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Abstract
In recent years, the deployment of charging infrastructures has been in-

creasing exponentially due to the high energy demand of electric vehicles,
forming complex charging networks. These networks pave the way for the
emergence of new unknown threats in both the energy and transportation
sectors. Economic damages and energy theft are the most frequent risks in
these environments. Thus, this paper aims to present a solution capable
of accurately detecting unforeseen events and possible fraud threats that
arise during charging sessions at charging stations through the current
capabilities of the Machine Learning (ML) algorithms. However, these
algorithms have the drawback of not fitting well in large networks and
generating a high number of false positives and negatives, mainly due
to the mismatch with the distribution of data over time. For that rea-
son, a Collaborative Anomaly Detection System for Charging Stations
(here referred to as CADS4CS) is proposed as an optimization measure.
CADS4CS has a central analysis unit that coordinates a group of inde-
pendent anomaly detection systems to provide greater accuracy using a
voting algorithm. In addition, CADS4CS has the feature of continuously
retraining ML models in a collaborative manner to ensure that they are
adjusted to the distribution of the data. To validate the approach, dif-
ferent use cases and practical studies are addressed to demonstrate the
effectiveness and efficiency of the solution.
Keywords: Collaborative anomaly detection Charging station Machine
Learning Voting system

1 Introduction
According to studies carried out in [1], more than 30 million Electric Vehicles
(EVs) are predicted to be on the roads by 2030. This encourages organizations
to deploy a large number of charging infrastructures in order to meet the energy
demand expected from EV batteries. Charging infrastructures are commonly
composed of a set of interconnected Charging Stations (CSs), which are re-
motely controlled by a control system, called CS Management System (CSMS)
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[2]. These infrastructures often use Information Technologies (ITs) as well as
Operational Technologies (OTs) to provide the system with greater functionality
and intelligence, such as online reservations, payments through bank entities and
monitoring of charging profiles from external entities, known as Energy Man-
agement Systems (EMSs). Further details about the design of charging station
infrastructure can be found in Appendix A. However, this convergence of ITs
and OTs to create complex networks leads to new cybersecurity risks in power
systems [3]. Standards institutions, such as the National Institute of Standards
and Technology (NIST), and other governmental organizations of interest, such
as the United States (US) Department of Energy, Transportation and Defense,
are raising concerns about these new environments under development [4]. In
this report, NIST highlighted how CSs are bringing two critical sectors together
for the first time: energy and transportation, which have never been electron-
ically connected before. This implies new potential attacks that could directly
impact financial terms, business continuity and human safety.

This concern is accompanied by the observed increase in cybercrime attacks
on critical infrastructures according to the latest European Union Agency for
Cybersecurity (ENISA) threat landscape report [5], where the major critical
infrastructure sectors being impacted are healthcare, transportation and energy.
Recently, several researchers have developed a novel attack called BrokenWire
[6] against rapid chargers with the ability to wirelessly send malicious signals to
the targeted vehicle in order to cause electromagnetic interference and disrupt
the charging session. In [7], a botnet of compromised EVs and CSs is also
launched to simultaneously attack the proper functioning of the power grid by
increasing its load in an uncontrolled manner; consequently provoking a Denial
of Service (DoS). Also, the authors of [8] show the feasibility of extracting
charging session attributes and creating large datasets to lead privacy issues.
Many of these threats are also contemplated in [9, 10, 2, 3], where the authors
show how charging infrastructures are susceptible to diverse threats. To clarify
the influence of these attacks and its impact to the sector, Appendix A details
the most common threats to CS components and communications, as well as the
highest risk impacts, corresponding to economic damage and energy theft. As
stated in [11], the main security weakness is due to the type of CS deployment
in public environments and the type of communication, which can be wireless.
Consequently, different cybersecurity expert organizations have been working
to provide solutions to these threats. Most organizations rely on frameworks
and standards to help ensure a structured defense of control systems [12], where
detection is a core element.

One of the most widespread detection solutions in the literature is the
Anomaly Detection System (ADS) based on Machine Learning (ML) algorithms
[13]. These systems are responsible for identifying deviations or outliers, denom-
inated as anomalies, and launch an early alert when these are detected. One
of the main advantages of these algorithms is their ability to learn and adapt
to the data distribution, thanks to their ability to recognize both known events
and unknown anomalies (e.g. those caused by zero-day vulnerabilities). How-
ever, in systems such as charging infrastructures, the distribution of data tends
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to vary rapidly over time due to their continuous increase in energy demand
and the improvements in EV batteries and charging speed. This causes an in-
crease in the False Positive (FP) and False Negative (FN) ratio in ML models by
mismatching with the distribution of the data. In addition, charging networks
are currently composed of groups of interconnected CSs building up a complex
network, usually distributed by zone and managed locally by a CSMS. This dis-
tribution also presents the challenge of sharing anomalies and alerts between the
independent charging infrastructures, for the purpose of detecting distributed
attacks and obtaining global information on the situational awareness of the
charging network.

To provide a suitable solution to these challenges, researchers apply Collab-
orative ADS (CADS) as a protection measure of large networks and large IT
ecosystems [14]. CADS is based on the cooperation of different monitors dis-
tributed in the system, which act as sensors and collect data. It also contains
one or more analysis units that are responsible for intrusion detection by cor-
relating data obtained from sensors. These defensive supports have encouraged
us to contribute with a novel approach using a centralized CADS – referred
to here as CADS for CSs (CADS4CS) – as an optimization measure to adjust
detection algorithms according to the real conditions of charging networks. To
do so, CADS4CS is composed of a central analysis unit, referred to here as a co-
ordinator, which coordinates a distributed group of standalone ML-based ADSs
to: (1) obtain higher accuracy in anomaly detection using a voting algorithm;
and (2) continuously retrain ML models in a collaborative and secure manner
to ensure that they are always adjusted to the data distribution. To provide an
optimal voting system for CSs, we designed three types of coordinators with
three voting algorithms based on: (1) average; (2) weighted average; and (3)
mode. Based on this, we conducted several experiments representing various
anomaly detection scenarios in charging networks. These scenarios correspond
to the use of: (1) a single charging session dataset, which includes the same
type of threats and is shared between the different ADSs to validate the per-
formance of ML models; and (2) different datasets, each of which contemplates
different anomalies in order for each ADS to validate the effectiveness of the
voting algorithms.

This paper is organized as follows. Section 2 summarizes all work related to
ML-based anomaly detection on energy consumption in CSs. Section 3 describes
the structure and functionality of CADS4Cs. More specifically, Subsection 3.1
defines the open charging session datasets and the types of anomalies, while
Subsection 3.2 establishes the design of the central coordinator together with the
types of voting algorithms proposed. Subsequently, Section 4 shows the results
of different analyses and experiments on various use cases. Finally, Section 5
draws the conclusion from the results obtained and describes future work.
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Table 1: Related work on Machine Learning-based anomaly detection systems

Reference
(year)

Applied
technique

Learning
process Method Scenario Dataset Energy

consumption-based Collaborative

[15] (2014) Time series Unsupervised Clustering Building energy
consumption Real data ! X

[16] (2019) RNN Deep Learning Regression Tennessee Valley
Authority

Data provided by
30 power meters ! X

[17] (2018) SVM, KNN,
Random Forest Supervised Classification Water supply

system Testbed ! X

[18] (2018) TMSE Supervised Classification Industrial Internet
of Things

Dataset offered by
State Grid of China ! X

[19] (2020) Regression trees Supervised Regression Smart Grid AMI Experiment ! X

[20] (2020) K-means
LSTM

Unsupervised,
Deep Learning

Clustering,
forecasting

User power
consumption

Dataport,
a public dataset ! X

[21] (2020) KNN Supervised Classification Charging Station - X X

[22] (2019) Moving Average,
DBSCAN Unsupervised Clustering Charging Station High frequency

harmonic data X X

[23] (2020) Neural Networks,
LSTM

Supervised,
Deep Learning Classification Charging Station CICIDS 2018

DoS dataset X X

[24] (2021) MHA Supervised,
Deep Learning Classification Charging Station Laboratory,

network traffic X X

[25] (2021) KNN, SVM,
Random Forest Supervised Classification Charging Station Experiment ! X

CADS4CS
(our approach)

Collaborative
System

Supervised,
Deep Learning Classification Charging Station Open data ! !

2 Related work
In the literature, there are several recent scientific works proposing different
solutions for ADSs in industrial and cyber-physical environments. Table 1 shows
a summary of the related works, which are associated with ML-based ADSs in
energy environments, such as anomalies in energy consumption or CSs.

In [15], Janetzko et al. introduce an anomaly detection algorithm based on
time series to detect and visualize unexpected power consumptions in commer-
cial buildings, and then use clustering techniques to classify them. Similarly
in [16], the authors study the use of deep learning algorithms, such as Recur-
rent Neural Networks (RNNs), to remove trend and seasonality from time series
data and predict the power anomalies. Other works, related to energy anomaly
monitoring and detection, are [17, 18]. Robles-Durazno et al. in [17] propose
a supervised learning model for energy monitoring and anomaly detection in
a clean water supply system, using classifiers such as Support Vector Machine
(SVM), K-Nearest Neighbors (KNN) and Random Forest. In [18], another ML
model for detecting energy anomalies is studied by Ouyang et al., where the
Three-stage Multi-view Stacking Ensemble (TMSE) model is proposed to de-
tect anomalous power consumption in industrial devices. In addition, other
works comprise the ability to predict outliers in the energy. For instance, in
[19] a two-level anomaly detection framework based on regression decision trees
is proposed with the objective of predicting unexpected power consumption
in an Advanced Metering Infrastructure (AMI). The combination of clustering
and prediction techniques, such as the K-Means and Long-Short Term Memory
(LSTM) techniques, is even analyzed in [20] to predict the power consumption
of users in the next hour.

There are also several recent studies on the use of ADSs in CS scenar-
ios. In [21] and [24], anomalous traffic data within the network is identified.
An invariant-correlation network and a multivariate time-series segmentation
method using the KNN classifier is used in [21], while a Multi-Head Attentions
(MHA) model is used in [24] to correlate the network traffic. As an alternative,
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Streubel et al. in [22] adapt the identification of irregular patterns in the high
harmonic frequency spectrum, described by the CS supraharmonic emissions,
and group the detected anomalies according to similar characteristics using the
technique known as Density-Based Spatial Clustering of Applications with Noise
(DBSCAN). Deep learning models have also been considered in [23] for early
detection of DoS attacks against CSs.

Finally, the work in [25] performs a threat detection analysis based on power
consumption through ML techniques, which are able to classify three types of
states in each CS: normal, risk or accident. As can be seen in the Table 1, [25] is
the only work that addresses an ADS based on the CS energy consumption. It
is focused on the detection of malfunctioning attacks in the CSs that may lead
to a DoS of these systems. In contrast, our approach differs from these works
in the use of a collaborative system as an optimization measure for intrusion
detection in complex charging networks. Although collaborative intrusion de-
tection systems is not a novel approach [26, 14, 27], its applicability in charging
infrastructure environments is. CADS4CS has the ability to detect and learn
from different types of power consumption anomalies at CSs, specifically those
related to consumption energy deviations in the charging sessions.

3 CADS4CS: datasets and architecture
This section covers the functionalities of the CADS4CS, starting with the defi-
nition of the datasets and types of anomalies used in each of the ADSs, and ends
with the CADS4CS design and the types of voting algorithms of the coordinator.

3.1 Data models, datasets and anomalies
To gain a correct understanding of the energy data, it is necessary to analyze
the behavior of the data distribution and features of the user charging sessions,
which usually include the following attributes: (i) total energy consumed (in
kWh), (ii) cost or fee, (iii) charge duration, (iv) session duration, (v) type of
connector used and (vi) charging speed. Different data models, with derived at-
tributes, have been created from these attributes to train ML models and obtain
a high accuracy of anomaly detection at CSs, regardless of their manufacturing
model, configuration or the region in which they are located.

We have considered several open charging session databases (dated between
2017 and 2022), whose information comes from different geographic locations
and charging networks. These databases correspond with: Boulder [28] and Palo
Alto [29] cities in the US; Dundee city [30] and Perth and Kinross council [31]
in Scotland, United Kingdom (UK); and charging sessions from the ElaadNL
network in the Netherlands [32]. For each of these, the data have been processed
and cleaned to a common format, maintaining the aforementioned attributes. In
addition to this, we have generated charging session anomalies related to errors
or intentional attacks on energy consumption values in the datasets mentioned,
which could have a significant impact on the meaning of the monitoring actions
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and decision-making. To establish these anomalies, we identified two types of
perturbations that affect to the charging session data: measurement reading er-
rors or deliberated attacks such as false data injection or modification. These
anomalies can influence the following attributes: (1) energy consumed, (2) ses-
sion duration, (3) charge duration, (4) average power, (5) total cost and (6) no
charge (energy consumed is 0); note that these attributes have been considered
according to the common charging session features of all selected datasets. In
order to understand the perturbation procedure, the anomalies were intention-
ally injected into the datasets following a random strategy. That is, for each
dataset, approximately 20% of samples were extracted, which were intentionally
perturbed in some of their attributes in a random manner. Therefore, normal
and anomalous samples have been explicitly labeled by us for subsequent stud-
ies.

In turn, the previous datasets are applied to form a network of distributed
CS clusters, as illustrated in Figure 1. Each cluster contains its own dataset
and ADS for local anomaly detection. However, these ADSs have the added
problem of being susceptible to increasing the number of FPs and FNs over
time due to their mismatch with the data distribution, or due to their inability
to detect some unknown or stealthy threats [33]. To avoid this issue, CADS4CS
deals with a solution based on a higher-level CADS, which is defined below.

Figure 1: CADS4CS design

3.2 Collaborative anomaly detection system
CADS4CS is based on establishing a centralized node in the CS network that
acts as coordinator of the entire charging network. This coordinator is in charge
of communicating with each of the ADSs in each CS cluster and collecting
predictions, alerts and performance information from each of them. Therefore,
the main goal of these coordinators is to detect anomalies at a global level
through a simple voting system based on the local predictions, thereby achieving
a lower FP and FN ratio than the local ADSs. To do this, another objective is
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Algorithm 1 Coordinator Model: voting, testing and retraining
Require: adsModels

procedure Voting(Xsamples) . Unknown charging session samples
yLocalPreds⇐ EmptyList()
for ads← adsModels do

yLocalPreds.add(ads.predict(Xsamples))
end for
yGlobalPred⇐ CalculateGlobalPrediction(yLocalPreds) . Statistical function
for ads← adsModels do . Add Xsamples and yGlobalPred as label to the train dataset

ads.AddSample(Xsamples, yGlobalPred))
end for

end procedure
procedure Testing(Xsamples, Y samples) . Known charging session samples

yLocalPreds⇐ EmptyList()
for ads← adsModels do

yLocalPreds.add(ads.predict(Xsamples))
ads.EvaluateLocalPrediction(yLocalPred, Y samples)
ads.AddSample(Xsamples, Y samples) . Add samples to the train dataset

end for
yGlobalPred⇐ CalculateGlobalPred(yLocalPreds) . Statistical function
EvaluateGlobalPrediction(yGlobalPred, Y samples)

end procedure
procedure Retraining

for ads← adsModels do
ads.retrain

end for
end procedure

to develop continuous retraining measures in a collaborative manner to optimize
the performance of the ML models of each local ADS.

These two objectives are carried out thanks to three processes incorporated
in the coordinator (as defined in Algorithm 1): (1) voting process, where the co-
ordinator evaluates the predictions of each local ADS on an unknown anomaly
triggered by one of them, thereby deriving a global prediction using a statistical
function, as detailed below; (2) testing process, where the coordinator evalu-
ates the performance of each local ADS after generating different samples of
normal/anomalous charging sessions, referred here as “tests”; and (3) retraining
process, where the coordinator sends the order to retrain each of the ML models
of each local ADS. To understand its functionality, the voting process and the
different types of coordinators are described below.

3.2.1 Voting process:

this process consists in detecting anomalies based on the predictions made by
each of the local ADSs, thus obtaining a global prediction from a statistical func-
tion (average, weighted-average or mode), as specified in Algorithm 1 (voting
procedure). Initially, each local ADS individually predicts the charging session
samples that are recorded in its CSs. After a local ADS predicts a possible
anomaly, it is notified to the coordinator who is in charge of starting the voting
phase. The coordinator forwards the received sample to the other local ADSs to
make their own local prediction. Note that these ADSs do not know the origin
of the sample or whether it corresponds to a sample from another local ADS, or
if it is a test generated by the coordinator. The predictions made by the local
ADSs are returned to the coordinator, which calculates a global prediction from
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a statistical function. Finally, the global prediction serves as a labeled sample
that is stored in the ADS datasets for future retraining.

Three types of coordinators have been implemented according to the statis-
tical function used to calculate the global prediction.

• Average Coordinator (ACoord.): the global prediction is calculated
as the arithmetic average of the local probability predictions together with
a predefined threshold (α). If the average probability obtained is greater
than α, the sample is considered to be an anomaly.

• Weighted-Average Coordinator (WACoord.): similarly, the global
prediction is calculated as the weighted average of the local probability
predictions together with an α. The weights of each local prediction are
determined by the F1-score performance metric of each ADS obtained in
its last evaluation. Thus, ADSs with optimal ML models will be more
heavily weighted than ADSs with worse performing ML models.

• Mode Coordinator (MCoord.): in this case, the thresholds are auto-
matically defined by each ML model and they directly return a discrete
prediction, which corresponds to the label 0 if it is considered a normal
sample, or 1 if it is an anomaly. This coordinator simply considers the
label that appears most often (i.e. the absolute majority) to be the global
prediction.

Note that the average and weighted average have been selected based on
the correlation of opinions established in [34]. In addition, we have extended
the research by also using the mode as a correlation function, which computes
discrete values and does not require defining the prediction threshold (alpha) by
the coordinator. Following the classification given in [27] and [14], our approach
corresponds to a mix between the similarity-based and filter-based approaches.
In the remaining sections, we therefore provide a comprehensive analysis, show-
ing the behavior of these types of correlations for different use cases.

4 Analyses, experiments and results
Based on the aforementioned open datasets and the possible charging session
anomalies described in Section 3.1, two types of practical analysis are carried
out on the CADS4CS:

• Analysis 1 (A1) − using a shared dataset: this corresponds to using
the same training and testing dataset shared between the different ADSs,
with the objective of analyzing the performance of each ML model and
the coordinator to detect known anomalies in all ADSs. Note that the
shared dataset contains all types of charging session anomalies proposed
in Section 3.1. In a real environment, this analysis is useful in scenarios
where the same charging network with a centralized and shared dataset
incorporates different ADSs to detect possible anomalies.
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• Analysis 2 (A2) − using incomplete datasets: consists in using dif-
ferent training and test datasets for each of the ADSs of the collaborative
system. This analysis simulates the use case of a real scenario where one
or more charging networks separate the management and anomaly detec-
tion by groups of CSs, where each group contains its own charging session
database and ADS (see Figure 1). In addition, each one may be prone
to certain types of anomalies and may be unaware of the anomalies of
other CS clusters. To achieve this, we have desegregated each dataset to
be incomplete, not incorporating all the types of anomalies, as shown in
Table 2.

Table 2: Summary of known anomalies in each dataset for A2

Dataset
Anomaly Energy Charge

Duration
Session

Duration Power Cost No Charge

Boulder, US X X X X X X
Palo Alto, US X X X X X X
Dundee, UK X X X X X X

Perth and Kinross, UK X X X X X X
Netherlands X X X X X X

In order to make a comprehensive study of the performance of the coordi-
nators in different situations, we performed two types of experiments for each
of the analyses. These experiments are as follows:

• Experiment 1 (E1) − based on three sequential phases: this is a
simple procedure to evaluate the performance of each type of coordinator
before and after a retraining of the ML models. For this purpose, a set
of charging session samples (including all types of anomalies and ordered
chronologically) is initially split into 150 sets. After each split (each sub-
set of samples), F1-score metric of each of the ADSs and coordinators is
calculated in order to discern the most optimal algorithm.
For E1, we consider three application phases, as shown in Algorithm 2
− Experiment 1 procedure: (1) pre-retraining voting phase, where each
ADS predicts the first 50 splits and the coordinators, based on the pre-
dictions of the ADSs, compute their global predictions using their cor-
responding statistical function; (2) retraining phase, during the next 50
splits, each ADS predicts the samples, adds the sample to its dataset and
retrains its ML model with the training dataset updated so far; and (3)
post-retraining voting phase, where again the last 50 splits are predicted
locally by the ADSs and the coordinators compute the global predictions.

• Experiment 2 (E2) − based on two cyclic phases: this is a method-
ology where voting, testing and retraining processes are continuously exe-
cuted. It is based on two cyclic phases, which alternate during the 150 sets
of samples splits, as shown in Algorithm 2 − Experiment 2 procedure.
More specifically, E2 includes: (1) voting phase, where each ADS and
the coordinator collaboratively predict a subset of samples that is finally
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added to the training set of each ML model, using the coordinator’s global
predictions as labels (as indicated in the voting procedure of Algorithm
1); and (2) testing phase, where each ADS predicts a subset of samples
again, but this time adds the original samples, with the real labels, to
the training set (as indicated in the testing procedure of Algorithm 1).
After the completion of each phase, the ML models are retrained using
their own updated training dataset (with global prediction labels and real
test labels). Note that E2 aims to assess whether continuous retraining of
the ML models is required, interleaving the voting process and the testing
process.

4.1 A1: analyzing CADS4CS using a shared dataset
A1 intends to validate the behavior of the coordinators and ADSs when databases
are shared for E1 and E2, in addition to plotting the learning result of ML mod-
els that best fit the types of perturbations. Table 3 shows the ML classifiers
chosen for each ADS: Decision Trees (DT), Random Forest (RF); CatBoost
[35], eXtreme Gradient Boosting (XGBoost) [36], and Multi-Layer Perceptron
(MLP). We have chosen these classifiers because they have shown the best re-
sults in terms of efficiency and accuracy, as also reflected in the following studies
[37] [38], [39] and [40]. It is important to note that for A1 and A2, we have

Algorithm 2 Experiments: E1 and E2
Require: coord, X, Y

Xsplits, Y splits⇐ split(X,Y, 150)
procedure Experiment 1

for i← 1 to 50 do . Pre-Retraining Voting Phase
Xsamples, Y samples← Xsplit[i], Y split[i]
yGlobalPred← coord.voting(Xsamples)
EvaluateF1Score

end for
for i← 51 to 100 do . Retraining Phase

Xsamples, Y samples← Xsplit[i], Y split[i]
yGlobalPred← coord.testing(Xsamples, Y samples)
EvaluateF1Score
coord.retraining

end for
for i← 51 to 150 do . Post-Retraining Voting Phase

Xsamples, Y samples← Xsplit[i], Y split[i]
yGlobalPred← coord.voting(Xsamples)
EvaluateF1Score

end for
end procedure
procedure Experiment 2

for i← 1 to 150 do
Xsamples, Y samples← Xsplit[i], Y split[i]
if i is odd then . Voting Phase

yGlobalPred← coord.voting(Xsamples)
else . Testing Phase

yGlobalPred← coord.testing(Xsamples, Y samples)
end if
EvaluateF1Score
coord.retraining

end for
end procedure
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established α = 0.4 as the anomaly probability threshold. This value is pre-
established as the optimum found after several studies with different thresholds.

Table 3: Features of the ADSs in A1 and A2

Analysis 1 Analysis 2
Dataset
(full) Size Dataset

(incomplete) Size
Machine
Learning

ADS1 Boulder 40K CatBoost
ADS2 Dundee 180K DT
ADS3 Netherlands 12K MLP
ADS4 Palo Alto 200K RF
ADS5

Dundee 200K

Perth & Kinross 80K XGBoost

4.1.1 E1 − based on three sequential phases:

Figures 2 and 3 show the evolution of the F1-score metric for both individual
ADSs and for each of the coordinator classes. The results clearly illustrate the
best ML models with higher precision and recall, as well as the usefulness of
the coordinators in this type of scenario. More specifically, after the retraining
phase, slight improvements (approximately an increase of F1 score between 0.01
and 0.04) can be observed in the performance of the ADSs and coordinators,
due to the fact that the ADSs have been initially trained with a shared dataset
with all anomalies (cf. Section 3.1).

From Figure 2, we highlight how the ML models of ADS1 and ADS5, corre-
sponding to the Catboost and XGBoost, show significantly better results pro-
viding a 0.9 F1 score in the best case. This is followed by ADS2 and ADS4,
corresponding to the use of DT and RF classifiers, with a 0.82 score, and finally
ADS3 (corresponding to the MLP model) presents the worst results with a 0.78
score. In this first experiment, we can observe how the ML models based on
decision trees, such as DT, RF, CatBoost and XGBoost, are good classifiers for
the aforementioned dataset and the perturbations given in it. They are able
to train and quickly detect large deviations in the normal distribution of the
dataset, as stated in [38]. Moreover, the CatBoost and XGBoost models are
even better since they share the use of an efficient and effective implementation
of the gradient boosting algorithm to obtain an optimal classifier based on de-
cision trees. In contrast, the neural network used by the MLP classifier has not
been able to fit correctly with the data distribution, resulting in a high number
of FPs and FNs.

As can be seen in Figure 2, the types of coordinators present similar results
to the ADSs. ACoord. and MCoord. return an evolution curve slightly inferior
to ADS1 and ADS5. While WACoord, which uses the F1-score metric of the
ADSs as weights, performs similarly to the best ADSs, such as ADS1 and ADS5.
For such scenarios, WACoord. can be useful to ensure that the coordinator’s
detection has as low an FP and FN ratio as possible.
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Figure 2: F1-score evolution of all ADSs in each coordinator during A1-E1

Figure 3: F1-score evolution in each coordinator during A1-E1

4.1.2 E2 − based on two cyclic phases:

in this experiment, we can observe results very similar to those obtained in E1,
but with slight improvements, as shown in Figures 4 and 5 (from 0.81 to 0.93 F1-
score). Both ADSs and coordinators achieve an increase in the mean F1-score
by approximately 3 hundredths with respect to the E1 results, particularly in
the case of the coordinators. For each type of coordinator, as shown in Figure
5, there is a slight positive trend in the evolution of F1 over time (splits), which
implies a continuous improvement and adjustment of the ML models with the
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Figure 4: F1-score evolution of all ADSs in each coordinator during A1-E2

Figure 5: F1-score evolution in each coordinator during A1-E2

distribution of the dataset. This means that the use of the combination of global
predictions with the tests generated by the coordinator as new training samples
are useful for detecting future known and unknown anomalies.

4.2 A2: analyzing CADS4CS using incomplete datasets
In this second analysis, each ADS has a different and incomplete dataset, as
shown in Table 3. This scenario corresponds to more faithful use cases in prac-
tice in real environments, where a charging network is further divided into dif-
ferent groups of CSs according to certain parameters, such as location, model
or manufacturer. This distribution facilitates the management of each group,
which would have their own CSMS, EMS, security policies, protocols and, above
all, their own charging session dataset and ADS. Therefore, the aim of this anal-
ysis is to check if the coordinator succeeds in detecting any type of anomaly,
which may be unknown to some of the ML models.

4.2.1 E1 − based on three sequential phases:

as shown in Figure 6, in the pre-retraining voting phase, ADSs present results
with low precision (F1-score below 0.5), which suggests the detection of a large
number of FPs and FNs. This is because the ADSs have initially been trained
with incomplete datasets and their ML models are unable to detect certain
types of unknown anomalies. However, the different types of coordinators are

13



Figure 6: F1-score evolution of all ADSs in each coordinator during A2-E1

Figure 7: F1-score evolution in each coordinator during A2-E1

able to unify the individual detections of the ADSs and provide more accurate
predictions, thus obtaining a higher F1-score evolution than the ADSs. In this
case, as shown in Figure 7, ACoord. and MCoord. present better results (above
0.7); while WACoord., due to its high dependence on the F1-score of the ADSs
that are used as weights in the weighted average, results in a higher number of
FPs and FNs.

However, these results change completely at the end of the retraining phase,
where in this case, all ML models are retrained with the samples obtained by
the coordinators’ global prediction during the pre-retraining voting phase and
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the tests generated by the coordinators during the retraining phase. Therefore,
in the last phase (post-retraining voting phase), a significant improvement in
the F1-score evolution of the ADSs and coordinators is evident, since the ML
models are now able to detect unknown anomalies from their datasets. After
the retraining, ADS1 and ADS5, corresponding to the Catboost and XGBoost
ML models, remain optimal models with mean F1 scores of 0.82 and 0.78,
respectively. This is followed by ADS2 (using DT classifier) and ADS4 (using
RF classifier) with scores of 0.76 and 0.72. Finally, ADS3, which uses a Deep
Learning model such as MLP, presents significantly lower precision and recall
than the rest with an average F1 score of 0.64. As in the previous analysis,
the three types of coordinators present similar results to the best ADSs, where
ACoord. and WACoord. are the optimum. This feature is also depicted in
Figure 7.

4.2.2 E2 − based on two cyclic phases:

in this experiment, a continuous retraining is again performed combining the
voting and testing phases. The purpose of this experiment is to observe whether
the ADSs succeed in optimizing their ML parameters in a collaborative way,
thanks to the global predictions and tests generated by the coordinator. As
shown in Figure 8 and 9, an F1-score evolution with positive trend is achieved
for both local ADSs and the various coordinators. With this, we observe that the
results obtained are significantly higher than the E1 results after the retraining
phase, especially for the ACoord. and WACoord., which achieve an F1-score of
almost 0.85 in the last splits.

Figure 8: F1-score evolution of all ADSs in each coordinator during A2-E2

4.3 Discussions: A1 vs A2
Table 4 summarizes the mean F1-score for each ADS and coordinator and for
each analysis and experiment. From this table, we first observe that ML models
generated using the gradient boosting technique (such as CatBoost and XG-
Boost) correspond to the optimal ML models. These models show high pre-
cision in detecting the types of charging session anomalies discussed in this
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Figure 9: F1-score evolution in each coordinator during A2-E2

paper. Specifically, the Catboost algorithm, used in ADS1, corresponds to the
optimum ML model, achieving an F1-score of up to 0.93 in A1-E2.

On the other hand, we can see how the suggested types of coordinators
can be useful in certain use cases. ACoord. and MCoord. are quite useful in
scenarios where the performance of each ADS is unknown or their ML mod-
els are incapable of detecting certain types of unknown anomalies, as occurs in
A2-E1 in the pre-retraining voting phase (Figure 6); while WACoord. is par-
ticularly useful when combined with a continuous retraining of the ML models
and testing phases, as also observed in A1-E2 and A2-E2. In Table 4, we can
appreciate how WACoord. presents the optimal F1-scores reaching the value of
0.936 in A1-E2. This coordinator presents better results compared to the av-
erage and mode coordinators, because its correlation prioritizes the predictions
of the ADSs with greater precision. Thus, the rate of FPs and FNs is reduced.

Finally, from this table we can also conclude that E2 offers better perfor-
mance compared to E1. This means that it is advisable in these use cases to
follow a continuous retraining methodology where voting and testing processes
are alternately combined. This allows the ML models to dynamically adjust to
the data distribution, obtaining higher precision over time. However, looking at
the results in Table 4 we also highlight that there are still too many FPs and
FNs in this scenario, which can saturate human operators. This implies that it
is still necessary to advance in this line of research, addressing new solutions to
classify anomalies by optimizing existing detection methods.

Table 4: Summary of F1-score results

ADS1 ADS2 ADS3 ADS4 ADS5 ACoord. WACoord. MCoord.

A1 E1 0.90 0.82 0.78 0.82 0.90 0.878 0.898 0.865
E2 0.93 0.84 0.78 0.85 0.92 0.918 0.936 0.898

A2 E1 0.82 0.76 0.64 0.72 0.78 0.802 0.804 0.788
E2 0.86 0.8 0.72 0.78 0.85 0.846 0.847 0.777

The best performing method in every experiment is marked in bold
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5 Conclusion and future work
In this paper, we have carried out a comprehensive analysis of the detection of
charging session anomalies in different types of charging stations (slow, fast and
rapid charging mode). Firstly, we have collected different open data of charging
sessions to later simulate various errors and threats, generating anomalies and
deviations in different attributes of the sessions. We have then defined a col-
laborative anomaly detection system capable of coordinating and retraining a
group of independent Machine Learning models. Finally, after performing dif-
ferent analyses and experiments, we have observed how in certain scenarios the
collaborative system is successful in achieving a high F1-score with a low false
positive and negative ratio, and in establishing an effective procedure for contin-
uous retraining of the ML models. Of all the ML models trained and evaluated,
decision tree variants – such as random forest classifier and gradient boosting
techniques (CatBoost and XGBoost algorithms) – are the optimal models in
these cases. As future work, we intend to extend the approach considering the
actual drawbacks of the collaborative detection systems, such as data privacy
and trust as stated in [26] and [27]; and integrate the approach in a real charging
infrastructure within the “Smart and Secure EV Urban Lab II” project.
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A Design and threats of a public charging infras-
tructure

Figure 10: Deployment diagram of a public charging infrastructure

This appendix provides an overview of the components that compose a charg-
ing infrastructure and clarifies the level of susceptibility of these infrastructures
to attacks according to the state of the art. Public CSs are usually managed
by a CSMS, which has the ability to use ITs and OTs to efficiently control each
CS and its charging sessions initialized by the users. Specifically, this control
center is in charge of authenticating, authorizing and billing users, and diag-
nosing. Figure 10 shows a generic public charging infrastructure based on the
Open Charge Point Protocol (OCPP) standard [41].

The combination of ITs and OTs in these cyber-physical systems leads to
new security risks that must be considered right from the design stage. Above
all, the addition of new functionalities, communications and external actors in
the charging infrastructures open the door to new threats to the system. For
this reason, we include in this appendix a high-level review of the state of the art
[42, 43, 44] to show the susceptibility of this infrastructure to attacks and their
impact on the end user and the power grid. Among the most common threats
are: (T1) natural disasters, (T2) physical damage, (T3) DoS, (T4) identity theft
or spoofing, (T5) malware injection, (T6) false data injection, (T7) tampering
and (T8) sniffing or information disclosure.

Table 5 shows a summary of these threats with their corresponding environ-
mental, social and economic impacts. As can be seen in the table, blackouts,
economic damages and energy theft correspond to the impacts with the great-
est likelihood and risk in a public charging infrastructure. This work therefore
aims to mitigate these impacts through the use of Machine Learning techniques
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Table 5: Summary of threats and impacts on a public charging infrastructure

Threat
Impact Blackout Energy theft Equipment damage Economic damage Data leak

T1 X X X X X
T2 X X X X X
T3 X X X X X
T4 X X X X X
T5 X X X X X
T6 X X X X X
T7 X X X X X
T8 X X X X X

for anomaly detection. Its scope has been limited to the detection of threats
related to T6 and T7, and focuses on studying the normal behavior of energy
consumption data.
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