
Enabling Attribute Delegation in Ubiquitous Environments

Isaac Agudo, Javier Lopez, Jose A. Montenegro
Computer Science Department, University of Malaga, Spain

{isaac,jlm,monte}@lcc.uma.es

Abstract

When delegation is implemented using the attribute
certificates in a Privilege Management Infrastructure
(PMI) [2, 11, 4], it is possible to reach a considerable
level of distributed functionality. However, the ap-
proach is not flexible enough for the requirements of
ubiquitous environments. The PMI can become a too
complex solution for devices such as smartphones and
PDAs, where resources are limited. In this work, we
solve the previous limitations by defining a second
class of attributes, called domain attributes, which
are managed directly by users and are not right un-
der the scope of the PMI, thus providing a light so-
lution for constrained devices. The two classes of
attributes are related by defining a simple ontology.
While domain attribute credentials are defined using
SAML notation, global attributes are defined using
X.509 certificates. For this reason, we additionally
introduce XSAML so that both kinds of credentials
are integrated. We also introduce the concept of At-
tribute Federation which is responsible for supporting
domain attributes and the corresponding ontology.

1 Introduction

Much has been written about identity manage-
ment [12] and federation. We believe this is an ev-
idence of the need for a distributed solution in re-
sponse to those issues. When dealing with distributed
solutions in the Internet, one realizes about the dif-
ficulties to build an infrastructure from scratch. In
fact, organizations tend to reuse existing solutions
and define interconnection mechanisms to allow in-

teroperability. This problem has been approached
using different mechanisms, but we are particularly
interested in federations.

In federations, several service providers delegate
the identity management to a third party who is re-
sponsible of collecting identity information and au-
thenticating users. In this way, service providers rely
on the third party to authenticate users and decide,
according to the identity of the user, whether the re-
quested service can be provided.

One interesting problem here is that service
providers, even if they do not have to perform user
authentication, need at least to know the potential
users. In the case where the potential users are un-
known, access control policies of unknown users need
to be defined, what implies relying on the third party
also during the access control phase. Hence, there is
a distinction between already known users and those
not yet known, which makes the definition of access
control and authorization policies harder.

Even if the service provider knows all the users, it
may be more difficult to rely on identities for the defi-
nition of authorization policies than to use attributes
for this purpose. Moreover, by using attributes, the
use of identities can be avoided entirely in the defini-
tion of authorization policies. This is why we should
consider an analogous concept to Identity Federation,
but using attributes instead of identities for the def-
inition of the authorization rules. In this way, users
will not carry out the trust negotiation by themselves
but they will request the federation to do it.

In [7, 14, 8, 6, 15] the concepts of automated
trust negotiation (ATN) and the concept of At-
tribute Based Access Control (ABAC) are introduced.
ABAC is an access control model which defines au-

1

I. Agudo, J. Lopez, and J. A. Montenegro, “Enabling Attribute Delegation in Ubiquitous Environments”, Mobile Networks and Applications, vol. 13,
pp. 398-410, 2008.
http://doi.org/10.1007/s11036-008-0062-4
NICS Lab. Publications: https://www.nics.uma.es/publications

thorization policies based on user’s attributes. When
using this approach, attributes such as financial or
medical data may be sensitive. The ATN implements
the mechanisms which avoid disclosure of confidential
attributes.

The main contribution of our work is the possibility
of moving the ATN from the user side to the attribute
Federation side. Thus, in our scenario, users do not
have to worry about disclosure of sensitive data, they
“instruct” the federation on how to handle the pro-
cedure, and allow it negotiate on their behalf. As a
result, neither requesters nor service providers have
to be involved in the trust negotiation phase before
being able to establish a session.

It is important to note that, in ubiquitous envi-
ronments trust relations are more important than in
centralized scenarios and are the foundation for the
decision making process in most cases. Also, iden-
tities are rarely used due to the dynamic character-
istics of those environments. Besides that, the at-
tribute federation becomes more important for ubiq-
uitous devices as they do not usually know their po-
tential neighbors before they enter the device net-
work. Moreover, the more processes we outsource,
the less resources are needed in devices using this at-
tribute federation for defining the authorization poli-
cies, what is important because when we focus on mo-
bile devices, such as PDAs or cellular phones, saving
resources is one of the first priorities. This is another
reason why in these kinds of devices the concept of
attribute federation becomes attractive.

According to this argumentation, the paper outline
is as follows. In section 2, related work is presented
from both the theoretical and more practical point of
view. Section 3 introduces XSAML as mechanism to
interconnect SAML and X.509. In section 4 we intro-
duce the concept of attribute federation and justify
its need. Section 5 details some implementation is-
sues and, finally, section 6 provides some conclusions.

2 Related Work

In this section we review some proposals related with
the idea of attribute federation. We have focused on
one academical research result and on one applied

solution.

2.1 RT Framework.

Li et al. proposed logic programming as a way to
model authorization and delegation relations [9]. Al-
though they use Roles for this purpose, their roles can
also be interpreted as attributes, as it is commented
in their work. They define a full general framework,
RT for Role Based Trust Management. It comprised
of five different solutions, each of them with different
characteristics. Roles can be interpreted as privileges
or attributes. The RT Framework defines a partial
order in roles, establishing how rights can be inher-
ited.

RT defines several types of credentials, the basic
ones are:

1. A.R← D: This credential can be read as D has
the attribute A.R, or equivalently, A says that D
has the attribute R.

2. A.R ← B.R1: This credential can be read as if
B says that an entity has the attribute R1, then
A says that it has the attribute R.

3. A.R← A.R1.R2: This credential can be read as
if A says that an entity B has the attribute R1,
and B says that an entity D has the attribute
R2, then A says that D has the attribute R.

4. A.R ← B1.R1 ∩ B2.R2 ∩ . . . ∩ Bn.Rn: This cre-
dential can be read as A believes that anyone who
has all the attributes B1.R1, . . ., Bk.Rk also has
the attribute R.

RT defines an attribute federation using linked
roles. In this way, users can link their attributes
to other users’ attributes, defining then their autho-
rization policies in terms of other users attributes.
However, it is not clear how and where credentials
and authorization policies are stored or who defines
them.

In the example 2.1 there is a federation between
EOrg.preferred and IEEE.member, so EOrg del-
egates to IEEE when making a decision on the
preferred attribute. This is done by defining a

2

EPub.disct ←
EPub.preferred∩EPub.student
EPub.preferred ← EOrg.preferred
EOrg.preferred ← IEEE.member
EPub.student ← EPub.university.stuID
EPub.university ← ABU.accredited
ABU.accredited ← StateU
StateU.stuID ← Alice
IEEE.member ← Alice

Figure 1: RT Federation example

local map in the domain of EOrg from attribute
IEEE.member to attribute preferred. Therefore,
EOrg trusts IEEE issuing the attribute IEEE.member,
and it knows, to some extent, the reasons and im-
plications of the issuance of this attribute. Before
definition and federation of an attribute, the defining
entity must collect all the information related to the
other attribute in the federation.

2.2 SAML

SAML, developed by the Security Services Technical
Committee of OASIS, is an XML-based framework
for communicating user authentication, entitlement,
and attribute information. It is used in many secu-
rity applications. In particular, the Shibboleth [18]
software implements the OASIS SAML v1.1 specifi-
cation [16], providing a federated Single-SignOn and
attribute exchange framework. Liberty Alliance [1] is
also a federation solution based on SAML.

Version 2 of SAML presents in its Technical
Overview ([17]), presents an Attribute Federation
scenario. They conceive attribute federation as a way
of passing attributes from one domain to another.
In this way, service providers may pass requests to
other service providers with attached attributes. The
following Attribute Federation scenario is extracted
from [17].

1. The user is challenged to supply their credentials
to the site AirlineInc.com.

2. The user successfully provides their creden-
tials and has a security context with the Air-

lineInc.com identity provider, the user named
supplied is John.

3. The user selects a menu option (or function) on
the AirlineInc.com application what means that
the user wants to access a resource or application
on
CarRentalInc.com.

4. The AirlineInc.com service provider sends a
HTML form back to the browser. The HTML
FORM contains a SAML response, within which
there is a SAML assertion about user John. The
name identifier used in the assertion is an ar-
bitrary value (“wxyz”). The attributes “gold
member” and a membership number attribute
(“1357”) are provided. The name John is not
contained anywhere in the assertion.

5. The browser, either due to a user action or via
a “-submit”, issues an HTTP POST containing
the SAML response to be sent to the
CarRentalInc.com Service provider.

6. The CarRentalInc.com service provider’s Asser-
tion Consumer service validates the digital sig-
nature on the SAML Response. If this and the
assertion are correctly validated, a local session
is created for user John. This is determined from
a combination of the gold member and member-
ship number attributes. It then sends an HTTP
redirect to the browser causing it to access the
TARGET resource, with a cookie that identifies
the local session. An access check is then per-
formed to establish whether the user John has
the correct authorization to access the
CarRentalInc.com web site and the TARGET re-
source. If the access check is passed, the TAR-
GET resource is then returned to the browser.

In this scenario, the attribute “gold member” and
a membership number attribute are passed to the ex-
ternal service provider along with the request. This
proposal focuses on including attributes in the single
sign on process, but not on how relationships between
attributes are established. Moreover, although at-
tributes are passed to the final service provider from

3

Browser

Service Provider
(Airlinellnc.com)

Resource

Assertion
Consumer

ServiceAccessCheck

Identity
Store

Service Provider
(CarRentallnc.com)

Identity
Store

Attribute
based

account
Attributes Identity

Credential
Challenge

User Login

Select
Remote

Resource

Response
in HMTL

Form
POST

<Response>

Access
Resource

Resource

1
2

3

4

5

6

7

Identity Provider
(Airlinellnc.com)

Figure 2: SAML attribute federation scenario

the initial one, in the end it has to recover the identity
of the requester in order to be able to check the re-
quest. Thus, access control is not based on attributes
but on identity; attributes are used only as a means
of transporting the identity.

This protocol supposes that the requester first
signs on some domain prior to accessing the real ser-
vice provider. In a real attribute federation, the final
service provider does not have to be known by the
initial service provider. It means that if CarRental-
Inc.com trusts the attribute gold member, it does not
have to let AirLineInc.com know. Only the car rental
company is involved and the airline company does not
need to be informed. The process of establishing the
attribute federation is carried out by the entity who
trusts and should be autonomous from the trusted
entity.

3 XSAML

Our initial purpose when designing XSAML was to
translate the information stored in attribute certifi-
cates to SAML code and vice versa. XSAML has an
outstanding role in our scheme, bridging the gap be-
tween the Global Attributes and Domain Attributes.
The Global attributes are defined using X.509 at-
tribute certificates whereas the Domain attributes are
defined using SAML. Therefore, XSAML symbolize
the glue in our infrastructure because makes possible
the translation process between Global and Domain
Attributes.

As aforementioned, SAML is defined using XML
[10] sentences whereas X509 attribute certificates are
defined using ASN.1 [3]. A performance comparison
between both technologies was presented in [5], show-
ing that ASN.1 encode, decode and file space is more
effective than XML and, therefore, SAML. On the
other hand, XML technologies are nowadays more
widespread than products based on ASN.1. For this
reason, we establish a mixed system using SAML and

4

attribute certificates technologies.
The structure of X.509 attribute certificate and a

brief example of its corresponding ASN1 encoding is
shown in figure 3 (for detailed information see [13]).

AttributeCertificate ::= SEQUENCE {

 acinfo AttributeCertificateInfo,
 signatureAlgorithm AlgorithmIdentifier,
 signatureValue BIT STRING

}

AA signature

Extensions

Iss. Unique Identifier

Holder

Validity period

Issuer

Signature Algorithm

Serial Number

Version

Attributes

Figure 3: X509 Attribute Certificate and ASN1 rep-
resentation

Additionally, an example of SAML sentences is
shown in figure 4. Furthermore, the relationship be-
tween SAML and X509 attribute certificate fields is
described in the table 1.

<saml:Assertion …>

 <saml:Conditions …/>

 <saml:AttributeStatement>

 <saml:Subject>

 <saml:NameIdentifier SecurityDomain=“snakeoil.edu”

 Name=“Subject1” /> </saml:Subject>

<saml:Attribute AttributeName=“Pass_Test1_Subject1”

 AttributeNamespace=“http://snakeoil.edu”>

 <saml:AttributeValue> Pass_Test1_Subject /saml:AttributeValue>

</saml:Attribute>

 </saml:AttributeStatement>

</saml:Assertion>

Figure 4: SAML example

3.1 Overview of XSAML

Figure 5 shows a brief description of XSAML system.
The main design goal has been to facilitate suitability

SAML Assertion Attribute Certificate
Issuer Issuer of Attribute
Subject of the Query Certificate Subject
Validity period AC Validity period
Attributes AC Attributes

Table 1: Relationship between SAML and AC fields

to any environment. In this way, when a task depends
on the environment, an interface will be created and
programmers will be able to add code according to
the requirements of the environment in question.

RequestReceiver
 (SOAP/HTTP) RequestHandler

Configuration File

Attribute

Certificates

Translator

…

Request

Response

Interface 1

ENTRY
MODULE

Authorization

Validation

JAVA INTERFACES

KeyStore

Figure 5: XSAML components

The main components of the proposal are:

• Entry Module holds a servlet, named Re-
questReceiver. This class is implemented to
exchange messages with the Service Provider
(client) using SOAP over HTTP. Programmers
can implement other classes to achieve these
tasks. When the RequestHandler processes the
request, it sends a response to the Entry Module
(in this case RequestReceiver or another class
designed).

• RequestHandler is the main class for process-
ing the request. It allows programmers to create
new classes in the Entry Module; in other words,
new ways to exchange messages with the Service
Provider.

5

• Finally, we describe the java interfaces. They
make the system configurable. These interfaces
are used to authorize the requester (interface Au-
thorization), validate requester’s certificates (in-
terface validation), and access the attribute cer-
tificates (interface AttrCertHandler).

3.2 Integrating XSAML in a system

XSAML must be integrated into a system with spe-
cific features. In the above sections we describe how
to achieve the full and partial integration of XSAML
in a target system.

3.2.1 Full Integration

Figure 6 details the full integration, where XSAML is
integrated fully inside the system. XSAML receives
SAML Requests from clients. Then, it processes the
request exchanging information through the system
interfaces. When the response is made, XSAML is-
sues the SAML Response to the client.

As the RequestSender (client) is out of the focus of
XSAML, it must be improved before being used. In
full integration, programmers only have to implement
the interfaces to integrate XSAML. SOAP protocol
over HTTP is the communication protocol used to
exchange data between XSAML and the clients.

Client translator
Inter
faces

SYSTEM

Request

Response

Data
Exchange

XSAML

SYSTEM

Figure 6: XSAML Full integration

3.2.2 Partial Integration

This scenario shows (figure 7) partial integration.
Entry Module classes are not integrated into the sys-
tem and therefore data exchanging is managed by
the system. The system must issue a SAML Request
to XSAML and it must process the request through
the system interfaces. Finally, the translator XSAML
sends a SAMLResponse to the System.

translator
Inter
faces

SYSTEM

Client

XSAML

SYSTEM

SAML
Request

SAML
Response

Figure 7: XSAML Partial integration

3.3 Functional Scenarios

Several scenarios can be established by using XSAML
technology. In this section, we will show three possi-
ble scenarios.

• Scenario A: In this scenario, the Service
Provider (SP) sends a request with the subject,
name and namespace of the attributes (1). The
Identity Provider (IdP) issues a request (via At-
trCertHandler) to the LDAP server or any at-
tribute certificates repository, specifying the sub-
ject, name and namespace of the attributes (2).

When the AttrCertHandler receives the re-
quested attribute certificates, it sends them to
the Identity Provider attached to a namespace
(3). Finally, the Identity Provider sends a re-
sponse to the Service Provider, containing the
subject, name, namespace and value of the at-
tributes (4).

6

 SP IdP
Attribute
Certificates

Subject
Attr. Name 1
Attr. Namespace 1
Attr. Name 2
…

Subject
Attr. Name 1
Attr. Namespace 1
Attr. Name 2
…

Attr.Certificate 1
Namespace 1
Attr.Certificate 2
…

Subject
Attr. Name 1
Attr. Namespace 1
Attr. Value 1
Attr. Name 2
…

1 2

4 3

Figure 8: Scenario A

• Scenario B: In this scenario, the Service
provider sends a request with the subject and
the attribute name (1). The Identity Provider
issues a request (via AttrCertHandler) to the
LDAP server or any attribute certificates repos-
itory, specifying the subject and the attribute
name. (2).

When the AttrCertHandler receives the re-
quested Attribute Certificates, it sends them to
the Identity Provider attached to a namespace
(3). Finally, the Identity Provider sends a re-
sponse to the Service Provider, containing the
subject, name, namespace and values of the at-
tributes (4).

• Scenario C: The Service Provider sends a re-
quest with the subject and the attribute name
(1). The Identity Provider issues a request (via
AttrCertHandler) to the LDAP server specifying
the subject and the name of the attributes (2).

When the class AttrCertHandler receives the re-
quested Attribute Certificates, it sends them to
the Identity Provider (3). Finally, the Identity
Provider sends a response to Service Provider,
containing the subject, name and values of the
attributes (4).

 SP IdP
Attribute
Certificates

Subject
Attr. Name 1
Attr. Name 2
…

Subject
Attr. Name 1
Attr. Name 2
…

Attr.Certificate 1
Namespace 1
Attr.Certificate 2
…

Subject
Attr. Name 1
Attr. Namespace 1
Attr. Value 1
Attr. Name 2
…

1 2

4 3

Figure 9: Scenario B

 SP IdP
Attribute
Certificates

Subject
Attr. Name 1
Attr. Name 2
…

Subject
Attr. Name 1
Attr. Name 2
…

Attr.Certificate 1
Attr.Certificate 2
…

Subject
Attr. Name 1
Attr. Value 1
Attr. Name 2
…

1 2

4 3

Figure 10: Scenario C

4 Attribute Federation

In this section, a new concept is introduced, Attribute
Federation (AF). AF is required when several ubiqui-
tous service providers share a common context. The
concept introduced is explained using the following
scenario.

Let us suppose a University in which Users are ei-
ther Professors or Students and in which their de-
vices may act as service providers, e.g. providing
class notes, maybe performed either by Students
or by Professors. In this case, the University de-
fines some generic attributes with or without pa-
rameters, e.g. Student, Enrolled(Subject), Professor,

7

Teach(Subject) and so on, that help characterizing
entities at the University.

These types of attributes are named as Global At-
tributes and are defined and issued by Attribute Au-
thorities. The Attribute Authority (AA) could be
part of an existing infrastructure such as for instance
an X.509 (PMI) [13]. The definition of this type of
Attribute must be reduced because in ubiquitous sce-
narios the global infrastructure should only be used
in specific situations. The university is in charge of
defining and issuing those attributes to Students and
Professors, therefore each university acts as an AA
inside the PMI.

Once those basic attributes have been issued,
some Professors may need to define new attributes
such as,
Pass Test1 Subject1 or Pass Global Subject1.
These specific attributes can be used to control stu-
dent progress, access to money grants, awards, access
to other subjects, etc. These attributes are named
as Domain Attributes. The Domain Attributes are
defined locally and its meaning is limited to the
domain in which they were defined. These type of
attributes make the system more dynamic because
they do not require the same verification process of
Global Attributes, which could be a very expensive
process.

In some cases, there are relationships between
attributes, i.e. Pass Global Subject1 may imply
Pass Test1 Subject1 in the case where passing the
first test is a requirement for passing the subject.
Then, along with the attributes, there is a partial
order that defines a simple ontology [19] in the do-
main of the attribute manager. An ontology is a data
model that represents a set of concepts within a do-
main and the relationships between those concepts.
It is used to reason about the objects within that
domain. This ontology encodes the relationships be-
tween the attributes in the system. Moreover, there
may be relationships between attributes in different
domains, e.g. different Professors may issue differ-
ent attributes. In order to make a reference to the
attribute domain we use the dot notation. For in-
stance, Prof1.Pass Test1 Subject1 is an attribute
created by Professor1 and managed by him which
states that the first test of Subject1 has been passed.

This attribute on its own has only a local meaning in
the domain of Professor1.

In the University scenario, the University must pro-
vide a server to store the particular attributes defined
by its members and also the relationships between
them.

As it occurs in many Universities, some subjects
may share some topics. Let us suppose for example
that the first part of subject1 is equivalent to the sec-
ond part of Subject2. In this case, the professor of
subject2 (Professor2) may rely on the previously de-
fined attributes and define an attribute relationship
stating that the first test of subject1 implies passing
the second test of subject2. In this way, Professor2
gives the previous attributes defined by professor1 a
new meaning outside its context, by uploading the
following relation to the university server:

Prof1.Pass Part1 Subject1→ Prof2.Pass Part2 Subject2

This can be also represented using the partial order
symbol,

Prof2.Pass Part2 Subject2 ≤ Prof1.Pass Part1 Subject1

In this case, Professor2 is delegating his authoriza-
tion on passing the second part to Professor1. Then,
a student who is trying to convince the University
that he has passed the second test of subject2 may
show his identity details to the University so it could
ask professor2, or may show professor1’s attribute
stating that he has passed the first test of subject1
together with the attribute relationship

Prof2.Pass Part2 Subject2 ≤ Prof1.Pass Part1 Subject1

signed by professor2. So, the process can be carried
out without involving Professor2.

Although Domain and Global attributes are dif-
ferent concepts, they can also be related using a
partial order. An AA may decide to transform a
Domain attribute into a Global attribute by defin-
ing an order relation of the form AA.Global1 ≤
Entity1.Attribute1. In this way, an AA can del-
egate some attributes to other entities in the fed-
eration by simply linking their attributes with its
own. By doing so, Domain attributes could get a
global scope that reach anyone who trusts the AA.

8

We call this process Attribute Globalization. On
the other hand, individuals can also use global at-
tributes in the definition of their authorization poli-
cies, Entity1.Attribute1 ≤ AA.Global1 is also a valid
attribute relationship. We call it an Attribute Local-
ization.

In our example, when the University needs to make
Professor Decisions “official”, it can introduce this
relationship in the University Server,

University1.Pass Subject1 ≤ Prof1.Pass Global Subject1

Then, Professor1 is elected as the coordinator of
Subject1.

4.1 Attribute Federation Components

In our proposal, the Attribute Federation has two el-
ements, the Attribute Authority and the Attribute
Ontology Server (AOS), which can be composed of
many subordinated AOS as we will describe in the
next section. The AA manages Global Attributes
whereas the AOS manages the Domain Attributes.
Therefore, the main element that the attribute fed-
eration introduces, in contrast with traditional priv-
ilege management infrastructures, is the AOS, which
is in charge of:

1. Managing Domain Attributes.

2. Storing relationships over Domain Attributes in
the system.

3. Checking attribute relationships based on the
stored ontology, i.e. performing the trust nego-
tiation autonomously.

Every entity is registered to an AOS which is in
charge of checking the relationships over attributes.
Registered users trust the AOS not to disclose their
attribute relationships neither to cheat them adding
fake relationships.

Users may store new relationships in their AOS
and/or check whether a relationship exists or not in
any of the AOS of the Federation. The kind of re-
lationships a user can upload to the AOS are of the
form User1.Attribute1 ≤ User2.Attribute2, where

User1 is the ID of the user that is uploading the sub-
scription. We call them attribute subscription and we
read it as “attribute User1.Attribute1 is subscribed
to attribute User2.Attribute2”. Attribute subscrip-
tions are transitive in the sense that if Attr1 is sub-
scribed to Attr2 and Attr2 is subscribed to Attr3,
then we can infer that Attr1 is subscribed to Attr3.
Attribute subscriptions is an analogous concept of Li
linked roles [9].

By using attribute subscriptions, users can rely
on some other user attributes when defining their
own authorization policies, but they can not force
other users to rely on their own attributes. In order
to preserve the privacy of the attribute ontology, a
check for a relation of the form User1.Attribute1 ≤
User2.Attribute2 is only answered to a user owning
attribute User2.Attribute2.

In figure 11 Alice contacts Bob in order to retrieve
the attributes needed to use the service she wants to
use. This can be done contacting Bob directly or by
checking some other public service used by Bob to
publish his authorization policies, e.g. a static web
page.

Figure 11: Attribute Federation Scenario

Once Alice knows the required attributes, she looks
for attributes that may be related to her own. If the

9

authorization policy is confidential, Alice will only
get a specific domain attribute (in the domain of
Bob) linked with the service she wants to access (e.g.
Bob.service1), and the policy will remain confiden-
tially in the AOS.

Then, she contacts the respective AOS in order to
check whether there is a real relation between the
candidate attributes. This checking is done by Alice,
while Bob is not involved. Once Alice has found a
relation between one of her attributes and one of the
required attributes, she is ready to initiate a session
with Bob in order to use the service. In this way,
Bob is only slightly involved in the protocol because
he only has to locally check the response of the AOS
instead of having to check an attribute matching for
all the users trying to use his web service.

In figure 12 the steps of the interaction protocol
are detailed:

Figure 12: Interaction Protocol

0. Some time before the request, User2 sends its
attribute subscriptions to the Attribute Federa-
tion. This is usually done at the initialization of
the services offered by User2.

1. In the initial step, User1 gets a list with the
attributes needed to use the services of User2
either by sending an authorization request to
User2 or by checking them in some repository.
In any case, after step 1, User1 knows which at-
tributes he needs for being able to make use of
the desired services.

2. Then, User1 sends the required attributes to-
gether with the owned attributes to the attribute
federation. Normally, only a few attributes are
sent to the federation but the task of deciding
which attributes are sent to the federation de-
pends on the context of the request. Anyway, in
the worst case it could try with all the attributes.

3. When the federation receives a request, it tries
to find a chain of attribute subscriptions so that
it could be proved that the attributes requested
by User2 are subscribed to attributes owned by
User1. In the case where there is any match-
ing, the federation returns an attribute certifi-
cate stating that the required attributes are sub-
scribed to at least one of the attributes provided
by User1, so User1 is entitled to use all the
matching attributes. This certificate is issued by
the AOS which User2 is registered to because it
is the only one he trusts.

4. At this stage, User1 is able to prove to User2
that the requested attributes are subscribed to
the attribute it owns without having to send any
attribute. So, User1 sends the signed attribute
certificate to User2.

5. User2 verifies the signature of the certificate to
check if it becomes from its AOS and allows
User1 to make use of its services in the case
where everything is in order.

5 Storing and Updating at-
tribute subscriptions

We try to adopt a syntax as close as possible to the
one used in SAML, so our definitions become fairly

10

integrated with it. In particular attributes are repre-
sented easily in SAML as they use the same philoso-
phy than we do.

In SAML, the Attribute element has two XML
attributes, namely AttributeName and Attribute-
Namespace. This idea of namespaces allows organi-
zations to have security attribute names without the
fear of any collision between names defined by differ-
ent naming services. The first one can be identified
with our AttributeID and the second one reference,
in some way, the user who defines the attribute. So,
the following SAML attribute definition is equivalent
to the attribute UserID.AttributeID(V alue).

<Attribute

AttributeName=AttributeID

AttributeNamespace=UserID>

<AttributeValue>Value</AttributeValue>

</Attribute>

From the UserID descriptor we should be able to
derive a pointer to the AOS in which the subscrip-
tions of this attribute are stored. Then an domain
attribute credential is a regular SAML attribute as-
sertion, where the attribute element is defined as be-
fore.

An attribute subscription is an attribute statement
in which the subject is also an attribute, then the
subscription

UserID1.AttributeID1(V alue1) ≤ . . .

. . . UserID2.AttributeID2(V alue2)

can be represented in a SAML alike notation using
the following code,

<AttributeStatement>

<Subject>

<Attribute

AttributeName=AttributeID2

AttributeNamespace=UserID2>

<AttributeValue>Value2</AttributeValue>

</Attribute>

</Subject>

<Attribute

AttributeName=AttributeID1

AttributeNamespace=UserID1>

<AttributeValue>Value1</AttributeValue>

</Attribute>

</AttributeStatement>

This assertion has to be issued and signed by the
user to which the Attribute namespace UserID1
points.

As mentioned, an attribute federation can be com-
posed of many AOSs. In this way, attribute sub-
scriptions are spread over the Federation instead of
being stored in a central server. Each entity in the
federation uses a unique AOS to store its attribute
subscriptions, so finding attribute subscription chains
involves communication between different AOSs. A
trust relationship between AOSs in the Federation is
needed, so each AOS trusts other AOS answers to
its requests. Ideally, each AOS stores only its own
attribute subscriptions, but for performance reasons
it may be desirable that each AOS stores a cache of
most requested attribute subscriptions connected to
their own. Let us revise a sample scenario depicted
in figure 13.

Figure 13: Sample scenario

In this scenario, Alice and Jack offer some ser-
vices under an attribute federation in which AOS1
and AOS2 are the corresponding attribute ontol-
ogy servers for Alice and Jack. Alice has issued
some attributes to Bob, as they are friends. Alice
has issued Bob an attribute certificate for attribute
Alice.Friend. Later on, Bob tries to access some of
Jack resources. In particular, one of the resources
is granted to Jack friends, i.e. owners of attribute
Jack.Friend. Bob then has the choice to ask the
federation if attribute Jack.Friend is subscribed to

11

attribute Alice.Friend.
To do so, Bob has to first prove to the federation

that he owns attribute Alice.Friend and then send
the requested attributes he thinks are connected to
the one presented, in the example Jack.Friend. The
answer is positive when the federation finds a valid
chain of attribute subscriptions,

Jack.Friend ≤ ID 1.Attribute 1 ≤ . . .

. . . ≤ ID n.Attribute n ≤ Alice.Friend

and proves to Bob that it exists by sending him an
attribute certificate that he could send back to Jack.

If the AOSs stores only attribute subscriptions,
the unique way to start searching for this chain is
contacting AOS2 and asking for all the attributes
Jack.Friend is subscribed to. Then, the pro-
cess is repeated for those attributes until attribute
Alice.Friend is eventually reached.

We can include some redundancy in the data stored
in order to achieve a better performance. When a new
attribute subscription is uploaded to the federation,
the corresponding AOS not only stores the attribute
subscription but also notifies (in the case the two at-
tributes in the subscription do not belong to the same
AOS) to the other AOS involved, that a new subscrip-
tion to one of its attributes is going to be added to
the federation. In this way, the notified AOS stores
for a given attribute, not only its attribute subscrip-
tions but also the set of attributes subscribed to it.
When doing this, the search for an attribute federa-
tion chain can be done in a bidirectional way.

In fact, the storage of this extra information can be
left as optional but the notification should be done in
order to allow those AOSs interested in storing the
information to do so. Then, if the target attribute
belongs to an AOS that stores this extra informa-
tion, the search can speed up. For the sake of con-
sistency, when an attribute subscription is removed,
a notification should be also sent to the AOS of the
other attribute, so it can remove this attribute from
its records.

6 Conclusions

In this work, we establish a division between Global
and Domain attributes. Global attributes are defined
in large Infrastructure as X.509 PMI, and are well
known attributes. On the other hand, local decisions
demand a different approach, based on the defini-
tion of local attributes, that we name Domain At-
tributes. These attributes are not directly managed
by using the Infrastructure. So, by using domain
attributes, we avoid using the underlying infrastruc-
ture which can be computationally expensive in sev-
eral environments as mobile devices. Moreover, Do-
main attribute credentials are defined using SAML,
an emerging technology based on XML.

The inclusion of domain attributes makes neces-
sary to establish a new concept, called Attribute Fed-
eration. The concept is similar to Identity Federa-
tion but applied to Authorization sentences, avoiding
identity information exchange. In each Federation,
a new element has been defined named Attributed
Ontology Server (AOS), in which entities store their
attributes and the relationships between them, i.e.
attribute subscriptions, to simplify the authorization
process. The AOS is independent from the underly-
ing PMI and can be easily distributed. It allows link-
ing attributes from different users and reuse them in
the definition of authorization policies. In this way,
we divide the authorization process in two layers, that
is, relation between users implemented by using at-
tribute certificates, and relation between attributes
implemented by using attribute subscriptions.

References

[1] S. Landau and J. Hodges. A Brief Introduction to
Liberty, August 2002.

[2] Isaac Agudo, Javier Lopez, Jose A. Montene-
gro A Graphical Delegation Solution for X.509
Attribute Certificates ERCIM News. SPECIAL
THEME: Security and Trust Management No. 63,
October 2005, pp. 33-34. ISSN: 0926-4981

[3] B. Kaliski. A Layman’s Guide to a Subset of
ASN.1, BER, and DER, 1993.

12

[4] Isaac Agudo, Javier Lopez and Jose A. Montene-
gro A representation model of trust relationships
with delegation extension. In 3rd International
Conference on Trust Management, iTrust 2005,
volume 3477 of Lecture Notes in Computer Sci-
ence, pages 116 – 130. Springer, 2005.

[5] D. Mundy and D. Chadwick An XML alternative
for perfomance and security: ASN.1. In IEEE IT
Professional, 6(1) pages 30–36. IEEE Computer
Society Press, 2004.

[6] E. Yuan and J. Tong. Attributed based access
control (ABAC) for web services. In IEEE Inter-
national Conference on Web Services (ICWS’05),
pages 561–569, 2005.

[7] William H. Winsborough, Kent E. Seamons and
Vicki E. Jones. Automated trust negotiation.
In DARPA Information Survivability Conference
and Exposition. volume I, pages 88–102, IEEE
Press. January, 2000.

[8] William H. Winsborough, Jay Jacobs. Auto-
mated Trust Negotiation in Attribute-based Ac-
cess Control DISCEX (2) 2003: 252-

[9] Ninghui Li, John C. Mitchell, and William H.
Winsborough. Design of a role-based trust man-
agement framework. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, pages
114–130. IEEE Computer Society Press, May
2002.

[10] T. Bray, J. Paoli, C. Sperberg-McQueen, E.
Maeler and F. Yergeau. Extensible Markup Lan-
guage (XML) 1.0. Fourth Edition. W3C Recom-
mendation. 16 August 2006

[11] Isaac Agudo, Javier Lopez and Jose A. Montene-
gro Graphical Representation of Authorization
Policies for Weighted Credentials In 11th Aus-
tralasian Conference on Information Security and
Privacy. (ACISP’06), pp. 383-394. LNCS 4058,
Springer. Melbourne, Australia. July 2006.

[12] Arnaud Sahuguet, Stefan Brands, Kim
Cameron, Cahill Conor, Aude Pichelin, Fulup

Ar Foll, Mike Neuenschwander. Identity manage-
ment on converged networks: a reality check. In
Proceedings of the 15th international Conference
on World Wide Web (Edinburgh, Scotland, May
23 - 26, 2006). WWW ’06. ACM Press, New
York, NY, 747-747.

[13] ITU-T Recommendation X.509.
X509.Information technology Open systems
interconnection. The Directory: Public-key and
attribute certificate frameworks, March 2000.

[14] Kent E. Seamons, Marianne Winslett and Ting
Yu. Limiting the disclosure of access control poli-
cies during automated trust negotiation . In Pro-
ceedings of the Symposium on Network and Dis-
tributed System Security, (NDSS’01). February,
2001

[15] William H. Winsborough, Ninghui Li. Safety
in automated trust negotiation ACM Trans. Inf.
Syst. Security 9(3): 352-390 (2006)

[16] J. Hughes. SAML technical overview. Oa-
sis. Document id sstc-saml-tech-overview-1.1-cd,
2004.

[17] J. Hughes. SAML technical overview. Oasis.
Document id sstc-saml-tech-overview-2.0-draft-
03, 2005.

[18] M. Erdos and S. Cantor. Shibboleth-
Architecture DRAFT v05, May 2002.

[19] Thomas Gruber. Toward Principles for the De-
sign of Ontologies Used for Knowledge Sharing.
International Journal Human-Computer Studies
Vol. 43, Issues 5-6, November 1995, p.907-928.

13

