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Abstract

Concurrent access control is an old problem in many fields in Computer Sci-
ence. It has been solved in many languages and systems, using mechanisms like
monitors or priority queues. Nowadays computers implement multi-core capabil-
ities. This means they are virtually capable of execution to processes in parallel.
This requires new techniques and open new issues in the field of Concurrent Ac-
cess Control. Moreover, most operating systems are multiuser, thus we have to
focus on a multi-processor multi-user scenario.

Trust becomes a paramount aspect when building distributed applications, the
same applies in a lower scale on modern computers.

We propose the use of a trust graph that keeps record of the trust relationships
of the system and helps deciding on concurrent access requests. The information
encoded in the graph will be used both in order to decide on access requests and to
order granted requests in terms of their associated trust level.

1 Introduction
Access Control is perhaps one of the main concerns within security. Access control is
in charge of determining who can gain access or it is authorized to use what resources.
Thus, authorization and authentication mechanisms are embedded in the access control
process. This implies that a certain rules or policies must exist in order to carry out the
authorization decisions.

Trust Management has been used since its origins as a tool for assisting access
control techniques, for instance for defining policies. Thus, the first attempts of de-
signing of trust management systems, PolicyMaker [?] and its successors KeyNote [?]
or REFEREE [?], were in fact developed as an extra tool for guiding the access control
process. The idea behind PolicyMaker was to build a unified common language for
policies, credentials and trust relationships expressed as a programs.
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Since then other works and systems have been developed aiming to solve the prob-
lem of access control by using trust management. One of them is the role-bases trust
management policy language RT [?] designed to support highly decentralized attribute-
based access control.

Concurrent access control requires deciding not only whether a request is to be
granted but also which one is to be served first.

If we are able to define a trust value for each request, we would be able to order
them and serve the most trusted ones at a time. A mechanism for this trust assignment
can be based only on the trust relationships between the resource manager and the
requester. This way, the trust value associated to the request will be the one associated
to the requester.

Different approaches can be followed apart from that. One possibility is by using
reputation. In this case we associate a trust value to a request based on the reputation
of the requester. Another possibility could use the reliability of the requester.

In some scenarios, where a bunch of processes are running in a computer, and are
launched by the same user, we need a finer grained mechanism to make a decision
about access control requests and furthermore to order them. Many operating systems
support the concept of priority queues [?] which help deciding on concurrent access
control. We can adopt a similar mechanism where each process launched by a user
is assigned a rating that determines its priority among the processes of the same user.
This rating will be associated with the trust value assigned to the user that launched the
process.

Some processes may be sub-processes of others, which means they were launched
in the context of a parent process. This relationship between processes can be also seen
as a trust relationships, given that the parent process is delegating in the subprocess the
execution of a given task. This trust relationship can also be graded, using a rating.

This rating may be defined beforehand for each of the sub-processes but it can
also be computed automatically by the system, based on the number of sub-processes
launched, given that all the relative ratings sum less than 1. The ratings of the sub-
processes will be the multiplication of the relative ratings by the rating of the process
that launches it. In the case there is a subprocess of a subprocess we would act accord-
ingly.

In order to compare the priority of two processes belonging to different users, the
priority ratings have to be multiplied by the trust value associated to the user. If we
want to prevent a user with a high trust value from gaining total access to the resources
of the system, the priority ratings of all of his direct processes have to sum 1. This way,
not all the processes associated to this user will obtain the highest priority value.

Then we have to solve the problem in two phases. First we compute the trust
values of each user in the system. After that, and based on these values, we compute a
priority value for each of the processes in such a way that access request can be served
accordingly.

The way trust is computed, i.e., the trust metrics used is also a very important issue
which has been widely investigated. The simplest way to define a trust metric is by
using a discrete model where an entity can be either ‘trusted’ or ‘not trusted’. More
complex metrics use integer or real numbers, logical formulae like BAN logic [?] or
vector like approaches [?]. In the early nineties the first proposals for trust metrics were
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developed in order to support Public Key Infrastructure (for instance [?]). In the recent
years the development of new networks or systems such as P2P or Ad-Hoc networks,
or ubiquitous or mobile computing has led to the imminent growth of the development
of trust management systems and consequently metrics for them. Most of the used
metrics are based in probabilistic or statistics models (see [?] for a survey on this).
Also due to the growth of online communities the use of different metrics has become
an issue (see for example the reputation scores that eBay uses [?])

The structure of the paper is as follows. Section ?? shows how we can compute the
trust value associated to a user. Section ?? shows how the process of computing ratings
can take place and the mathematical model underlying it. The way access control
decisions can be made is described in Section ??. Section ?? shows an example of the
proposed model and the paper is concluded in Section ?? where future work is also
outlined.

2 User Trust Computation
Trust relationships can be modelled using a graph where the vertices are identified
with the users of the grid and the edges correspond to trust relationships between them.
Trust can be defined as the level of confidence that an entity s places on another entity t
for performing a given task in a proper and honest way. The confidence level may vary
depending on the task. Assuming that the level of confidence is a real number and that
for each task there is only one trust value associated in our reasoning system, the trust
graph is a weighted digraph. In our scenario, different users perform several requests
over the same resource, so the we only consider just one task.

Once the graph is built we are interested in computing the end-to end trust between
two given entities in the graph. A detailed description of how the computation can be
performed can be found in [?]. These computations are based on the concept of trust
statements. Each entity makes trust statements about the rest of the entities, regarding
the resource considered for each case. Those trust statements are defined as a tuple
(Trustor,Trustee,Resource,Value) where we encode both the trustor and the trustee,
as two entities in the system; the Resource for what the trustee is trusted to access; and
a trust value that is measured in a trust domain. A trust domain is in essence an ordered
set used in order to measure trust.

2.1 Trust Evaluations
If we want to establish trust between two entities in a system this trust should be mea-
sured somehow. A simple way to measure trust could be established by using a binary
discrete model where the trust values are set as a lot of trust, for a very trusted entity, or
very little trust if the trust placed in the entity measured is very low. More complicated
systems could use integer numbers (Advogato’s trust metric or FreeHaven [?]) or real
numbers ([?, ?]).

A trust evaluation or trust metric is a function such that given a trust graph, G, and
two entities s and t, called the source and the target of trust respectively (trustor and
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trustee are alternative names for those entities) returns the level of trust or confidence
that s places on t.

As the same entities can be trusted in different ways depending on the resource to
be accessed, this function also takes into account as a parameter such a resource.

In [?] we focused on trust evaluations that can be decomposed in two elemental
functions: the Sequential Trust Function and the Parallel Trust Function. By decom-
posed functions we mean that the trust evaluation is computed by applying the Parallel
Trust function to the results of applying the Sequential Trust Function over all the paths
connecting two given entities.

A sequential trust function is a function that calculates the trust level associated to
a path or chain of trust statements, such that the result is zero if and only if one of the
statements in the path has a trust value of zero.

The sequential trust function may verify some of the following properties:

• Monotony (Parallel Monotony): Increasing the trust value associated to one of
the statements of the path results on a higher trust value for the whole path.

• Minimality: The trust value obtained from several set of trust values can not be
higher than the minimum of those values.

• Sequential monotony: If a trust value is added to a path then the resulting trust
value should be less than the value associated to the original path.

We can define those functions recursively based on the behaviour over a pair of
elements, i.e. we define the operator and apply it recursively.

Definition 2.1 (Sequential Operator) A Sequential Operator or Generator Sequen-
tial Function is defined as a function � : T D×T D−→ T D such that a�b = 0 if and
only if a = 0 or b = 0. �(a,b) or a� b are used indistinctively for representing the
same, whatever is more convenient.

Given a sequential operator, the sequential function can be defined as f�(z1, . . . ,zn−1,zn)=
f�(z1, . . . ,zn−1)� zn. Checking the properties above is easier when dealing with the
operator. For example, if a�b≤ min(a,b), for any a and b, we could conclude that f
verifies the minimality property.

A parallel trust function is used to calculate the trust level associated to a set of
paths or chains of trust statements. This function is characterized for behaving as the
identity function when there is only one path and by remaining unaltered when null
paths are removed from the arguments.

This function may verify the following desirable properties:

• Idempotency. When all the values of the argument paths are the same then the
final value also coincides with this value.

• Monotony, If the trust values associated with one of the argument paths is in-
creased the result is also increased.

• Associativity. Analogous to the mathematical concept.
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The generator parallel function, or the parallel operator, ⊕ for the function g, is
defined analogously as the operator �.

Definition 2.2 (Parallel Operator) A Parallel Operator or Generator Parallel Func-
tion is defined as a function, ⊕ : T D×T D−→ T D, such that a⊕0 = 0⊕a = a

We say that the two operators ⊕ and � are distributive if (a⊕ b)� c = (a� c)⊕
(b� c).

In the case where there are no cycles in the trust graph, the set of paths connecting
two any given entities is finite. Then, given a sequential operator � and a commutative
parallel operator ⊕, i.e. a⊕ b = b⊕ a, the associated trust evaluation, F̂G, is defined
as follows,

Definition 2.3 Let Ss,t
x be the set of all paths of trust statements for task x starting

in s and ending in t. For each path p ∈ Ss,t
x represented as s

v1−→ ·· · vn−→ t let zp be
v1�·· ·� vn, then F̂G(s, t,x) is defined as

⊕
p∈Ss,t

x
zp.

Given a fixed sequential operator, for any parallel operator that verifies idempo-
tency and monotony properties then, z∗ = minp∈Ss,t

x
zp ≤

⊕
p∈Ss,t

x
zp ≤ maxp∈Ss,t

x
zp = z∗.

Therefore, the maximum and minimum possible trust values associated to a path from

s to t are the upper and lower bounds for the trust evaluation F̂G.
Fortunately, we do not need to compute the trust values of each path in order to

compute those bounds, i.e. z∗ and z∗ . In this case we can use an algorithm, adapted
from the Dijkstra algorithm [?], to find for example, the maximum trust path from
a fixed entity s to any other entity on the system. The minimum trust path can be
computed in an analogous way.

foreach vertex ∈ G do
c[vertex] := 0;
prior[vertex] := unde f ined;

end
trust[s0] := 1;
Q := copy(G);
while Q is not empty do

a := extract max trust(Q);
foreach neighbor b of a do

alt = trust[a]� trust(a,b));
if alt > trust[b] then

trust[b] := alt;
prior[b] := a;

end
end

end
Algorithm 1: Algorithm to compute maximal trust paths

This is a particular case of a trust evaluation where we use the maximum function
as a parallel function. Unfortunately we can not generalize this kind of algorithms
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for other combinations of parallel and sequential functions as it heavily relies on the
properties of the max and min functions.

2.2 Performing Trust Computations using Matrices
Let us assume the case where there are no cycles in the trust graph. If there are cycles
in the trust graph the following definitions and algorithm are not valid. In fact, the
algorithm is different only when we are computing the trust value of a node involved in
a cycle. The key aspect of this algorithm is to remove redundant graphs from the trust
graph in such a way that the set of paths connecting two given entities remains finite.
For a full description of this algorithm see [?].

We could then model the trust network as a triangular matrix, A where each element
ai j represents the trust level that node i places on node j. If we replace the scalar
addition and multiplication in matrices by the operators ⊕ and � respectively, then by
iterating powers of the trust network we can compute the node to node trust values of
the network. Thus, the trust evaluation could be defined through � and ⊕ applying the
generalized matrix product algorithm. It is then defined as

A⊗B =
n⊕

k=1

(aik�bk j)

The generalized product is associative from the left hand side, i.e., A⊗B⊗C =
(A⊗B)⊗C. Therefore, we can define the generalized power of A as

A(n) =
n⊗

k=1

A

Last, we can define the operator ⊕ over matrices as A⊕B = (ai j⊕bi j), which can
be used as the summation of matrices. Then, given a matrix A of order n, the matrix Â
can be defined as

Â =
n⊕

k=1

A(n)

âi j represents the value of the trust evaluation from i to j.

These definitions become more relevant when the aforementioned functions are
distributive and associative. However, they are still valid if these properties do not
hold, although they may not be that meaningful.

Next, we will show that under the conditions mentioned above, the element (i,k)
in the matrix Â is the value of the trust evaluation of all the trust paths from i to j. In
particular, the first row in this matrix will give us the distribution of trust in the system.

First, we will show that the kth generalized power of the trust matrix A, A(k), con-
tains the trust through paths of length k. We will prove this by induction where the base
case holds by the definition of matrix A.
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We assume that for k ∈ N the element (i, j) in A(k), a(k)i j , represents the value of the
trust evaluation of all the trust paths of length k from i to j. We will then show that this
is also the case for length k+1.

Let Ci j = {c1
i j, . . . ,c

mi j
i j } be the set of all the trust values associated to all the trust

paths of length k from i to j, i.e.

a(k)i j =

mi j⊕
p=1

cp
i j

Then since A(k+1) = A(k)⊗A, each element of the matrix can be obtained as

ak+1
i j =

n⊕
l=1

(a(k)il �al j) =
n⊕

l=1

((
mil⊕
p=1

cp
il)�al j) =

n⊕
l=1

mil⊕
p=1

(cp
il�al j)

Let now c≡ i
z1−→ c1

z2−→ ·· ·cn
zk−→ l

zk+1−→ j be a k+1 length path from i to j. This
path can also be expressed as the path c′ of length k from i to l linked with the path
from l to j, (l, j). Therefore, any path of length k+1 from i to j can be obtained adding
a link to any path of length k. Thus, ak+1

i j represents the value of the trust evaluation of
all the paths of length k+1 from i to j.

2.3 Efficiency Analysis of Trust Computations
The consecutive powers of matrix A have mainly zeros as their elements. Thus, for
example, while A is an upper triangular matrix, the elements of the diagonal a2

ii+1 of
the matrix A2 = (a2

i j) are all 0. Also, if the size of the matrix A is n then An−1 has
only one element which is not 0. This element is an

1n. Thus, in order to calculate the
elements of the diagonal âi,i+k of matrix Â, we only need elements of the powers of A
which are less or equal than k.

Next, we will see how many elemental operations, sequential and parallel opera-
tions, we need in order to calculate those elements.

Let dk be the diagonal k for k∈{1, . . . ,n−1} of any matrix A=(Ai j). This diagonal
has n− k elements which are

dk(A) =
{

a j j+k
}n−k

j=1

Computational cost of computing dm(Ap), having computed before Ap−1, is m−
p+1 sequential operations and m− p parallel operations, where p ≤ m, in other case
the result is zero, meaning there is no computational cost. The number of elements in
such a diagonal is n−m, the computational cost to compute it is then (m− p+1)(n−m)
sequential operations and (m− p)(n−m) parallel operations.

Then, the number of sequential operations to compute Â is

n−1

∑
m=2

m

∑
p=2

(m− p+1)(n−m) =
(n+1)n(n−1)(n−2)

24
(1)
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The number of parallel operations to compute the generalized powers of A is

n−1

∑
m=2

m

∑
p=2

(m− p)(n−m) =
n(n−1)(n−2)(n−3)

24
(2)

In order to compute dm(Â) we have to sum the non-null diagonals dm(Ap), i.e. m−1
diagonals. As this diagonals have n−m elements, the number of parallel operations to
sum the generalized powers of A is

n−1

∑
m=2

(m−1)(n−m) =
n(n−1)(n−2)

6
(3)

Summing the results of ?? and ?? we obtain the total number of parallel operations
that requires the calculation of Â.

n(n3−2n2−n+2)
24

The total number of elemental operations, counting parallel and sequential ones, is

n(n3−2n2−n+2)
12

As a remark we can say that this algorithm for calculating the trust values for n
entities is of the order four times the order of the operators � and ⊕. In the case they
are both linear, the complexity is O(n4).

3 Process Rating Computation
When we propose to rate processes we suggested that the rating of sub-processes will
be ideally assigned by the process that launches them. The fact is that we can not
enforce this rating process is carried out by actual application, then in most occasions
the system will have to assign them automatically, based on some user parameters.

In order to our framework to work, this rating assignment must hold the following
property: all ratings assigned by a given process must sum less than one.

We can see this rating as a quota of the resource that is granted to this sub-process,
when it is launched by his parent. The quota is a real number in the interval [0,1]. A
process expresses the quota assigned to its subprocess relatively to the actual rating
they have been assigned.

In order to compute the quota of a certain process or subprocess we will use the
product of all the quota of the links in the chain from the root process to the subprocess
we want to compute, minus the quota that this process has assigned to its own sub-
process. In fact, for each process we can distinguish the delegated quota, which is the
quota that reaches this process through the execution path, and the actual quota of this
process that is computed by subtracting the quota assigned to other process from the
delegated quota of this process. Loops have no sense in our rating model because we
are modelling execution paths.
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All the quota assignments are managed in a central server that stores them as a
matrix.

If we establish an equivalence between nodes or organizations and states, and be-
tween the quota that an entity X hands over to Z and the statistical concept of transition
from one X to Z, our particular problem could be modelled as a discrete Markov’s
chain where the number of phases or stages corresponds to the length of the chain that
we consider. Markov’s chain has been used in different fields in security such as Trust
Management [?], Privacy [?], Intrusion Detection Systems [?], etc. In this work we
use them in order to reflect the assignment of ratings in a compatible way with the trust
system that we developed.

3.1 Computational Model
The initial organization or entity that first holds all the quota is called the initiator and
it will be the initial state of the Markov’s chain. The values of the quotas could be
placed in a matrix such as the addition of the elements in each row is lower or equal
than 1 (‘almost’ a stochastic matrix). The reason is that the addition of all quota could
never be greater than 1 but it can be less, i.e., there could be states without any assigned
quota. Therefore, in order to make this matrix a stochastic matrix we should add an
additional state, namely, the state of the non-assigned quota. This new state will mean
a new column and row for the matrix of the states where the values in the columns are
calculated in such a way that the addition of the values in the row is 1. If we call this
matrix A, the associated stochastic matrix A∗ is as follows:

1−∑
n
j=1 a1, j

A
...

1−∑
n
j=1 an, j

0 · · · 0 1


The state of ‘non-assigned’ quota is a non-transition state as once it has been

reached no other state can be reached afterwards.
This matrix can be expressed in its canonical form as(

A R
0 I

)
where A is the matrix of quota delegation that contains all the transition states; R is the
matrix that contains the non-assigned quota by entities and I is the identity matrix of
length 1. As there are no loops in the quota delegation graph, the matrix A is upper
triangular or at least we can make it upper triangular by reordering the nodes using a
topological sort algorithm over the quota delegation graph. Therefore, the matrix of
the chain, N, is calculated as follows:

N = (I−A)−1

Next we will show that the element ni j of N is the share of quota that entity i hands
over to entity j.
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An element a(k)i j of matrix Ak represents the percentage of quota that node i hands
over node j indirectly, if we only consider chains of length k. Also, An = 0 if n is greater
or equal than the size of the matrix, as this is an upper triangular matrix. Therefore, we
can define matrix Â as

Â =
∞

∑
i=1

Ai =
n−1

∑
i=1

Ai

The elements of Â can be calculated in the following way:

âi j =
n−1

∑
s=1

a(s)i j

Â = (âi j)

The elements âi j of Â are the addition of all the quota that node i hands over to
node j for chains of any length.

Next we will show that N = I + Â, i.e., I + Â is the inverse of I−A. In order to do
this, we will show that the matrix is invertible from the right-hand side (it is analogous
from the left-hand side).

(I−A)(I + Â) = (I−A)(
n−1

∑
s=0

As)

=
n−1

∑
s=0

As−
n

∑
s=1

As

= I +
n−1

∑
s=1

As−
n−1

∑
s=1

As−An

= I

This gives us two ways of obtaining the percentage of quota handed over by entity
i to entity j. Either by calculating the element i j of matrix N or by calculating the
element (i, j) of matrix Â.

In both cases, we can use the first row of those columns to form the vector of quota
delegation from the initiator.

Definition 3.1 (quota delegation vector) The quota delegation vector is the vector v
consisting of all the quota delegation values from the initiator to the rest of the entities.
The first element is set to 1.

In order to obtain the actual quota that remains in each entity, we have to subtract
the quota it delegates from the quota it has been delegated. This can be easily done
by multiplying the corresponding element of the quota delegation vector, vi, by the
element ri of the column vector R.

By multiplying the column vector R by v, element by element, we obtain the quota
distribution over the entities. The sum of all the elements of this vector is 1.
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3.2 Efficiency Analysis of Rating Computation
The quota delegation model presents a feature that, in some cases, could be an advan-
tage and, in some others, a disadvantage depending on the nature of the system. This
feature is that if all the available quota has been assigned and we would be interested in
assigning quota to a new entity, this should be taken away from the previously assigned
quota.

Taking quota away could affect the entities which already had them assigned and
therefore, the quota should be re-distributed again. This re-distribution will affect more
to entities closer to the entity that it is the root of the quota. Thus, if we establish an
order where the entity origin of the quota is of order 1 and the other entities’ order
follows from the order how the quota is assigned, as higher the order is, less impact
will have the new distribution on this entity.

Taking into account all the above considerations we can make some remarks con-
cerning the complexity of the calculation of matrix Â. If we used the matrix N, we can
determine the complexity of the method by analyzing the complexity of the calculation
of the inverse of I−A.

This matrix is invertible and its inverse is I + Â. It is also upper triangular. In this
case, we could solve as n systems of simultaneous equations (I−A)xi = bi, where bi are
the consecutive columns of matrix I in order to calculate the inverse. This inverse will
be the matrix, in columns, (I−A)−1 = (x(1)‖ . . .‖x(n)). We can deduce that the inverse
matrix is also upper triangular by observing the sub-system of the n− i equations of
each system,  0 1 · · · −ai+1n

...
...

...
0 0 · · · 1




x(i)i+1
...

x(i)n

=

 0
...
0


therefore, x(i)j = 0 for j > i. Thus, resolving the remaining i equations of the system
they can be simplified as follows

1 −a12 · · · −a1i
0 1 · · · −ai+1 i
...

...
...

0 0 · · · 1




x(i)1

x(i)2
...

x(i)i

=


0
0
...
1


This triangular system of i equations can be resolved by performing i2 operations

by using the substitution method. Thus, the final number of operations needed for
calculating the inverse of I−A will be

n

∑
i=1

i2 =
n(n+1)(2n+1)

6

This means that by using the matrix N we can reduce the complexity to O(n3).
Also, since we calculate the columns of (I−A)−1 independently, if there are changes

in the assigned quota in node i, the columns with index less than i do not need to be
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Figure 1: Sample

re-calculated. Thus, the number of operations for updating the ratings can be computed
as

n(n+1)(2n+1)− i(i+1)(2i+1)
6

4 Making Access Control Decisions
Access control decisions will be based, as mentioned above, on the rating of each
process performing the request to the resource. The control mechanism is implemented
as a lower bound for this rating. This lower bound may vary depending on the system
overload or in the resource availability.

All processes with a rating greater or equal than the lower bound imposed by the
access control policy must be served. In case that two or more concurrent requests are
performed, the rating will be used to order them accordingly. Processes with a higher
rating will be served first.

4.1 Example
Let us assume three users in our system, Alice, Eve and Jack. Let us also assume Jack
is running two processes. Figure ?? shows a representation of the proposed scenario.

In this scenario, there are some direct trust relationships in the system to Alice and
Eve. This trust relationship is measured with a level of 1/3. They both trust in a third
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entity, Jack, with a value of 3/4 each.
The trust matrix is then as follows

A =


0 1

3
1
3 0

0 0 0 3
4

0 0 0 3
4

0 0 0 0


If we use the product as sequential operator and the addition as parallel operator

(see Section ??), the trust value associated to Jack will be 1/2. This trust value will be
the basis for rating the processes of Jack. Suppose the system assigns to each process a
rating according to the number of processes in the same level. In particular, the relative
rating of each sub-process will be 1/2 divided by the number of sub-processes. If we
share the ratings this way 1/2 will remain with the parent process. This means this
rating will be greater for the parent process than for the sub-processes.

The quota matrix is a follows:

B =



0 1
2 0 0 0 1

2 0 0 0 0
0 0 1

4
1
4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

4
1
4 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

4
1
4

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


This matrix is strictly upper triangular because we ordered them in the same way

as they were visited first by the Deep First Search algorithm. From this matrix we can
obtain the stochastic matrix by including the non-assigned quota in the last row and
column.

B∗ =



0 1
2 0 0 0 1

2 0 0 0 0 0
0 0 1

4
1
4 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

4
1
4 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

4
1
4

1
2

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


The last row and column correspond to the state of non-assigned quota.
Let us assume the ratings assigned to the scenario we described before are as shown

in Figure ??.
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Figure 2: Distribution of Ratings

The processes rating distribution is:

1 −→ 1/4
5 −→ 1/4
2 −→ 1/8
3 −→ 1/16
4 −→ 1/16
6 −→ 1/8
7 −→ 1/16
8 −→ 1/32
9 −→ 1/32

In case more than one of these processes performs a concurrent access request, and
given that these requests are granted the priority for accessing is 1, 5, 2, 6, 3, 4, 7, 8, 9.
If there are two processes with the same assigned ratings we ordered them following
the Deep First Search algorithm. Different strategies can be applied, the one we are
using is a possibility.

5 Conclusions and Future Work
In this paper we have presented a way of resolving the access control problem where
several requests are performed concurrently. We took advantage of trust relationships
among the users of the system and also of process hierarchy.

We propose to enhance process hierarchy by assigning a trust rating to sub-processes.
This rating can either be assigned automatically by the system or by the parent process
itself.

Our model covers the priority queues solutions and extends them in order to incor-
porate trust information.

Future work will consist on implementing this mechanism in the Linux operating
system, by modifying the process scheduler.

We are also interested in investigating how the structure of users groups can be
incorporated to our model together with the trust assigned value. These value could be

14



assigned to the user himself or to the whole group.
As we are interested in applying this model to real applications we would like to

investigate another mechanisms for assigning ratings. These mechanisms can be based
on actual parameters such as load of work, size of the process, waiting time, etc.
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