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Abstract

One benefit postulated for the adoption of Electric Vehicles (EVs) is their
ability to act as stabilizing entities in smart grids through bi-directional charg-
ing, allowing local or global smoothing of peaks and imbalances. This bene-
fit, however, hinges indirectly on the reliability and security of the power flows
thus achieved. Therefore this paper studies key security properties of the already-
deployed Open Charge Point Protocol (OCPP) specifying communication between
charging points and energy management systems. It is argued that possible sub-
version or malicious endpoints in the protocol can also lead to destabilization of
power networks. Whilst reviewing these aspects, we focus, from a theoretical and
practical standpoint, on attacks that interfere with resource reservation originating
with the EV, which may also be initiated by a man in the middle, energy theft or
fraud. Such attacks may even be replicated widely, resulting in over- or under-
shooting of power network provisioning, or the (total/partial) disintegration of the
integrity and stability of power networks.

Keywords: Smart Grid, Charging Infrastructure, Cyber-Physical Systems, Cy-
ber Security, OCPP

1 Introduction
The introduction of electric vehicles (EVs) links two critical infrastructure sectors,
namely transportation and electric power networks, which thus far have only been char-
acterized through indirect interdependencies. Apart from helping to reduce emissions
overall, contributing to global objectives and reducing local road traffic emissions, the
introduction of bi-directional charging is also anticipated to play an important role in
realizing local and global control and stabilization of smart grids. In this scenario,
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open standards and a shared infrastructure for EV charging are key in finding a satis-
factory density of charging stations that also allow EVs to seamlessly operate across
service areas or even countries. However, this procedure requires the orchestration of a
number of services, including: Metering and payment for energy, communication be-
tween the EV battery management system and the charge point (CP), communication
between the CP and a central management system (CS), and communication between
the CS and energy suppliers and the power grid.

These infrastructures, composed of mobile devices, autonomous entities and het-
erogeneous cyber-physical systems, require the standardization of protocols and the
implementation of two primary interfaces, one for electricity and another for control
related to status, authorization, metering, and billing. Standards for the individual as-
pects (e.g., ISO/IEC-15118, ISO/IEC-61850) of this chain of interactions exist, but the
integration of these interactions in a common framework has recently become the focus
of much interest. Among these interactions, the Open Charge Point Protocol (OCPP)
offers a way to coordinate communication and ultimately power flows between CPs and
a CS [1], keeping direct interactions with EVs and the grid in an Internet of Energy.
Concretely, the OCPP protocol is mainly concerned with reservations and manage-
ment of charging processes with restricted security considerations, principally limited
to ensuring that charging is performed only when authorized by a billing system. In
addition, the specification assumes that the components involved are in themselves
trustworthy and cannot be manipulated or compromised, together with a tacit assump-
tion that OCPP protocol states are always reflected in the power connection. Beyond
simple fraud involving payment systems, we argue that this can permit attacks on the
stability of the critical infrastructure and individual components by attempting to alter
the charging rate beyond agreed parameters, altering control status or driving energy
components outside accepted parameters.

To the best of the authors’ knowledge, this is the first study of OCPP security,
whereas prior work has concentrated on addressing interoperability aspects (e.g., IEEE
802.15.4 and OCPP over SOAP (simple object access protocol) [2], or IEC 61850 and
OCPP [3]) and new charging services [4]. Given this, we believe that this work can
become fundamental to show the security problems together with the new research
challenges. To do this, the remainder of this paper is structured as follows. We briefly
review the currently deployed versions of OCPP and on-going extension efforts in Sec-
tion 2, and then we identify a set of threats in Section 3 before discussing our findings
and challenges.

2 OCPP: Versions and Background
OCPP, currently a de-facto open standard [1], aims to provide a universal open com-
munication standard between CPs (generally located in public places such as petrol
stations, supermarkets, and car parks) and vendor CSs [1]. So far, there have been
several OCPP versions; 1.2, 1.5, 1.6 (current), 2.0 (proposal) as well as some propri-
etary extensions. Differences between versions 1.2 and 1.5/1.6 are quite significant as
the v1.5 and 1.6 offer new functions and extensions such as a local authorization list
(LAL) synchronized with the CS and a cache to streamline the response times with
the EV users. Both memory components allow CPs not only to store authorized users
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with ID tags (containing user’s identification and retained in a radio-frequency identi-
fication tag or a similar tag), but also to operate and authorize entities in a stand-alone
fashion when the communications with the CS are temporarily lost (off-line mode). In
these exceptional cases, any transaction must be queued to wait to be authorized by the
back-end system.
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Figure 1: Deployment diagram of the OCPP protocol

OCPP-1.6 also includes some functional improvements over v1.5, mainly related to
smart charging to constrain the amount of power delivered during charge transactions.
This capacity provides a better local monitoring and power control by automatically
restricting charging according to the actual demand over supply and the contextual
characteristics of each individual or associated CP (see Figure 1). Namely, OCPP-1.6
allows CPs or intermediary CPs (serving as local proxies or controllers between the
CS and a subset of CPs; useful for limited and dynamic scenarios such as underground
car parks) to furnish energy, taking into account the current power rate and the avail-
ability of the entire power grid. On the other hand, v1.6 operations also adopt diverse
communication infrastructures whose connections can be achieved using SOAP/XML
(extensible mark up language) or JSON (javascript object notation) over WebSockets
(WS).

The migration from v1.2 to v1.6 has also involved the adaptation and updating
of a set of commands1, which have been grouped into three stages: Start-up and
initial configuration which includes the boot notification initiated by the CP and upon
each re-boot caused by a reset. The configuration process is, however, led by the CS,
not necessarily on each re-boot, to synchronize and update the capacities of the CPs,
and specify the health monitoring criteria. Transactions and control carry out the
processes of authorization of an ID tag, the start/stop transactions, the reservation or
cancellation of energy, the reset of a CP, the availability and unlocking of an electrical
outlet or a CP, the heartbeats to the CS, the meter values, the LAL version update, as
well as clearing the cache, the detection of non-supported functions, and the (local or
remote) supervision of power filtered by CPs. Lastly, notification and maintenance
provide a set of instructions related to remote diagnosis, maintenance and configuration

1The changes made for the migration are marked with ∗ in this paper.
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of (hardware and software) OCPP elements.
From these three stages, we observe that OCPP relies on a rudimentary security pro-

vided by lower-level (e.g., TLS (transport layer security) or WS-Security mechanisms)
without specifying the commissioning of nodes and the bootstrapping for agreement
and session establishment. It only suggests applying TLS/SSL for critical data without
exploring other security measures to manage the communications. OCPP-2.0, to the
contrary, aims at setting up a liaison with OASIS and IEC so as to improve, extend
and standardize some functions of v1.6 such as demand response management, pricing
management, and enhanced monitoring and control [5]. As this version is, for the mo-
ment, an initial brainstorming approach to be released in the coming years, our research
will be principally focused on OPCC-1.6, thus showing the existing vulnerabilities and
contributing to a better security for subsequent versions.

3 Threat Scenarios
We describe a set of threat scenarios related to the logical functionality of the OCPP
protocol, basing our studies on the IETF framework [6, 7] as well as some recent related
work [8, 9]. To formalize the threat scenario, we consider the UMLsec notation (with
stereotypes, tagged values and constraints) defined by Jürjens in [10]. UMLsec is an
extension of the UML general-purpose modelling language adapted to specify security
requirements and visualize the design of security systems. One example of its utility is
also depicted in Figure 1, which summarizes all the notations mentioned and represents
the exiting relationships between OCPP components and their communication links.

Let A be the adversary targeting CP/CS (hardware and software) assets and their
communication links, represented through the stereotypes �architecture� (a), and
�Internet� and/or �wireless� (c), respectively. The threats associated with a y c
are included in threatsA(a,c) containing: (1) Disclosure, which corresponds to illicit
reading and/or copying of information; (2) distortion, any (fake) data insertion, spoof-
ing or modification action (data, processes or configurations); and (3) disruption that
comprises the deleting or dropping of messages, processes or actions. Variants of this
last threat can be those related to denial of service (DoS) such as grayhole (selectively
forwarding packets to the next hop) or black holes (dropping all messages), reduction
of functionality.

The threatsA(c) can be addressed if the communication channels are intercepted,
and the secrecy = {KPriv (private key), Ksession (session key)}, such that {KPriv,K pub
(public key), Ksession} correspond to the security credentials of an OCPP user/object,
is known in advance by attackers. The effect of these actions may damage not only
the�data security� stored in the OCPP domains and their communications but also
the �energy safety� for its provision. Attackers might take advantage of the inter-
ception of a and c to enable other subsequent attacks such as {disrupt, energy theft,
overloading} ∈ threatsA(e), where e denotes the stereotype �energy�. By disrup-
tion, we refer to denial of power resources and services; by energy theft, any inten-
tional action ∈ threatsA(c) that aims to illicitly obtain power, commit fraud or demand
mis-forecasting to interfere with dynamic pricing; and by overload − to the variation
of power levels at particular points in the system, e.g., substations. In these cases, at-
tackers might inject fake OCPP transactions to cause serious local effects and/or reduce
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network stability.
For the protocol analysis, we also consider the following notations: With A the

attacker of type insider (i.e., related to charging infrastructure operators) or outsider
(end users and intermediaries), :: to represent the concatenation of UMLSec expres-
sions, { }KPub for encryption, DecKPriv( ) decryption, signKPriv( ) digital signature,
ExtKPub( ) to extract the signature such that {KPub, KPriv} ∈ Keys, and arg the argu-
ment obtained in each iteration. Specifically, arg contains information of both the node
that analyzes the message and the position of the parameter within the list of arguments
defined in each method. Note that for reasons of space, we primarily focus our study on
those obligatory parameters of the OCPP specification [1], but we name some optional
OCPP parameters to describe the most relevant-security scenarios.

3.1 Stage 1: Start-Up and Configuration
Beyond physical attacks in a and assuming TLS communication, man-in-the-middle
(MitM) attacks [11] may arise in OCPP contexts. To characterize this situation, in
the interaction covered by Algorithm 1, a CP requests a TLS connection to the CS,
transmitting at least its public key (KPubCP) and a nonce value (Ni) to avoid replay
attacks. If an adversary A with initial knowledge K0

A = {KPubA, KPrivA, KPubCA} is
able to intercept the communication and interrupt the request (step 1 - Algorithm 1), it
may proceed to carry out the same operation as the CP but with the CS. In other words,
the adversary requests connection as a client and sends its public key (KPubA), the
original nonce Ni and the ID CP signed by A to the CS. In this way, the central system
can authenticate the source, and if the authentication is valid, the CS can then compute
Ksession (step 2-4 - Algorithm 1). Once this key has been computed, the CS transmits
it, encrypted with KPubA, to the supposedly “legitimate client” A together with its
certificate (CertCS) (step 5 - Algorithm 1). The attacker then re-sends the Ksession to the
CP with information related to the CS (the ID CS and its CertCS), so as to convince
the CP of the authenticity of the message and its origin (step 7-8 - Algorithm 1). At
this point, Ksession is compromised where secrecy and integrity of the stereotype c are
infringed (step 6 - Algorithm 1), and in such a way that threatsA(c) ⊆ {disclosure,
distort, disrupt} materialize.

As Ksession forms part of the knowledge of the adversary in the state Kn
A = K0

A ∪
{KPubCP, KPubCS, ID CS, ID CP, CertCS, Ksession}, any control request or transac-
tion may entail an increase of knowledge for learning from new vulnerabilities. For
example, in the boot phase, the CP has to send a boot notification to the CS through
the command BootNotification.req(CPModel, CPVendor). Here, an attacker A with the secret
key in hand may eavesdrop and extract the serial number of the CP (CPModel) and
the vendor (CPVendor). This could allow them to obtain more information about the
meter model, firmware version or the single in-line memory (SIM) (i.e., threatsA(a) ⊆
disclosure) as specified in steps 1-2 of Algorithm 2 such that Kn+1

A = Kn
A ∪ {CPModel,

CPVendor}. Moreover, in response to the boot notification (steps 3-5 of Algorithm 2
through BootNotification.conf(currentTime, interval, status) where interval defines the heartbeat
periods) for the configuration of the CP, a MitM might: (i) Vary the clock of the CP to
de-synchronize or delay layered communication; (ii) change the connection status with
the CS to be rejected; or (iii) send short heartbeat intervals to produce denial of service
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(DoS) (steps 6-8 - Algorithm 2); resulting in threatsA(a,c).

Algorithm 1 Vulnerability of TLS in OCPP (MitM)
1: CP→ A: Initializes the communication with the “CS”.

CommTLS.init(Ni,KPubCP,signKPrivCP (ID CP::KPubCP))

2: A: Computes the parameters and updates its knowledge state Ki
A.

N
′

:= argA,1; K
′
CP := argA,2; ID

′
CP := Ext

K
′
CP

(argA,3); K1
A := K0

A ∪{ID
′
CP,K

′
CP}

3: A→ CS: Initializes the communication with the CS.
CommTLS.init(Ni,KPubA,signKPrivA (ID CP::KPubA))

4: CS: Computes the parameters and generates the session key.
N
′

:= argCS,1; K
′
A := argCS,2; Ext

′
KA

(argCS,3) = ID CP
5: CS→ A: Responds to the “CP” for the connection in TLS.

CommTLS.resp({singKPrivCS (Ksession::N ′ )}
K
′
A
,signKPrivCA (ID CS::KPubCS))

6: A: Computes the parameters and updates its knowledge state.
K
′
CS := ExtKPubCA (argA,2); ID

′
CS:= ExtKPubCA (argA,2)

K
′
session := DecKPubA (Ext

K
′
CS
(argA,1)); K2

A := K1
A ∪{ID

′
CS,K

′
CS,K

′
session}

7: A→ CP: Responds to the CP for the connection in TLS.
CommTLS.resp({singKPrivCS (Ksession::N ′ )}

K
′
CP

,signKPrivCA (ID CS::KPubCS))

8: CP: Computes the parameters, authenticates the source, validates the freshness of the message and obtains the
session key.
K
′
CS := ExtKPubCA (argCP,2); ID

′
CS := ExtKPubCA (argCP,2)

IF ((ID
′
CS = ID CS) AND (DecKPubCP (Ext

K
′
CS
(argCP,1))) = Ni)) THEN {

K
′
session := DecKPubA (Ext

K
′
CS
(argCP,1))}

MitM may also intercept the channel to lead on-path attacks of the kind threatsA(c)
⊆ {distort, disrupt} such as: exhaustion of the channel, delays, replays by not being
guaranteed the freshness of the OCPP messages, dropping or impersonation (e.g., sink-
holes to attract traffic towards a malicious node, or wormholes to entail a sinkhole with
several nodes in conjunction [6, 7]). For example, when CPs wish to connect to a CS
through a WS channel, they have to first negotiate the type of WS handshake through
an insecure HTTP request. If the MitM has not been mitigated and has set up con-
nectivity with a CP, the end-point of such requests may be spoofed to direct traffic to
itself (sinkhole), or to one/several hosts in order to create a distributed threat scenario
(wormhole). Note that it is also possible that the CP may be a malicious node itself,
which might request multiple WS upgrades with non-supported information (e.g., with
a non-existent OCPP version) so as to leave operational services unavailable.

Intermediary nodes may also perturb the configuration of a CP by injecting fake
configuration parameters or varying the format or the size of its command, ChangeConfig-

uration.req(key, value) such that key corresponds to the configuration setting (location, time,
samples, etc.). These configurations might, for example, force the CP to produce short
retries for resetting, modifying or injecting the sampled data included within the in-
struction MeterValues.req(connectorId, metervalue), or modifying the transmission time of the
meter values. As for impersonation attacks, these intermediaries might send an LAL
with false ID tags with unlimited expiration to perform transactions with status equal
to accepted through SendLocalList.req(listVersion, updateType, [LAL). This command transfers,
through the variable updateType, a full or differential of the LAL version with those ID
tags that must be authorized by the CP. So a full transference of a periodic and large
LAL might reduce functionalities in a and cause delays in c. Moreover, the previous
OCPP releases added the option of applying a hash function to transfer the list in a se-
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Algorithm 2 Vulnerability in the OCPP boot notification
1: CP→ A: Establishes synchronization with the supposed legitimate “CS”.

BootNotification.req({CPModel::CPVendor}Ksession )

2: A: Eavesdrop on communication using Ksession and updates its knowledge Ki
A.

CPModel
′

:= DecKsession (argA,1); CPVendor
′

:= DecKsession (argA,1)

Kn+1
A := Kn

A ∪{CPModel
′
,CPVendor

′}
3: A→ CS: Establishes synchronization with the CS.

BootNotification.req({CPModel::CPVendor}Ksession )

4: CS: Computes the parameters and prepares the configuration of the CP.
CPModel

′
:= DecKsession (argCS,1); CPVendor

′
:= DecKsession (argCS,1)

5: CS→ A: Provides the supposed legitimate “CP” with synchronization inf.
status: =‘Accepted’
BootNotification.conf({currentTime::status::interval}Ksession )

6: A: Computes the parameters and produces one of the following attacks:

(currentTime
′

:= clockA) OR (status
′

:= ‘Rejected’) OR (interval
′

:= intervalA)
7: A→ CS: Provides the real CP with a fake synchronization information.

BootNotification.conf({currentTime
′
::status

′
::interval

′}Ksession )

8: CP: Computes the parameters and configures its system according to the “CS”.
currentlTime := DecKsession (argCP,1); status := DecKsession (argCP,1)
interval := DecKsession (argCP,1)

cure fashion. However, this new version omits this functionality instead of considering
it as a mandatory one. The ease of cloning of the static ID-based RFID cards is also an
impersonation problem in OCPP contexts by applying potential electronic equipment
located close to the CPs and eavesdropping IDs, where attackers might also prove ar-
bitrary IDs so as to find the correct ID for the access [12]. They may also simplify
the effort by approximating the seeking range, making use of a foreknown ID from a
legitimate RFID card [12]. If in addition, the access is associated with multiple users
through an OCPP parent idTag (to manage ID tokens as a ‘group’,), the adversarial
influence will be extreme.

3.2 Stage 2: Transactions and Control
All transactions must be authorized by the CP. However, attackers can trivially take
advantage of wireless communications by jamming. In this way, they might oblige
the CP to locally manage authorizations and queuing transactions that must later be
authorized by the CS. Indeed, OCPP forces the CS to always “accept” any queued
request regardless of whether the process has been authenticated or not.

Distortion in c and over-/under-shooting of e are also possible by manipulating the
changing profiles defined by the CS through SetChargingProfile.req*(connectorId, chargingPro-

files), where chargingProfiles establish the amount of power (watts) or current (amperes)
that can be delivered per time interval to a CP or a group of CPs together with their
charging schedules (time period, rate). Attackers might, for example, vary the charging
rate or perturb its schedule (e.g., to keep the charging limits to maximum values at all
times, restart a schedule periodically or define profiles with beneficial time periods) so
as to hit the stability of the grid. This same threat also occurs when malicious CSs
or MitMs serving as CSs are able to inject spoofed charging profiles through the Re-

moteStartTransaction.req*(idTag,[connectorId],[chargingProfile]), which is initiated by the CS and
activated when the CP accepts and transfers the PDU (payload data unit) StartTransac-

tion.req*(connectorId, idTag, meterStart, timestamp) (steps 4-8 of Algorithm 3). If, in addition,
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these profiles are related to particular connectors (EV supply equipment (EVSEs) ID
or IDEVSE) and open transactions, MitMs might also dynamically upgrade them (using
SetChargingProfile.req*) with a planned charging limit for or against specific users (e.g.,
reduce the maximum rate to minimum values). Note that another way to do this would
be to first preconfigure the desired profile in a CP, intentionally according to the at-
tacker’s convenience (e.g., increase the charging rate), to later push the CP to enter in
off-line mode and take advantage of the illicit authorization.

Algorithm 3 Vulnerability in the start/stop transaction (1/2)
1: CP1 → A and CP2 → A: A “only” interferes the channel CS←→ CP1 through Algorithm 1, captures the IDCP1 in

order to update its initial knowledge state K0
A = {KPubA, KPrivA, KPubCA, KPubCP2 , ID CP2, KsessionCP2

}. At this
point A further takes advantage of the TLS attack to impersonate the identity of IDCP2 as ID

CP
′
1

so as to regulate the

entire charging process as a legitimate node. At the end of this process, the attacker obtains KsessionCP1
associated

with ID
CP
′
1
, i.e.:

Kn
A = K0

A ∪ {KPubCP1 , IDCP1 , KsessionCP1
, KPubCS , ID CS, CertCS}

2: CP2 → A→ CS: Boots the system with the ID
CP
′
1

through the MitM, which in turn relays the request to the CS.

BootNotification.req({CP2Model::CP2Vendor}KsessionCP2−1
)

3: CS→ A→ CP2: Accepts the boot of CP2 and starts the transactions.
status: =‘Accepted’
BootNotification.conf({currentTime::status::interval}KsessionCP1−2

)

4: CP1 → A: Requests the authorization of an user with idTagCPS1 to its supposedly “CS”.
authorize.req({idTagCPS1}KsessionCP1

)

5: A: Updates its Kn
A, and from now on ignores the communications with CP1.

idTagCPS1 := DecKsessionCP1
(argA,1); Kn+1

A = Kn
A ∪ {idTagCPS1}

6: CS→ A: Requests the starting of a remote transaction to the supposed ID
CP
′
1

under an specific charging profile

(optional action).
chargingPro f ile := idChPro f ile::typePro f ile::chargingShedule; chargingSchedule := 08:00-13:00::XkWh
RemoteStartTransaction.req*({idTagCPS1 ::IDEVSE::charingPro f ile}KsessionCP1

)

7: A→ CP2: Captures the information and modifies the charging profile.
IDEVSE := DecKsessionCP1

(argA,1); chargingPro f ile
′

:= idChPro f ile::typePro f ile::chargingShedule
′

chargingSchedule
′

:= 08:00-18:00::Y kWh such XkWh 6= Y kWh
RemoteStartTransaction.req*({idTagCPS1 ::IDEVSE::chargingPro f ile

′}KsessionCP2
)

8: CP2 → A→ CS: CP2 accepts the transaction; and A relays the confirmation.
status: =‘Accepted’
RemoteStartTransaction.conf*({status}KsessionCP2−1

)

9: CP2 → A→ CS: CP2 initiates the transaction, providing e to the EV connected in the CP2, and A relays the request.
StartTransaction.req*({IDEVSE::idTagCPS1 ::meterStart::timestamp}KsessionCP2−1

)

10: CS→ A→ CP2: Accepts the transaction and A relays the confirmation.
status: =‘Accepted’; expireDate: =‘01/12/2017’
StartTransaction.conf*({status::transactionId::expireDate}KsessionCP2−1

)

11: CP2 → A→ CS: Disrupts the transaction for the energy purchase.
StopTransaction.req*({meterStop::transactionId::reason::timestamp}KsessionCP2−1

)

12: CS→ A→ CP2: Stops the transaction and charges the purchase to idTagCPS1 .
StopTransaction.conf*()

In addition, many CPs have already been designed to offer bidirectional interfaces
for power charging/discharging, where batteries should charge during off-peak periods
and discharge during peak times. If attackers are able to affect several controllers of
diverse CPs and reverse the power flow into the distribution line during off-peak periods
at the same time, this can result in unanticipated power flows, potentially overloading
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distribution networks. This effect may occur when multiple hacked CPs inject energy
into EVs during peak periods, and probably with fake charging profiles (e.g., steps 4-8
of Algorithm 3). Indeed, MitMs might interfere with different profiles to intentionally
attract a high demand at peak periods when the batteries are being discharged into the
grid. To do this, the adversary needs to first modify the current charging profiles such
that the intensity of Wh has to be greater at peak hours (e.g, X1kWh) or equal to the
power consumption in off-peak periods (X2kWh), such that X1kWh ≥ X2kWh. This
change can be done through the instructions SetChargingProfile.req* or StartTransaction.req*.
Algorithm 3 also shows the ability of an attacker to forward the transactions from
a CP1 to another malicious CP2, whose power purchases may be charged to the user
authorized in CP1. This threat, which additionally entails an energy theft/fraud attack,
requires, on the one hand, that the CP2 must impersonate the identity of CP1, and CP1
must think that the connection has properly been established with the CS. And, on the
other hand, the threat assumes that A has been able to compromise the channel CS←→
CP1 from the deployment and fool the CS using the identity of IDCP2 , thanks in part to
Algorithm 1.

Any change in meter values reported in the meterStart of StartTransaction.req* and in the
meterStop of StopTransaction.req*(meterStop, timestamp, transactionId, stopReason) may also cause
an over-provisioning of e and energy theft/fraud. For example, if an EV needs 10kWh
and starts the transaction with a meter value X for a connector, the CP must stop the
transaction after X + 10kWh. A malicious CP serving as a MitM might request the
same transaction but starting with X +10kWh, thereby obtaining unmetered energy at
the end of the transaction. Likewise, third parties emulating legitimate CSs (and by
means of the StartTransaction.req*) may also abuse the energy levels by previously syn-
chronizing a new LAL with false ID tags through the command SendLocalList (cf. Section
3.1). Once access has been granted, malicious EVs linked to these false ID tags can
obtain unmetered energy. Moreover CPs may be intentionally tampered with, more
likely by insiders with access to replace or configure components, to consume the
energy demanded by forwarding a small fraction of reserved power to another EVSE
while the EV receives only a fraction of the energy purchased [8].

Through ReserveNow.req(connectorId, expiryDate, idTag, reservationId) a CS can demand an
IDEVSE before starting a transaction, but such a demand has to be validated by the CP
with an accepted/rejected confirmation. If the CP receives a reservation request with
IDEVSE > 0, then it has to refuse any incoming ID tags that want to connect with the
reserved EVSE, except when the incoming ID tag coincides with the ID tag of the reser-
vation. This can even invalidate the use of connectors for a long time if the expiryDate
parameter is not limited properly. If ID = 0, then the CP does not reserve a specific
connector of the EVSE, but it has to make sure that at all times during the validity of
the reservation, a connector of the EVSE remains available for the reserved ID tag. In
these cases, energy theft may also arise by reserving an EVSE ID associated with a
false ID tag, which has first had to be incorporated into the LAL, as stated earlier. The
result of the threat may also cause a denial of energy service (DoES, aimed at a ser-
vice disrupt ⊆ threatsA(e)), which may become more critical when there is a selective
downgrading or an existing reserve activation with a long/unlimited expiration. This
is because CPs are not authorized to terminate the process until the time specified in
the expiry field is reached. Another way to cause DoES and disrupt the reservation
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procedure would be to tamper with a CP so that it emits fake signals attributing a faulty
or unavailable status to an EVSE demanded. Moreover, a MitM acting as a suppos-
edly legitimate “CS” might also halt any reserve process by taking advantage of the
command CancelReservation.req(reservationId), and a CP that has been tampered with might
likewise send back rejected signals so as to disobey any cancellation order and obtain
extra provisioning.

For control, the CS should periodically receive the responsiveness degree of each
CP within the infrastructure. To do this, the CP must first request the current date
for synchronization with the CS through the instruction Heartbeat.req(). After this pro-
cess, the CS can configure the inactivity interval (except during OCPP information
exchanges), specifying in this case both the function key and its value associated with
the heartbeat interval as described in Section 3.1 for ChangeConfiguration.req*. Any de-
synchronization with the CS or tampering with configuration values could lead to
malfunctions or unavailability of charging resources (DoES). Similarly, metering sam-
ples are also transferred to the CS periodically using MeterValues.req (also mentioned in
Section 3.1). Through this instruction, the CS receives information from a specific
EVSE (IDEVSE > 0) or from the main power meter (IDEVSE = 0). There exists the
option of emitting further information about: (i) The type of measurement; (ii) the type
of context, defining, for example, when samples take place, location (inlet or outlet),
unit (Wh by default), format (raw by default or signed data); and (iii) the time-stamp
for measured values. Nonetheless, this optional feature should be mandatory to specify
when, where and how they were measured.

Apart from refreshing the LAL through a new list version in each CP (cf. Section
3.1), the CS can also order the LAL and the cache to be wiped. As mentioned, both
components act as local authorization elements when there is no connectivity with the
CS, so malicious entities might take advantage of the commands SendLocalList.req and
ClearCache.req() to delay or disrupt the authorization processes, or even to leave the CPs
inoperative by forcing them to move to off-line mode. For the attack to be success-
ful, the attacker first needs to clear the LAL by remotely sending a new empty local
authorization list and the cache, and then disrupt the communication with flooding,
collisions in channels, jamming or any other similar DoS attacks, such as dropping.
Another way to perform a functionality reduction would be through the ChangeAvail-

ability.req(connectorId, availabilityType), which allows the CS to block a specific connector
(IDEVSE > 0) or the availability of a CP as a whole (IDEVSE = 0). This weakness may
even encourage stronger attackers to selectively exploit system vulnerabilities, and in
this way cause a resource downgrading. Namely, attackers might, for example, launch
multiple and coordinated attacks (such as those described in this paper) to degrade the
performance of the system step by step by reducing the effectiveness of the resources
and energy provisioning.

Malicious entities might also act as legitimate CSs to request, through the Unlock-

Connector.req(connectorId), the activation of those EVSE (IDEVSE > 0) with malfunctions
to impact either on the charging of EVs, or on the local grid performance and its stabil-
ity. Another way of interfering with the availability and integrity of resources, would
be to reset CPs in a hard (full reboot and immediate) or soft (delay reboot until no more
transactions are active) manner, both contained within the instruction Reset.req(resetType).
Finally, the command DataTransfer.req(vendorId) allows CPs and the CS to send informa-
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tion of non-supported functions to the CS or CPs, respectively. These entities have
to validate the request according to the functions provided by the vendor, returning
the corresponding status (accepted, rejected, or unknown). In this scenario, attackers
might, for example, overload a CP/CS by requesting non-supported functions or trans-
actions with irregular lengths. In addition, the specification recommends the use of a
unique vendor ID associated with a domain name system (DNS) namespace, but it can
be easily forged.

3.3 Stage 3: Notification and Maintenance
Accountability and safety-related audit measures are considered by OCPP. However,
this information must contain trustworthy information including location (where), iden-
tity (who), problem (what and why), activities (how) and time (when). As shown above,
most commands use a common identifier, generally IDEVSE > 0 for connectors and
IDEVSE = 0 for the CP or its meter. It tends to be a generic value, without identifying
a particular CP from among a set. So, it is necessary to offer fine-grained information
based on locations and unique identifiers, as well as the MAC address of each device
involved. For example, the current release of OCPP only notifies through StatusNotifica-

tion.req(connectorId, errorCode, status, [timestamp]) the type of faulty component in an IDEVSE,
the type of error and its status, discarding in this case, the time-stamp as a mandatory
parameter.

Maintenance and diagnostic tasks are also vulnerable to MitMs, sinkholes or worm-
holes. CPs may be provided with false URLs to intentionally retrieve firmware ver-
sions from malicious hosts, or upload their diagnostic files to such locations. For
this, attackers have to force the CP to accept the location field contained within the
UpdateFirmware.req*(location, retrieveDate, [retries], [retryInterval]) and GetDiagnostics.req(location,

[retries]), [retryInterval], [startTime], [stopTime]). Both commands allow optionally specifying
the number of retries to download a firmware or upload a diagnostic file, as well as
the interval in seconds for each attempt. At this point, the attacker could intentionally
increase the number of retries to short time intervals to reach a DoS, or perform a DNS
attack. Moreover, according to OCPP, if these two fields are not present, the CP is
responsible for deciding how many frequent retries it will undertake, and how long to
wait between them. If the controller is compromised, the effect would evidently be the
same. So it is prudent to mandatorily fix these parameters using reasonable configura-
tions from the CS, where the communication channels need to be secured. This also
includes the mandatory use of transport layer security for FTP and HTTP together with
identity management and authorization [9].

However, OCPP-1.6 positively addresses the firmware update procedure by adding
a new optional field (startTime) to the UpdateFirmware.req*, which helps the CP decide
when to start with the installation. Again, a short or long startTime value may once
more impact on the updating of a CP and its availability. Apart from this, v1.6 also
offers a new error field to the FirmwareStatusNotification.req*(status) so as to notify of the
real status of the firmware (downloaded, failed or idle). But despite this improvement,
the protocol does not consider (i) the case where the installation is in progress and
requires be halting, and (ii) there is no suitable control of parameters and states. So any
successful abort could put the restoration process at maximum risk.
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3.4 Beyond OCPP: Common Threats and Vulnerabilities
In this section, we explore a number of common and cross-cutting threats at the differ-
ent levels of the protocol ∈ threatsA(a,c), and beyond the OCPP protocol design. For
instance, CPs can be highly prone to Byzantine faults due to the architectonic features
of the system and its interdependencies; or to advanced persistent threats (APTs)
which include stealth attacks. Within this last category, we underline (i) side- and
covert-channel exploitation by observing the traffic load in the physical level (e.g.,
timing attacks to extract details about computations and parameters) or hiding data
flows within the regular messages; and (ii) passive traffic analysis to learn from the
network topology and/or deduce users’ activity patterns, lifestyle and routes of end
users. A subcategory of this last threat is neighborhood monitoring, in which intruders
can penetrate the channels of those CPs located around residential areas to discover,
e.g., unoccupied dwellings. As a complementary action, attackers may also deliber-
ately expose critical data to other unauthorized entities or competitors.

The use of web technologies (e.g., SOAP/XML, JSON-WS, HTTP, FTP) generally
adds vulnerabilities; e.g., the lack of parameter validation may entail threats related
to false injection on official websites belonging to users or the control. Other typical
threats in c, and particularly in SOAP/XML, are as follows [13]: (Distributed) DoS
where attackers might, for example, lead buffer overflow attacks or exhaust the mem-
ory of parsers in CSs/CPs; SOAPAction spoofing with obfuscation actions within the
body of the HTTP request to bypass authentication mechanisms and firewalls; WS-
addressing spoofing with different request and response endpoints; or XML injection,
modification or delays by sending oversized payloads (e.g., SendLocalList.req where up-

dateType retains the full list) or by taking advantage of XML namespaces to overload the
parsing process (coercive parsing). On the other hand and as stated in Section 3.1, WS
connection-based networks establish identities during the handshake to avoid imple-
menting authentication mechanisms at the network level. However, this feature may
not be very effective when JSON objects are distorted as is the case of SOAP/XML
[14], where their communication channels may be threatened by typical attacks such
as DoS or on-path. Moreover, all synchronization and DoS problems arising from
TCP/IP protocol usage also remain. Attackers could, for example, forge TCP RST
(reset) segments to disrupt any TCP connection between two peers, or cause DoS
through Jellyfish (multiple delays in the TCP transmissions) or SYN flooding (mul-
tiple TCP connections without completing) to exhaust resources. Lastly, the absence
of robustness mechanisms in the different (remote, local and wireless) communication
infrastructures, the lack of non-repudation measures together with strong authentica-
tion and authorization mechanisms and the inherent weaknesses inherited from current
technologies with limited resources (e.g., smart meters in CPs)− not only in the OCPP
domains [12] but also in the majority of Smart Grid applications [9]−, do not currently
help prevent threatsA(a,c).
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Figure 2: Denial of service defined in Algorithm 2

4 Challenges and Discussion
This section presents a practical analysis carried out through the OCPP simulator im-
plemented by GIR (Giaume Industrie & Recherche) in [15]. This simulator, called
ocppjs and based on Nodes.js, consists in a framework capable of providing the nec-
essary tools to exchange messages between the CS and the CPs. The last version of
ocppjs includes the last OCPP releases, SOAP over HTTP and WS (RFC 6455). Based
on this environment, our validations principally focus on WSs and on the implemen-
tation of Algorithms 2 and 3 by encompassing the most significant threats described
in this paper such as DoS, impersonation, data tampering, spoofing, fraud and energy
theft. For the experiments, we have used several virtual machines (VMs) based on Kali
Linux 2016, where we have applied ettercap for the poisoning of the network and the
MitM, the filters of which specify actions to be executed during communications. For
example, we have defined the following filter for Algorithm 2:
i f ( i p . p r o t o == t c p && t c p . s c r == <l o c a l p o r t> && s e a r c h (DATA. da ta , ‘

h e a r t b e a t I n t e r v a l ’ ) ){
DATA. d a t a + 1 = 0xX ;
r e p l a c e ( ’ c u r r e n t i n t e r v a l ’ , ‘ new i n t e r v a l ’ ) ;}

such that DATA.data + 1 defines the new dimension of the packet associated with
the heartbeat interval. Namely, the simulator specifies, by default, the value of the
heartbeat interval (interval′ in Algorithm 2) to 1000 seconds, while the filter reduces its
value to 10 seconds each time. This functional feature evidently introduces a slight
DoS such as illustrated in Figure 2. This figure depicts the packet delivery impulses
obtained from Wireshark and produced between the CP, A and the CS, clearly showing
when the MitM and DoS attacks are launched over time. The first actions include the
connection with A together with the manipulation of the packet BootNotification.conf ; the
rest of the impulses correspond to the result of modifying the heartbeat interval to the
CS.

Ettercap was also applied in the implementation of Algorithm 3 and in the first
phases of the attack, so as to poison the network and impersonate the IDCP1 and the
IDCS, respectively. The manipulation of the network data streams among A, the CS
and the charging points was, to the contrary, carried out by the tool netsed, which
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defines:
n e t s e d t c p {< l o c a l P o r t >} {<remoteNode>} {<r e m o t e P o r t>}

{s /< s e a r c h >/<r e p l a c e >}

such that remote node and port correspond to the IP and port of the VM containing
the CS, and s/<search>/<replace> = s/IDCP2/IDCP1 to create a tunnel between the
CP2 and the CS using the IDCP1 . Figure 3 shows the experimentation results together
with the steps of the threat, where: A first takes over the communications between CP1,
CP2 and the CS (steps 1-5 of Algorithm 2), and produces the MitM to later initiate a
fake transaction using a RemoteStartTransaction.req* from CS (modified by A later) and a
StartTransaction.req* from CP2. Steps 5-12 of Algorithm 2 are shown in Figure 3 through
the thicker impulses, in which A deals with manipulating the traffic between the CS
and CP2, ignoring the communication of CP1 (square signals in Figure 3). The fraud
is successful once the simulation exceeds 320 seconds, and the CS charges CP1 for the
energy purchase.

Figure 3: Fraud and energy theft defined in Algorithm 3

Apart from this, Table 1 summarizes the security analyses done in this paper and
the influence of the diverse threatsA(a,c,e) on the end services, looking carefully at
the availability, integrity, and confidentiality of the communications, as well as the
energy provisioning to end users. This table also characterizes, with a ‘∗’ symbol, the
most relevant OCPP threats and their dependent-layered communications, emphasizing
in this case the existing dependencies between threatsA(a,c) and threatsA(e). These
dependencies highlight the existing security insufficiencies running across the charging
architecture, where different stakeholders and local distribution grids may be affected,
and whose effect might be widely extended towards other critical infrastructures. That
is, from the table and the simulations, we highlight the vulnerability of the protocol
to potential and multiple attacks such as DoS, data tampering or stealth attacks, all of
them motivated in part by the actions led by MitMs in threatsA(a,c). The main aim
of the attackers in these highly critical contexts, consists in shaking control and the
natural flow of e to directly or indirectly hit the grid, though this also implies putting,
in most cases, the security and safety of other main stakeholders, such as the control
systems, their remote assets and end-users, at risk. Only in exceptional cases, such as
energy theft, are the end-users targeted, through fraud.
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Table 1: Goals of the Attack and impact on OCPP contexts
ThreatsA(a,c)a ThreatsA(e) Impact on
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MitM � � � ∗ ∗ ∗ X X X X

Impersonation � ∗ ∗ ∗ X X X X

over-/undershooting � ∗ ∗ X

Abuse of off-line ◦ ∗ ∗ ∗ X X X X

Data tampering � ∗ ∗ ∗ X X X X

Fraud/energy theft ◦ ∗ ∗ X X

False injection � ∗ ∗ ∗ X X X X

On-path att. ◦ ◦ ∗ X

Render useless � ∗ X X X X

Redirect traffic ◦ ◦ ◦ X

Byzantine faults � � � ∗ ∗ ∗ X X

APTs � � � ∗ ∗ ∗ X X X X

Stealth Att. ⊂ APTs � � � ∗ ∗ ∗ X X X X

Side-channel att. ◦ X X

Covert-channel att. ◦ X

Passive traffic an. ◦ X X X

Deliberate expos. � X X X X

Web/TCP-IP ◦ ◦ ◦ ∗ ∗ ∗ X X X X

DoS � ∗ X X X

DoES X X

de-synchronization � � ∗ X X X

Physical att. � X X X X X

Jamming ⊂ Phys. att. � ∗ X X X X

Replacement • ∗ ∗ ∗ X X X X

a�: has influence in a and c, and • and ◦: impact on a and on c, respectively.

To address threatsA(a,c) and OCPP’s vulnerability to MitMs, future releases and
architectures should be subject to tunneling and secure end-to-end communications us-
ing secure protocols (HTTPS, FTPS). These networks must also be equipped with (i)
lightweight detection mechanisms based on knowledge of the environment like, for
example, restricted intrusion detection systems (IDSs), and (ii) lightweight trust-based
systems to make sure that the information received by a node is reliable. Apart from
constrained firewalls and IDSs, the network designs should also be based on strong
authentication and authorization mechanisms in the whole TCP/IP stack [12, 16, 17]
where the actions in the field should be restricted to roles, permissions and contextual
attributes as specified in IEC-62351-(7-8), and logged. These logs will be vital to prop-
erly address all those aspects related to governance, audit and maintainability, where
OCPP accountability should be restricted to fine grain information and non-repudiation
measures to explain, in detail, a specific situation and responsible entity.

The prevention of Byzantine faults, APTs and their derivatives over large distribu-
tions is, however, not such a trivial task. Constant resource monitoring and design of
fault-tolerant services under dynamic proactive measures and lightweight self-healing
systems are also fundamental in providing a wide area situation awareness and man-
aging unforeseen faults. Other good practices against stealth threats such as side- and
covert channels, code injection or active eavesdropping, should be validation, assess-
ment and updating of systems, application of specialized techniques (e.g., hiding tim-
ing variations, blinding, masking), reputation mechanisms, security controls through
proper policies and governance, and cryptography as recommended by the IEC-62351-
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3 [18]. Likewise, it is of utmost importance to improve the architecture of the con-
trollers and meters to make them tamper-resistant to physical manipulation or attacks.

All these security issues still form part of the security challenges in OCPP contexts,
and hence, they must form part of future work; particularly in OCPP-2.0 where the
intention is to extend v1.6 to further integrate the role of the end-user in the OCPP
architecture. The goal is to allow the user to choose the type of charging profile with
its purchase schedule, the amount of power and its pricing scheme with its tariffs.
However, this feature will also bring about numerous problems if any new charging
policy collides with the ones pre-established by the providers, entailing serious threats
in e such as energy theft and power overload. Therefore, it is essential to pay special
attention to each part of the specification and its architecture to consider some of the
security requirements mentioned in this paper.
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