A. Mana, et al., “A Framework for Secure Execution of Software”, International Journal of Information Security (IJIS), vol. 3, pp. 99-112, 2004.
NICS Lab. Publications: https://www.nics.uma.es/publications

International Journal of Information Security manuscript No.

(will be inserted by the editor)

A Framework for Secure Execution of Software *

Antonio Mana, Javier Lopez, Juan J. Ortega, Ernesto Pimentel, Jose M. Troya

Computer Science Department, University of Malaga
Campus de Teatinos, 29071 - Mélaga, Spain

e-mail: {amg, jlm, juanjose, ernesto, troya}@lcc.uma.es

Received: date / Revised version: date

Abstract Nowadays, piracy is considered one of the
major problems of software industry. We can find in the
literature many research initiatives that have tried to
solve this problem, and most of them are based on the
use of tamperproof hardware tokens. This type of solu-
tions depends on two basic premises: (i) to increase the
physical security by using tamperproof devices, and (ii)
to increase the complexity of the analysis of the soft-
ware. The first premise is reasonable. The second one is
certainly related to the first one. In fact, its main goal
is that the pirate user can not modify the software to
bypass an operation that is crucial: checking the pres-
ence of the token. However, the experience shows that
the second premise is not realistic because the analysis
of the executable code is always possible. Moreover, the
techniques used to obstruct the analysis process are not
enough to discourage an attacker with average resources.

In this paper, we review the most relevant works re-
lated to software protection, present a taxonomy of those
works and, most important, we introduce a new and ro-
bust software protection scheme. This solution, called
SmartProt, is based on the use of smart cards and cryp-
tographic techniques, and its security relies only on the
first of previous premises; that is, Smartprot has been
designed to avoid code analysis and software modifica-
tion. The entire system is described following a lifecy-
cle approach, explaining in detail the card setup, pro-
duction, authorization, and execution phases. We also
present some interesting applications of Smartprot as
well as the protocols developed to manage licenses. Fi-
nally, we provide an exhaustive analysis of its implemen-
tation details.

* Work partially supported by the Spanish Ministry of Sci-
ence and Technology under the Project TIC2002-04500-C02-
02.

1 Introduction

There is a new generation of distributed applications,
like distributed object systems, web services, electronic
commerce and grid computing, that can provide sub-
stantial advances in the use of Internet resources. How-
ever, security problems become an insurmountable bar-
rier for the widespread deployment of those types of ap-
plications.

We are facing a situation where security is still con-
sidered as a supplement for applications. That is, most of
times it is not considered as a requisite during the design
phase of the systems. On the contrary, security services
are added during the implementation. Moreover, it is
sometimes considered just as an external service. Every-
body can observe a big gap between what technology can
provide and what consumers actually get. The situation
is producing an increasing consumers’ skepticism.

The protection of software applications is one of the
most important problems to solve because it is the foun-
dation of other security issues. However, solving software
protection problems is not a trivial task. Several areas
of research concerning different aspects of this problem
are still open:

— Intellectual property protection: Its objective is to
link the software with information about its author
by using techniques such as watermarking [6].

— Protection against function analysis: The objective
here is to prevent a malicious host from discovering
what function is computed by a software element.
Techniques such as code obfuscation [5] or function
hiding [17] are used, sometimes complemented by the
use of hardware tokens [7].

— Software use-control: It is aimed to guarantee that
only authorized users can run the software according
to some contractual conditions.

The work presented in this paper focuses on the last
of those problems. We also discuss the possibilities and
implications of protecting software in order to: (i) avoid

the analysis of the software operation, and (ii) ensure
that the software performs the intended tasks.

It is important to realize that the secure software
execution can open many possibilities in most of infor-
mation security areas. The most important and direct
consequence of the protection of software is the preven-
tion of software piracy, which causes a loss of several
billion dollars every year to software industry. In fact,
the global piracy rate for PC business software applica-
tions reached 40% in 2002, with an estimate cost of $11
billion. In some countries the piracy rate climbed up to
96%.

According to the Business Software Alliance (BSA)
estimations, the western European software industry lost
$2.7 billion in 2001 due to illegal software. Also accord-
ing to BSA, if software piracy had been reduced to 27%
in Western Europe, more than a quarter of million of
new employments would have been created, producing
around $11.8 millions in taxes and $31.6 millions of to-
tal revenue.

Previous figures clearly show that the software pro-
tection problem remains unsolved. Therefore, the fight
against software piracy is becoming an extremely im-
portant issue for the software industry. Surprisingly, the
best results against software piracy during the last years
have not been instigated because of new software protec-
tion mechanisms. On the contrary, they have been the
consequence of other reasons like:

Software companies tried to have effective legal sales
presence in all areas of the world; thus, software has
become easier to purchase legally.

Software companies achieved better user support for
their products (especially outside of the U.S.), thus pro-
moting the purchase of legal software.

Price of software was reduced, narrowing the differ-
ence between legal and illegal versions.

Some organizations, like the BSA, promoted high
profile legal proceedings against companies using illegal
software.

Governments have cooperated to provide legal pro-
tection for intellectual property and to criminalize soft-
ware piracy.

Unfortunately, after an initial slight decline trend, we
are witnessing again an increment in software piracy. It
seems that the previous measures will not achieve bet-
ter results. Advances in code analysis tools and the pop-
ularity of Internet, among other circumstances, create
new opportunities to copy software illegally. Moreover,
actual legal protection tools such as trade secrets, copy-
right, patents, and trademarks are not adapted for the
protection of software. In this sense, in [21] the creation
of specific legal protection means for software products
was proposed. However, that type of solution is very dif-
ficult to put in practice because it requires international
agreements.

In this paper, we introduce a low cost software pro-
tection and license management scheme that is secure,

A. Mana et al.

flexible and convenient for users. This scheme, that is
based on smart cards, avoids some of the most common
attacks to software protection mechanisms, like multi-
ple installations from a single legal license, reverse en-
gineering analysis, and production of unprotected (pi-
rated) copies of the software. The paper also shows how
this protection system can be applied to build secure
distributed applications.

In this sense, the rest of the paper is organized as fol-
lows. Section 2 reviews the most relevant work related to
software protection. Section 3 introduces the new scheme
that we propose. Some other interesting applications of
this scheme are presented in section 4. Section 5 anal-
yses the importance of implementation details and, fi-
nally, section 6 summarizes the conclusions and presents
ongoing research and work.

2 Background
2.1 Taxonomy of software protection mechanisms

In this section, we present a classification of the different
approaches to the software protection problem. We fo-
cus on security, convenience and practical applicability.
More extensive reviews of the state of the art in software
protection can be found in [18][9].

Nowadays, much of the software does not include pro-
tection mechanisms. In those cases where software in-
cludes it, serial numbers and user/password schemes are
usual protection schemes used. This lack of protection is
mainly derived from two facts: (i) software manufactur-
ers know that the usefulness of protection tools is unsat-
isfactory and (ii), users are reluctant to accept protec-
tion mechanisms that are inconvenient. Among the huge
diversity of proposals, we can find two main categories
of protection systems: the autonomous ones and those
based on external collaboration.

2.1.1 Autonomous systems Systems in this category use
protection mechanisms that rely on the software itself.
Some systems are based on the difficulty of reverse engi-
neering the protected software. However, most of times,
the foundation are mechanisms that check if certain con-
ditions are met.

Systems based on the difficulty of analysis

Several techniques can be applied to the software
products in order to verify self-integrity. Anti-tamper
techniques, such as checksumming, anti-debugging, en-
cryption, anti-emulation and some others [23][25] are in
this category. Some schemes are based on self-modifying
code, and code obfuscation [5].

A different approach is represented by software wa-
termarking techniques [28][9]. In this case the purpose
of the protection is not to avoid analysis but to detect
whether the software has been copied or modified.

A Framework for Secure Execution of Software

The relation between these techniques is strong. In
fact, it has been demonstrated that neither perfect ob-
fuscation nor perfect watermark exists [4]. All of these
techniques provide short-term protection; therefore, they
are well suited in situations where software is useful for
a short time (this is the case with agents and applets).

Systems based on “checks”

This is the most common case. In these systems the
software includes “checks” to test whether certain con-
ditions are met. We can distinguish solutions based ex-
clusively on software, and other ones that require some
hardware component. One of the most popular protec-
tion mechanisms consists in a password or key check that
enables installation or execution of the software. If the
check fails the software is not installed or it works in
“demo” mode with restricted functionality. Because the
password validation function is included in the software,
it is easy for dishonest users to produce key generation
programs. Authentic passwords are also easy to find in
certain Internet sites.

Other schemes adapt the software for each specific
computer. For instance, some of them extract informa-
tion from some of the hardware devices (hard disk, net-
work adapter, etc.) or from the operating system con-
figuration. During its execution, the protected software
checks that it is running on the computer it was person-
alized for.

Among the solutions relying on hardware compo-
nents, tokens that are difficult to duplicate are quite
widespread. The protected software checks the presence
of the token and refuses to run if the check fails. Exam-
ples of this type of systems are hardware keys or don-
gles. In this case, the check of the presence can be done
in different ways. The simplest way is to read a value
from the communication port; however, the interception
of the communication in that port allows the attacker to
replicate the token. Usually, and in order to avoid this
attack, the software sends a value (called challenge) that
the token has to process to obtain a return value. The
software has to predict the result that the token should
send back. Whatever the check is, it is not particularly
hard to bypass this protection because the access to the
communication port or the reader can be easily found in
the executable code.

Summarizing, in both software and hardware solu-
tions, the validation function is included in the software.
Therefore, reverse engineering and other techniques can
be used to discover it. All checks can be bypassed ob-
taining a completely functional copy of the software by
simply modifying the code. This process can even be au-
tomated by specially designed programs called “cracks”
or “patches”. Theoretic approaches to the formalization
of the problem have demonstrated that a solution exclu-
sively based on software is unfeasible [8]. By extension,
all autonomous protection techniques are also insecure.

2.1.2 Systems based on external collaboration It is a
fact that if we want to obtain a provable secure pro-
tection scheme, a tamperproof processor must be used
for both the storage and execution of the protected soft-
ware [10]. Any collaboration-based scheme where the ex-
ternal collaborator entity is considered trustful can be
included in this category. Among these systems we con-
sider those which use online or offline collaborations, and
those based on tamperproof hardware.

Offline collaboration

In some scenarios, such as agent-based ones, the pro-
tection required is limited to some parts of the software
(code or data). In this way, the function performed by
the software, or the data processed, are hidden from the
host where the software is running. An external offline
processing step is necessary to obtain the desired results.

Among these schemes, the most interesting approach
is represented by function hiding techniques. In [22] the
authors present a scheme that allows evaluation of en-
crypted functions. The fundamental idea is to establish
an homomorphism between the spaces of cleartext and
encrypted data, with the objective of evaluating a cer-
tain function on some data without revealing them. This
process can be expressed this way:

Let P be the domain of cleartext data and @) the
domain of encrypted data. Let f : P — P be a func-
tion that the user wants to evaluate on some z € P,
and let e : P — @Q and d : Q — P be, respectively,
the encryption and decryption functions of some cryp-
tosystem. Then, under certain conditions of the origi-
nal function f, it is possible to find f/ : @ — @Q such
that Vo € P f'(e(x)) = e(f(z)) or, using an alternative
of the previous expression, Vo € P d(f'(e(x))) = f(z).
This property is useful because it allows a piece of soft-
ware to store e(z) and implement f” in order to compute
f'(e(z)) without revealing f, x or f(x). Unfortunately,
this property only holds for certain families of functions
(polynomial ones in this case).

Online collaboration

The case of online collaboration schemes is also inter-
esting. In these schemes, part of the functionality of the
software is executed in one or more external computers.
The security of this approach depends on the impos-
sibility for each part to identify the function performed
by the others. This approach is very appropriate for new
distributed computing architectures such as agent-based
systems or grid computing.

Tamperproof hardware

Some protection systems have been proposed based
on tamperproof hardware devices. The software is dis-
tributed encrypted and a tamperproof embedded proces-
sor is used to decrypt it before it runs on the computer.
The drawback is that, once decrypted, the software is
stored in the RAM memory of the user’s computer. Dif-

ferent techniques can be used at that moment to recover
the software (e.g. producing a core dump).

An excellent variation of the previous scheme is the
distribution of encrypted code that the tamperproof pro-
cessor decrypts and executes [3]. This made us consider
the use of tamperproof processors as the first building
block of our software protection scheme.

On the other hand, Aura and Gollmann presented
in [1] an interesting scheme based on smart cards and
digital certificates that solves the card juggling prob-
lem and provides mechanisms for license management
and transfer. In addition, a compilation of countermea-
sures against attacks are reviewed in their work. Un-
fortunately, as their proposal relies on the check of the
presence of the smart card, it is vulnerable to the code
modification attacks described before.

Additionally, it is possible to design a secure soft-
ware protection scheme based on a secure coprocessor
without cryptographic capabilities. In this scheme some
sections of the software to be protected would be sub-
stituted by functionally equivalent sections stored and
processed in the coprocessor. The protected software is
divided and will not work unless it cooperates with the
right coprocessor. Code modification attacks will not
succeed in this case. In fact, the most practical attack is
to analyse the data transmitted to and from the copro-
cessor, trying to guess the functions that it performs. If
the number of functions, their importance in the main
code, and their complexity are large enough, the analysis
attack described will become impractical. This scheme
requires that the processor is distributed with the pro-
tected software sections preloaded. It uses one processor
per application; hence, it is affected by the card-juggling
problem. The quantity and complexity of the protected
sections are limited by the capacity of the processor.
Moreover, this scheme does not facilitate the Internet
distribution of the protected software because the pro-
cessors must be distributed with the protected software
sections preloaded.

A slightly modified version of the previous scheme is
introduced in the ABYSS architecture [29]. In this sys-
tem some processes of the software to be protected are
substituted by functionally equivalent processes that run
inside a secure coprocessor. The processes are encrypted
while outside of the secure coprocessor. The main disad-
vantages of the ABYSS system are the need to use spe-
cial tokens to authorize the execution of the protected
software, the impossibility to distribute the protected
software through Internet because the tokens (physical
objects) must be distributed with the keys preloaded,
and the fact that the encryption of the sections is done
with a common supervisor key of the protected proces-
sors. The last disadvantage is especially important be-
cause it introduces the possibility for dishonest users to
produce fake protected processes. This is so even in the
case that the protected processor uses an asymmetric en-
cryption scheme because, in this case, the public key of

A. Mana et al.

the processor will be known by everyone. SmartProt has
been designed to overcome the previous disadvantages.

It is important too point out that the lack of a code
authentication mechanism represents an open door for a
dangerous attack in any system. In the case of software
protection systems, such attack can be based on the sub-
stitution of some of the authentic protected sections by
other fake sections produced by the dishonest user. For
instance, a false section could be produced to extract the
data stored in the secure processor. This attack can be
considered a kind of “Trojan horse”. To avoid this kind
of attacks we conclude that the protected code needs to
be authenticated.

2.2 Smart Cards

Smart cards represent a qualitative advance in the way
to practical information security. Until the introduction
of smart cards, the ability to produce digital signatures
and other cryptographic primitives was limited by the
necessity of using a provable secure and trusted com-
puting environment. In practice, this necessity was very
difficult to achieve, especially in environments with a
high degree of mobility. Smart cards solve this prob-
lem because they are secure, tamperproof and portable
computing devices capable of storing sensible informa-
tion (such as biometric profiles) and performing compu-
tations required in digital signatures and other crypto-
graphic primitives.

Programmable smart cards, such as Java Card [26],
facilitate the development of specific applications and
provide tools to achieve security properties that can not
be supported by cryptographic protocols and algorithms
alone. These cards allow the issuer to control the infor-
mation that they contain. In this sense, the combination
of the physical security and the fact that the software
that they execute is under control of the issuer, are the
key to achieve those security properties.

Two main problems have traditionally hindered the
widespread use of these devices: (i) the difficulty of inte-
gration of smart card applications in personal comput-
ing environments and, (ii) the reduced data transmission
speeds between cards and hosts. The new dual-interface
smart cards open the door to the solution of both prob-
lems because they make use of two contacts “reserved
for future use” in the ISO7816 [11] standard to provide
a USB interface in addition to the traditional ISO 7816.

Nowadays, semiconductor industry has achieved im-
portant advances in the development of smart card pro-
cessors. Among these, we must highlight the availability
of RISC processors, the integration of USB controllers
in the smart card chip, and the implementation of the
Java Card virtual machine in hardware.

To illustrate the power of current smart cards, we can
use the ST22 family of 32 bit processors from ST Mi-
croelectronics, shown in figure 1. These processors have

A Framework for Secure Execution of Software

been specifically designed for multi-application smart
cards. The ST22 processors have a 32 bits RISC CPU,
with hardware support for most of the Standard Java
Card 2.1 virtual machine instructions, as well as a pro-
prietary native code. Some of them include a hardware
USB controller.

CPU MEMORY

+ 32-bit RISC CPU with 24 -bit Linear
Memory Addressing

« dual instruction set, JavaCard ™ and
native language

« 4-stage pipeline, 16 general purpose 32 -
bit registers, and 10 special registers

* 4 maskable interrupt levels

SECURITY

« Common Criteria cer tification EAL5 Target
« CPU security instructions

+ hardware DES And 3DES instructions

« fast multiply and accumulate instructions
for public key and elliptic curve
cryptography

+ random number generator

+ Memory Protection Unit for application
firewallin g and peripheral access control

« EEPROM Flash programming mode

« clock and power management, voltage,
clock frequency and temperature sensors

* up to 224K Bytes of User ROM with
partitioning

« up to 8K Bytes of RAM with partitioning
« up to 64K Byt es of EEPROM with
partitioning and OTP area

+ EEPROM 10 year data retention

« up to 500,000 Erase/Write cycles
endurance

« 1to 128 bytes Erase or Program in 2ms
OTHER FEATURES

« hardware asynchronous serial interface
(UART)

« 2 serial IO ports compatible 1SO 7816 -3
« 2 user configurable 12 -bit and 16-bit
timers

with interrupt, internal or external clock

* up to 30 MHz internal clock

« external clock from 1 MHz to 5 MHz
«3Vor5V supply voltage with power
saving standby mode

« unique identification per die

Fig. 1 Architecture and summary of features of the ST22
family of processors (Courtesy of ST Microelectronics)

Attacks to smart cards are often divided in physical
or invasive and logical or non-invasive [27][20]. The first
category is based on the physical destruction of the chip
in order to access the information contained in it [14][2].

Therefore, the security of smart cards is highly re-
lated to their tamperproof design. Many different tech-

niques, such as Layering, Address Scrambling, Bus Scram-

bling, Tamper Detection Mechanisms, Zeroization Mech-
anisms and Glue Logic, among others are used to prevent
physical attacks.

The second category is based on exploiting the vul-
nerabilities and bugs in the design of some smart card
elements, such as software and communication protocols.
Some of the most well known attacks of this type are:
Timing Attack [13], Simple Power Analysis, Differen-
tial Power Analysis and High Order Differential Power
Analysis [12]. We must note that these attacks require
the knowledge of the card PIN because they require the
execution of many cipher operations on specific inputs.
There are effective solutions to avoid these attacks [24].
Some other attacks are based on Trojan Horses, Social
Engineering and Trust Splits [18].

3 Description of SmartProt

This section shows the details of the protection scheme.
In the description we will use the following conventions:

— X1 — X2: M states that message M is send to user
X2 by X1.

— M (A, B) emphasizes that message M is composed of
data items A and B.

— Xp and X's denote, respectively, the public and pri-
vate key of user X.

— |T] represents the digest of some information. It is
computed using a secure one-way hash function.

— K|[I] represents the encryption of some information
using the key K.

— X{I} = (I, Xs]|I|]) represents the signature of I by
user X.

— X1« X2> denotes the certificate of user X2 issued
by X1.

In order to avoid the problems identified in the study
of previous software protection systems, we introduce
cryptographic techniques as the second building block
of our software protection scheme. In particular, we use
an asymmetric cryptosystem to secure the communica-
tion among actors and a symmetric cryptosystem to pro-
tect the software. The design of our scheme is illustrated
using smart cards as secure coprocessors. However, and
as mentioned previously, other tamperproof coprocessors
are also suitable for our approach.

We describe now the basic infrastructure required
by our system. The system includes three types of ac-
tors: software producers, card manufacturers and clients
(each client possessing a smart card). For the sake of
the description we will assume the simplest certification
scheme, where card manufacturers certify the public keys
of the smart cards and also those ones of the software
producers. More sophisticated schemes are considered in
[18].

Our system requires smart cards that have crypto-
graphic capabilities, contain a key pair generated inside
the card, and ensure that the private key never leaves
it. The cards must also contain a specific symmetric key,
the public key of the card manufacturer and some sup-
port software. In particular, the cards must contain the
SmartProt virtual machine, which is described in section
5.1.

The basic idea is to use the smart card as a secure
coprocessor to enforce the correct execution of the pro-
tected parts of the program. These parts must be care-
fully selected in order to obtain the best protection. The
entire system is described, following a lifecycle approach,
by dividing it into four phases: card setup, production,
authorization and execution. Figure 2 shows the actors
and responsibilities involved in the different phases. The
following sections explain in detail each one of these
phases.

3.1 Card setup

The card setup phase prepares the card to be used in the
system. This phase can be repeated whenever the client

< 0
<<include>> e
L

7

Smart Card Manufacturer

Fig. 2 Overview of actors, responsibilities and phases

(C) wants to change the key pair of the card (CC). The
setup of the card starts when a new key pair is generated
inside it. The new public key and the card secret ID
(CCID) are sent to the client card manufacturer (CCM),
encrypted with its public key. The card manufacturer
verifies that the encrypted secret ID corresponds to that
card and creates a certificate of that public key, which
is sent back to the card and stored inside it.

3.2 Production

The production phase is depicted in figure 3. During this
phase the software is transformed in order to protect it
against reverse engineering analysis and unauthorized
execution. This phase is performed only once time for
each release of the software because it does not depend
on the client card.

The first steps of the production phase consist in
the selection and translation of some specific sections
of the original application code with functionally equiv-
alent sections of SmartProt card-specific code. The code
selection process also reorganizes the code to build man-
ageable protected sections and finds dependencies be-
tween these sections in order to identify which values
can be kept inside the smart card. Basically, the trans-
lation is a semantic-preserving transformation from the
Java object code (bytecode) to the SmartProt virtual
machine code. Additionally, obfuscating transformations
are applied to the rest of the code, and fake code is intro-
duced in order to make more difficult for the attackers
to guess the functions of the protected sections. This
confusion (obfuscation) process is highly convenient be-
cause it hides the purpose of the protected sections. We
must emphasize that this process is not applied to the
protected sections but to the rest of the code.

Once translated, the selected sections are encrypted
using a symmetric cryptosystem with a randomly gener-
ated key. As shown in figure 3, the last step substitutes
the original code sections with calls to a function that
transmits the respective equivalent protected sections,
including code and data, to the card. Some additional
support functions are also included. The protected soft-

A. Mana et al.

ware application generated in the production phase can
be distributed and copied freely.

3.8 Authorization

Once the card has been set up, a license (specifically
created for the smart card of the user) is required to
use the protected software. In the authorization phase,
software manufacturers generate new licenses, as shown
in figure 4, containing;:

— the random symmetric key used to encrypt the pro-
tected sections;

— information about conditions of use (i.e. time limits,
number of executions, etc.);

— identification of the software (ID, version number,
etc.);

— identification (or serial number) of the license; and,
finally,

— a random number received from the client.

The license is generated encrypting all this informa-
tion with the public key of the smart card of the client,
and must be loaded prior to the execution of the appli-
cation. In some usage scenarios the loading of the license
can be part of the protected application. When the client
smart card receives the license, it is decrypted, verified
and stored inside the card until it expires or the user
explicitly decides to extract it.

Random key Public key of the
Use conditions client card
Application 1D
License ID ‘
Nonce -
Asymmetric License
P encryption I_' j

Fig. 4 License generation (authorization phase)

Figure 5 summarizes and puts into context the pro-
cesses carried out during the production and authoriza-
tion phases.

3.4 Ezecution

The execution phase is depicted in figure 6. Once the
license is correctly installed in the card the protected
program can be executed, which will require the cooper-
ation of the card containing the license.

The protected sections of the software do not reside
in the cards. Instead, during the execution of the pro-
tected program, these sections are transmitted dynami-
cally as necessary to the card, where they are decrypted
using the installed license, and then executed. When fin-
ished, the card may send back some results, but as we

A Framework for Secure Execution of Software

Fina code
A
Random key Call ComSC(B'")
C
Origind Reorgani zed Obfuscated code with Auxil?ary Call ComSC(D’")
code origind code card -specific sections functions c
\) (
A A Sym‘r;aric Call ComSC(F")
B B ™ encryption G
. C C
Andysis, Translation - Com&C,
>" reorgani zetion "< D }-b + D Symmetric LoadLicenss, ...
and selection Confusion enaryption
E E B
E P> Symmetric
encryption D"
) \ G | \| G =

Fig. 3 Software protection (production phase)

Software Manufacturer

Unprotected License
\;. § Software Database License
SmartProt -
Automatic License
Protection Tool Generator

License Request
(includes the smart card
Public Key Certificate)

Licensej

/ \ o
v
Y
0 él 0 § ; ;
: E A - :
Server 1 Server 2 Client

Fig. 5 Summary of production and authorization phases

will explain later, some partial results will be kept in
the card in order to obtain a better protection against
function analysis and other attacks.

4 License management protocols

It has been mentioned that each license is specific for a
smart card. This licensing model does not imply that
licensing schemes such as “site licenses”, “campus li-
censes” or other similar schemes are not available. The
SmartProt licensing scheme allows all these schemes to
be simulated. For instance, a “campus license” for the

Cadl LoadLicenss()

License

: CIE

Protected Aplication)
Client card

1

1

I

I

I c
I Car conscon)
! E
1

1

1

1

I

I

1

cal ComC(F”)

Client computer

Fig. 6 Execution phase

students of the University of Malaga can be implemented
in several ways. One of them, part of our work in progress,
is to apply the Semantic Access Control (SAC) [30] model
to control the license generation procedures. This ap-
proach enables licenses to be issued to a user presenting
an attribute certificate attesting the enrollment to the
University of Malaga.

4.1 Sale

Because the license for the user (containing the key to
decrypt the protected sections) is encrypted with the
card public key, it is essential to avoid that the corre-
sponding private key is not disclosed outside the card.
In order to achieve this objective the most practical so-
lution is to use special smart cards produced for this
purpose. These cards must contain a key pair and some

support software. A certificate of the public key of the
card is issued by the card manufacturer to guarantee the
authenticity of the keys.

When a client (C) wants to buy a protected applica-
tion, requests a certificate of the public key of the soft-
ware producer (SP) issued by the client card manufac-
turer (CCM). The client then sends back a request con-
taining the certificate of the public key of his/her card
(CC), the identification of the software to be purchased
and a random number encrypted with the received pub-
lic key. The producer verifies the validity of the certifi-
cate and, in case the validation succeeds, produces a new
license, encrypts the license and the random number us-
ing the public key received and, finally, sends it to the
client card. The card verifies that the license matches
the request (i.e. the license info is correct and the ran-
dom number matches the one in the request) and stores
it. The steps of the protocol are shown in the appendix
too.

The producer also stores all the licenses in a database
in order to generate new licenses for the client, when
needed (theft, destruction of the card, etc.). If a request
for a previously generated and valid license is received,
the producer will prepare a new license for the client at
no extra cost. This new license will include a different
serial number (the number is part of the identification of
the license). The serial number is an important element
of the license transfer protocol, as we will show in section
4.3.

4.2 Expiration

The licenses are always kept protected because they are
either encrypted or stored in the smart card. Therefore,
the card software, which is trustworthy, is able to de-
stroy licenses when they expire (different parameters can
be used to define the expiration of the licenses; for in-
stance, the number of executions, time of use, etc.). The
software can even warn the user when the expiration is
about to happen. One of the most used parameters in
software licenses is the expiration date. To include this
feature, cards should include an internal real time clock.
Some manufacturers have announced cards supporting
this feature.

4.8 Transfer

License transfer is one of the features that we have con-
sidered important. License transfer could be used to del-
egate the right to use a software application to another
user or simply to store your license in a new card. In
contrast to other systems that can only transfer all the
licenses in a pack, our scheme introduces the possibility
of selective license transfer.

Our license transfer scheme has been designed to
avoid using certificate chains because of the overhead in

A. Mana et al.

communication, storage and processing that they intro-
duce. Another important goal has been to avoid storing
public keys of external entities in the smart cards.

We call this protocol direct transfer, in contrast to
scheduled transfer, which is mainly used for backup pur-
poses. Protocol steps are shown in the appendix.

The protocol to transfer a license is divided in two
phases: delegation (steps 1 to 3) and recover (steps 4 to
6). We can summarize those steps in the following way:

1. The destination card (DC) public key certificate is
sent to the source card user (SCU).

2. The user selects which license (or licenses) is going
to be transferred from the source card (SC). Note
that, opposite to other systems, our scheme does not
force the user to transfer all the licenses in the source
card (which we consider to be a serious limitation).
In the rest of this protocol we will assume that we
are transferring one specific license.

3. The source card creates a certificate delegating the
license to the public key of the destination card, de-
stroys its own license and, finally, sends the delega-
tion certificate to the destination card.

4. The destination card requests a new license to the
software producer. This request includes the dele-
gation certificate received from the source card, to-
gether with the destination card public key certifi-
cate.

5. The software producer verifies both certificates, and
generates a new license for the destination card in
case the verification succeeds. The license database
is updated accordingly.

6. The destination card decrypts and stores the new
license.

Let’s suppose now that the protocol described above
is interrupted (either accidentally or intentionally to at-
tack the scheme). Any interruption of the protocol pre-
vious to step 3 does not produce any problem because
it does not change anything in the card. On the other
hand, if the protocol is aborted during step 3 (e.g. ex-
tracting the card from the reader), just after the source
card has destroyed its license, then none of the cards gets
the license. However, in this situation, the source card
can request a replacement copy of the deleted license
from the software producer.

In case the protocol is aborted after step 3, the desti-
nation card would possess the delegation certificate but
not the new license. In this case, the source card would
have already destroyed its license. Then, it could request
a replacement copy from the software producer and get
a new valid license. Using the delegation certificate that
has stored, the destination card could also get a new
license. This attack could be used to replicate any num-
ber of licenses. To prevent this attack, a serial number,
different for each new copy of the license produced, is
included in the license (see section 4.1).

A Framework for Secure Execution of Software

In the scenario depicted above, when the source card
requests the new copy after aborting the protocol, the
software producer generates a new license (with a differ-
ent serial number) that is sent to the card. The previous
license is invalidated and substituted by the new one in
the database. Later, when the destination card attempts
to use the delegation certificate to get a new license, the
request will be denied.

The inclusion of the software producer in the transfer
protocol may seem inconvenient. However, if the pro-
ducer is not included, the source card would need to
verify the public key certificate of the destination card
which, in turn, would increase the complexity of the pro-
tocol and also would introduce weaknesses in the protec-
tion scheme.

4.4 Recovery

It is essential for user acceptance to provide efficient and
convenient solutions to the problems that the protection
scheme itself may introduce. In our scheme, licenses are
linked to smart cards based on the fact that the private
key is not known outside the card. Consequently, and
in case of card failure, all licenses prepared for it will be
useless, which means that it will be impossible to run the
software. For this eventuality, the user must take some
prevention measures.

Considering that the smart cards are inexpensive, it
seems reasonable to prepare a replacement card to be
used in case of failure of the main card. The preventive
process requires the execution of the delegation phase
of the scheduled transfer protocol for all the licenses in
the card. In case of failure of the main card, the proto-
col would continue on the recover phase. At the end of
the protocol the replacement card will contain the same
licenses as the main card.

The difference between the direct transfer protocol
and the scheduled transfer protocol is the inclusion of
the date when the transfer must take place. This date is
included in the delegation certificate. Steps 3 and 4 of
the direct transfer protocol are replaced by this sequence
in the scheduled transfer protocol:

The source card creates a certificate delegating the
license to the public key of the destination card on date
“Date” and sends it to the destination card. The source
card will not be able to delegate that license again to
any other card until date “Date”.

Later, two different situations can arise:

If the user wants to keep using the main card, the
replacement card must destroy the delegation certificate
and send a new scheduled transfer request before date
“Date”. In this case, the source card will accept the
request.

Otherwise, on date “Date”:

Source card will destroy its own license.

As in the direct transfer case, both cards can request
a new license to the software producer but only the first
to happen will be accepted.

4.5 Deletion

The licenses can be deleted either when they expire, have
been transferred to other card, or are not necessary any-
more. In the latter case, the user must explicitly request
the deletion of the license. We must emphasize that li-
cense expiration depends on the terms of use established
in the license and the features of the secure coprocessor
used. In the case of smart cards, expiration is currently
based on the number of executions of the software, but
some manufacturers have proposed smart cards with an
internal time source. This feature would enable license
expiration and deletion to be based, for example, on the
time of use. Automatic license deletion is performed as
part of the card initialization process. Every time that
the card is inserted in a reader the License Manager
checks the validity of the licenses in the card and deletes
those that have expired.

4.6 Ezxtract and restore

The process of producing a backup of a license must be
done using a second smart card and following the recov-
ery protocol. However, sometimes it might be desirable
to temporarily extract a license from a smart card in or-
der to save space and still be able to load it back later.

When the smart card extracts the license it produces
and stores a random Nonce (a process analogous to the
production of the license request —LicReq- in the sale
protocol). Therefore, the license can be restored simply
by sending it to the card as if it was a new license. It will
be accepted by the card because the Nonce included in
the extracted license is registered inside.

5 Considerations on implementation and
security

Java Cards are the best choice to make our approach
a practical solution. The reason is that they provide
some of the components that we need for our applica-
tion. However, some limitations of the Java Card speci-
fication have important consequences on our implemen-
tation. Among these limitations, we highlight: lack of
file management, dynamic code loading scheme and dy-
namic memory management.

5.1 Card software and runtime environment

The SmartProt virtual machine is composed by an in-
terpreter for the protected code sections, a license man-
ager, a runtime manager and, sometimes, an electronic

10

purse. In this virtual machine, every application runs in
a sandbox, isolated from others. The card is only capa-
ble of executing one protected code section at a time,
but several SmartProt-protected applications can run in
the host computer simultaneously. The SmartProt run-
time manager keeps separate memory spaces for each
application. The contents of the memory used by each
application are kept in memory after each call to the
card is finished. This allows the application to use the
values stored in the card in the processing of subsequent
calls to the card.

The structure of the memory of the card during run-
time is depicted in figure 7. In our implementation, the
core components of the SmartProt virtual machine (code
loader, license manager and runtime manager), as well as
an optional payment system (e-Purse), are implemented
at the application level by a Java Card applet.

However, applications at this level have performance
constraints (e.g., they are isolated by firewalls) and limi-
tations. We are currently collaborating with a card man-
ufacturer in the implementation of those functions at a
lower level in order to obtain a better performance and,
at the same time, to enable the deployment of other ap-
plications that take advantage of the software protection
infrastructure.

Appl _
Data Licensel

Cad Runtine Code
Deta Manager L oader

App; Protected code

Dynamic

E-Purse

License
Manager

Static

JavaCard Runtime Environment

Fig. 7 Card software components and memory structure

The static elements are preloaded in every card. Basi-
cally, they include some card-specific data and the Smart-
Prot applet. The four main components of the Smart-
Prot cards are implemented as a single card applet be-
cause of implementation details. These components are:

License Manager. It is responsible for all operations
related to licenses (loading, deletion, transfer, backup,
etc.).

Code Loader. Upon the reception of an encrypted
code section in the card, the Code Loader locates and
analyses the corresponding license, decrypts the code
and stores it in the Protected Code section.

Runtime Manager. This component is required be-
cause of the lack of dynamic memory management in
Java Card. It allocates and reallocates memory for the

A. Mana et al.

applications and supervises the separation between the
different applications.

E-Purse. This is an optional component that has
been developed to provide a fair payment mechanism for
digital content commerce. The initial goal was to bind
together two operations: access to the contents and pay-
ment. For this reason, existing e-purse designs were not
appropriate, and we have developed an specific one.

The dynamic part of the applet can be configured
during its installation by specifying the amount of mem-
ory to be used for licenses, for application data and for
protected code.

5.2 Card code

The lack of mechanisms that allow on-the-fly code exe-
cution in the standard Java Card has forced us to define
specific a Smartprot virtual machine and an associated
language.

Regarding the language, our basic objective has been
to achieve a compact yet powerful and flexible represen-
tation of the instructions to be executed in the card.
Because the main performance bottleneck of smart cards
applications is the communication with the card, we have
defined a compact format for the storage and transmis-
sion to the card. Upon reception, the card decrypts the
protected code using the corresponding license and then
translates into the internal format. The use of this par-
ticular internal format overcomes the problems associ-
ated to the lack of file management functionality in Java
Card.

We have defined the Instruction class in the Java Card
language in order for the instructions to be self-contained
and to achieve easy referencing between instructions. To-
gether with the SmartProt card applet, this class con-
stitutes the SmartProt virtual machine. This represen-
tation eliminates the need to put a standard interpreter
in the card (the interpreter is the Instruction class itself),
which in turn results in greater flexibility. Figure 8 shows
the definition of the Instruction class.

Once the code is loaded into the card and converted
into an array of Instruction objects, the execution is as
simple as calling the Execute method of the first object
of the array. Each instruction is linked to the next one(s)
to be executed.

5.8 Efficiency vs. security

Smart card technology offers today a set of features that
some years ago only personal computers could offer. How-
ever, and in comparison to the processing power of ac-
tual host computers, every access to the smart card in-
troduces important delays. As our scheme requires the
transmission of a considerable amount of code and data
to and from the card, it is important to take into con-
sideration the efficiency of the protection scheme. It has

A Framework for Secure Execution of Software

public class Instruction Ilassign

{ public void assign (byte myType=nullType,
final static byte addType=(byte)1; S myResult, S myOp1, S myOp2,
final static byte ... instruction myNext=null ,
public instruction next, gotoTrue; instruction myGotoTrue= null)
public S result, opl ,0p2; {

public byte instType; instType=myType;

result=myResult;
lIsimple constructor opl=myOpl;

public instruction() op2=myOp2;

{ gotoTrue=myGotoTrue;
next=null ; next=myNext;
gotoTrue= null ; }
type=nullType;

} Illexecute

public void execute()
/lalternative constructor
public instruction(byte myType=nullType, switch (instType)
S myResult, S myOp1, S myOp2, {
instruction myNext=null , Jladd
instruction myGotoTrue= null) case addType:
{ result.myShort=((short)

(opl.myShort + op2.myShort));
next.execute(); break ;
llother types

instType=myType;
result=myResult;
opl=myOp1;
op2=myOp2;
gotoTrue=myGotoTrue; }
next=myNext; }

} }

Fig. 8 The Instruction class

been proved that the main bottleneck in the performance
of smart card applications is the communication between
the card and the host [LMP00, MaPi01]. Therefore, new
USB smart cards with a bandwidth of 256Kbits/s have
greatly reduced this problem if we compare the situation
with the 9.8Kbits/s of the standard ISO7816 interface.

The amount of data and code transmitted determines
the magnitude of the delay introduced. On the other
hand, since the main attack to the protection scheme is
based on the analysis of the functions performed by the
card, the protection scheme will be more secure as the
functions grow in size and complexity.

Consequently, it is necessary to find a balance be-
tween security and speed. Fortunately, in this case, this
balance is possible and it is not difficult to obtain se-
curity and speed ranges that satisfy both software pro-
ducers and clients. A theoretical description and some
results about the efficiency of the protection scheme are
included in [18].

5.4 Interception of communication

Quite often piracy occurs inside the organization of a le-
gal buyer of the software; that is, multiple illegal copies
of a legally acquired software application are done and
used into the same organization. In our scheme, these
piracy procedures would succeed by having several com-
puters sharing the card reader.

This problem has been considered in previous schemes.

The most common solution is to make the software have
direct access to the card reader (coprocessor). However,
this solution introduces countless problems and compu-
tational costs in the protected software because it must
manage different situations and hardware features that
should be managed by the operating system.

In order to prevent this attack, we have designed a
solution in our scheme that is based on the last tech-
nique described in section 5.5. The system “links” the

11

calls to the card, storing intermediate results inside it.
Therefore, any incorrect sequence of calls, like that one
produced when several computers share a card reader,
will make the software to produce erroneous results.

5.5 Functions executed by the smart card

This is a very important issue because the security of
the system relies on the difficulty of guessing, from the
analysis of the input and output data (and possibly the
execution time), the functions that the smart card exe-
cutes.

If we know that the function performed by the smart
card takes the form y = f(z) = ax + b, then we just need
to run the function twice, with different input data, to
infer it. Contrarily, other functions, like hash functions
and digital signatures are not vulnerable to these at-
tacks. These types of functions are not used in most of
software applications. On the other hand, the functions
we can frequently find in software applications have more
input and output data, what becomes an advantage for
our protection purposes.

There are other schemes that require the transforma-
tion of some of the functions of the application code into
very specific representations. This facilitates to execute
them in a very simple secure coprocessor. However, there
are two important drawbacks in this approach:

It is very difficult to identify the parts of an arbitrary
application that can be transformed and protected by
these schemes. Thus, they can only be applied at source
code level, and human intervention is required in the
protection process.

The assumption about the simplicity of the coproces-
sor is in contradiction with the requirement of needing
a powerful coprocessor to obtain a reasonable level of
protection. Because actual coprocessors, such as smart
cards, are real computing platforms, there is no need to
perform the representations.

In our scheme, and in order to make more difficult
for the pirate to analyze the functions, we include false
(dummy) input and output data in the protected sec-
tions. These data are not used for the computation of
the function, though it is transformed to confuse the at-
tacker. Another very effective technique that we use to
obstruct the analysis is to mix several functions so that
the result of each call to the coprocessor depends on the
input data of the previous calls. Moreover, it depends
on results of previous calls that have not been sent back
as results but stored in the coprocessor memory. The
consequence is that the card can not be used to run,
simultaneously, two copies of an application if only one
license is used. This would produce an incorrect opera-
tion of both copies of the application.

12

6 Concluding remarks

Assuming that the encryption algorithm is secure, the
attack to the system must be based on the black-box
analysis of the protected sections, as stated before. How-
ever, we must emphasize that our system is designed in
such a way that the card stores one function at a time.
Therefore, we can use more complex functions than other
systems because all the capacity of the card is now avail-
able for every single section. Moreover, this scheme al-
lows the card to execute any number of protected sec-
tions. The dishonest user will need to discover all of
the protected sections in order to break the protection
scheme.

As we have shown along the paper, our scheme al-
lows: (i) that a single card is used to protect many ap-
plications; (ii) a high degree of complexity in the pro-
tected sections; (iii) that the card executes any number
of those sections; and, (iv) the distribution of the soft-
ware through Internet because none of the components
of a protected application needs to be preloaded in the
smart card.

The definition of the license structure allows a high
degree of flexibility. Furthermore, because each applica-
tion has its own license, we can manage them individ-
ually. This advantage is not possible in other proposals
where the sections of all applications are protected using
a common key (usually the protected processor key).

We also have explained the need to authenticate the
code executed by the card in order to avoid certain at-
tacks. In our scheme, because the protected sections are
encrypted using a symmetric key that is kept inside the
cards (and, therefore, known only by the software pro-
ducer), it is impossible for a dishonest user to produce
false sections.

Additionally, we have successfully applied the Smart-
Prot scheme to the protection of mobile code (in partic-
ular, to Java applets). The results are also valid for other
mobile code elements such as agents. In this sense, the
XSCD infrastructure [16][30] is based on the dynamic
creation of mobile software elements protected by a vari-
ant of SmartProt. These elements, that we call Protected
Content Objects (PCOs), are responsible for the trans-
port of the protected content and the enforcement of
the access control policy. The code of the applet con-
tains encrypted sections that must be executed within
the smart card. Because the base software of the cards
is trustworthy and certified by the card manufacturer,
we can control, for instance, the number of times that
a license is used to execute the PCO, and introduce an
integrated payment system.

Summarizing, we have described a robust software
protection scheme based on the use of smart cards and
cryptographic techniques. Related schemes based on tam-
perproof hardware tokens that have been proposed in the
literature have been analyzed. We have concluded that
all of them are based on the check of the presence of the

A. Mana et al.

token and are, therefore, vulnerable to code modification
attacks. Considering that the new scheme is not based on
that check, code modification is not a potential attack.
Finally, we have also introduced possible applications of
the scheme. Thus, we can conclude that the advantages
of the presented scheme are: (i) robustness against dif-
ferent attacks (bypassing the check, code substitution
and attacks to the license management protocols); (ii)
efficient use of the computational resources of the smart
cards; (iii) free distribution and copy of the software; (iv)
selective license transfer; (v) control of the expiration of
the licenses; and (vi) applicability in both mobile and
distributed computing environments.

Tools to produce protected software automatically
from unprotected executable programs, applet protec-
tion and payment integration are in an advanced stage
of development. Regarding future works, we are involved
in the study of the possibilities that can be opened by the
integration of function hiding techniques in our scheme.
Finally, we are working on the application of SmartProt
for mobile code in Digital Rights Management (DRM)
applications.

References

1. Aura, T.; Gollmann, D. Software License Management
with Smart Cards. Proceedings of the Usenix Workshop on
Smartcard Technology (Smartcard’99), pp. 75-86. 1999.

2. Beck, F. Integrated Circuit Failure Analysis, A Guide to
Preparation Techniques. John Wiley & Sons, 1998.

3. Bennet S. Yee. Using Secure Coprocessors. PhD thesis
CMU-CS-94-149, Carnegie Mellon University, 1994.

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S.,
Sahai, A., Vadhan, S., Yang, K. On the (Im)possibility
of Obfuscating Programs. Proceedings of CRYPTO ‘01.
Springer-Verlag. LNCS 2139. pp. 1-18. 2001.

5. Collberg, C.; Thomborson, C. Watermarking,
Tamper-Proofing, and Obfuscation - Tools for Soft-
ware Protection. University of Auckland Tech-
nical Report #170. 2000. Available online at
http://www.cs.auckland.ac.nz/~collberg/Research/
Publications/CollbergThomborson2000a/index.html

6. Collberg, C.; Thomborson, C. Software watermark-
ing: Models and dynamic embeddings. Proceedings of
POPL’99 - 26th ACM Symposium on Principles of
Programming Languages. 1999. Available online at
http://www.cs.arizona.edu/~collberg/Research/
Publications/CollbergThomborson99a/index.html

7. Funfrocken, S. Protecting Mobile Web-Commerce Agents
with Smartcards. Proceedings of ASA/MA’99. 1999.

8. O. Goldreich, Towards a theory of software protection.
Proc. 19th Ann. ACM Symp. on Theory of Computing,
pp. 182-104. 1987.

9. Hachez, G. A Comparative Study of Software Protection
Tools Suited for E-Commerce with Contributions to Soft-
ware Watermarking and Smart Cards. PhD Thesis. Uni-
versite Catholique de Louvain. 2003.

10. Herzberg, A.; Pinter, S. S. Public Protection of Software.
ACM Transactions on Computer Systems, 5(4)-87, pp.
371-393. 1987.

A Framework for Secure Execution of Software

11. International Organization for Standardization.
ISO/IEC 7816 (Parts 1 to 5). 1995-2002. Available
online at http://www.iso.ch

12. Kocher, P. Jaffe, J. Jun, B. Differential Power Analy-
sis. Cryptography Research, Inc. 1998. Available online
at http://www.cryptography.com/dpa/technical/

13. Kocher, P. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. 1995. Available
online at http://www.cryptography.com/timingattack/

14. Kuhn, M., Anderson, R. Tamper Resistance - a

Cautionary Note. Proceedings of Second USENIX
Workshop on Electronic ~ Commerce, Oakland,
California. pp 1-11. 1996. Available online at

http://www.cl.cam.ac.uk/~mgk25 /tamper.html

15. Lépez, J.; Mana, A; Pimentel, P.Un Fsquema Efi-
ciente de Proteccion de Software Basado en Tarjetas
Inteligentes. Technical Report 14/2000, Department of
Computer Science, University of Malaga. 2000.

16. Lépez, J., Mana, A., Pimentel, E., Troya, J.M., Yagiie,
M. 1. Access Control Infrastructure for Digital Objects.
Proceedings of 4th. International Conference On Infor-
mation and Communications Security (ICICS’02). LNCS
2513. Springer-Verlag. 2002.

17. Loureiro, S.; Molva, R. Function hiding based on error
correcting codes. Proceedings of Cyptec’99 - International
Workshop on Cryptographic techniques and Electronic
Commerce. 1999.

18. Mana, A. Proteccion de Software Basada en tarjetas In-
teligentes. (in spanish). PhD dissertation. Computer Sci-
ence Department, University of Malaga. 2003.

19. Maia, A., Pimentel, E. An Efficient Software Protection
Scheme. Proceedings of IFIP SEC’01. Kluwer Academic
Publishers. 2001.

20. Petri S. An Introduction to Smart Cards.
Litronic, Inc. 2001. Available online at
http://www.litronic.com/solutions/whitepapers/
introduction_to_smartcards/

21. Samuelson, P. A Manifesto Concerning the Legal Protec-
tion of Computer Programs: Why FEzisting Laws Fail To
Provide Adequate Protection. Proceedings of KnowRight
’95, pp 105-115. 1995.

22. Sander, T.; Tschudin C.F. On Software Protection via
Function Hiding. Proceedings of Information Hiding ’98.
Springer-Verlag. LNCS 1525. pp 111-123. 1998.

23. Schaumiiller-Bichll, I.; Piller, E. A Method of Soft-
ware Protection Based on the Use of Smart Cards and
Cryptographic Techniques. Proceedings of Eurocrypt’84.
Springer-Verlag. LNCS 0209, pp. 446-454. 1984.

24. Shamir, A. Protecting Smart Cards from Passive Power
Analysis with Detached Power Supplies. CHES 2000,
Springer-Verlag, pp. 71-77. 2000.

25. Stern, J. P., Hachez, G., Koeune, F., Quisquater, J.
J. Robust Object Watermarking: Application to Code.
In Proceedings of Info Hiding ’99, Springer-Verlag.
LNCS 1768, pp. 368-378, 1999. Available online at
http://www.dice.ucl.ac.be/crypto/publications/

1999/codemark.pdf
26. Sun Microsystems. Java Card Technol-
09y Homepage. 2003. Available online at

http://java.sun.com/products/javacard/
27. Ward, R. Cryptographic Smart Card Capabili-
ties and Vulnerabilities. Secure Telecommunica-
tions Report ECE 636. 2001. Available online at

13

http://ece.gmu.edu/courses/ECE636/project/
reports/RWard.pdf

28. Wayner, P. Dissapearing Cryptography. Information Hid-
ing, Stenography and Watermarking. Morgan Kauffman.
2002.

29. White, S., Commerford, L. ABYSS: An Architecture for
Software Protection. IEEE Transactions on Software En-
gineering. Vol. 16, Nb. 6. June 1990.

30. Yagiie, M.I., Mana, A., Lépez, J., Pimentel E., Troya,
J.M. A Secure Solution for Commercial Digital Libraries.
Online Information Review Journal. Emerald Publishers.
2003.

14 A. Mana et al.

APPENDIX. Pseudo-code of license mangement Transfer:
protocols.
PARTIES:
Card Setup: SC Source Card
SCM Source Card Manufacturer
PAR_TIES: SCU Source Card User
C Client

CC Client Card
CCM Client Card Manufacturer

DEFINITIONS:
CCM«CC» = CCM{CCp,|CredCardData|}

SEQUENCE:

C — CC: Setup(|CredCardData|)

CC: CreateKeyPair()

CC — CCM: CCMp[CCp,|CredCardData|,CCID]
CCM — CC: CCM«CC>»

Sale:

PARTIES:

C Client

CC Client Card

CCM Client Card Manufacturer
SP Software Producer

DEFINITIONS:

CCM«SP>> = CCM{SPp}

LicReq = SPp[CCM«CC>>,SoftID,Nonce]
License = CCp][Liclnfo,Nonce]

SEQUENCE:

CC — C: CertReq()
C — SP: CertReq()
SP — C: CCM«SP>>
C — CC: CCM«SP>»
CC — C: LicReq

C — SP: LicReq

SP: Store(CCM«CC:>,SoftID,Liclnfo)
SP — C: License

C — CC: License

CC: DeleteReq

DC Destination Card

DCM Destination Card Manufacturer
DCU Destination Card User

SP Software Producer

DEFINITIONS:

DelCert(SC,DC)= SC{OldLicInfo,DCp}

NewLicReq = SPp[DCM«DC>>>,DelCert(SC,DC),Nonce]
License = DCp[NewLicInfo,Nonce]

SEQUENCE:

DC — DCU: DCM«DC»>

DCU — SCU: DCM«<DC»>

SCU — SC: Delegate(DCM«DC:>,0OldLiclInfo)
SC — SCU: DelCert(SC,DC)

SCU — DCU: DelCert(SC,DC)

DCU — DC: DelCert(SC,DC)

DC — DCU: NewlLicReq

DCU — SP: NewlLicReq

SP: License]

SP: Delete(SCM«SC>,SoftID,OldLiclnfo)
SP: Store(DCM<«DC>,SoftID,NewLicInfo)
SP — DCU: License

DCU — DC: License

