Conference on Software Architecture. WICSA. Pittsburgh, 6 - 10
Nov. 2005

[6] SMEPP Deliverable D1.1 State of the art and Generic Middleware Requirements at http://www.smepp.org
[7] OSGi website. http://www.osgi.org
[8] IEEE 802.15 WPANTM Task Group 4 (TG4). http://www.ieee802.org/15/pub/TG4.html
[9] K. Jun Choi, and J.-I. Song. “Investigation of Feasible Cryptographic Algorithms for Wireless Sensor

Network”. Proceedings of the 8th International Conference on Advanced Communication Technology
(ICACT 2006). Phoenix Park (Korea), February 2006.

[10] An Liu, and Peng Ning, “TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless
Sensor Networks”. Technical Report TR-2007-36, North Carolina State University, Department of
Computer Science, November 2007.

[11] ITU Internet Reports 2005: The Internet of Things. November 2005
[12] Internet of Services and Internet of Things: adapting to user, task, and location in a seamless fashion. Fia

Madrid. December 2008
[13] http://www.limofoundation.org/
[14] http://code.google.com/intl/en/android/
[15] http://wiki.openmoko.org
[16] E. Cabrera, R.J. Caro, M. Díaz, J. Serrano “Proyecto SMEPP: Redes inalámbricas de sensores y sistemas

“peer-to-peer” empotrados. Aplicación en la industria nuclear” Proceedings of the 33rd meeting of the
Spanish Nuclear Society (SNE 2007)

[17] R.J. Caro “SMEPP un proyecto I+D+i del 6º PM aplicado al Control Radiológico Medioambiental y a la
mejora de la Protección Radiológica” Journal of the Spanish Radioprotection Society. Nº 54, vol. XIV,
2007.

[18] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, “The nesC language: a holistic
approach to networked embedded systems”, in: Proceedings of the ACM SIGPLAN conference on
programming language design and implementation (PLDI 2003), San Diego, CA, USA, June 2003, pp. 1–
11.

[19] TinyOs Community Forum, http://www.tinyos.net

http://www.smepp.org/
http://www.ist-more.org/
http://www.limofoundation.org/
http://code.google.com/intl/en/android/
http://wiki.openmoko.org/

	1. Introduction
	1.1 – Related work

	2. Objectives
	3. Innovation
	4. Technology Description
	4.1 – Architecture
	4.2 – Security

	5. Business impact
	6. Applications
	6.1 –Environmental and radiological monitoring in industrial plants
	6.2 –Services for digital home systems

	7. Conclusions
	References

