
Recovery of Structural Controllability

for Control Systems

Cristina Alcaraz and Stephen Wolthusen

October 27, 2015

Abstract

Two of the fundamental problems of control systems theory are con-
trollability and observability, and designing control systems so that these
properties can be satisfied or approximated sufficiently. However, it is
prudent to assume that attackers will not only be able to subvert mea-
surements but also control. Moreover, advanced adversaries with an un-
derstanding of the control system may seek to take over control of the
entire system or parts thereof, or deny the legitimate operator this capa-
bility; the effectiveness of such attacks has been demonstrated in previous
work. Therefore, we argue that such attacks cannot be ruled out entirely
given the likely existence of unknown vulnerabilities, increasing connec-
tivity of nominally air-gapped systems, and even supply chain issues. The
ability to rapidly recover control after an attack has been initiated or the
detection of an adversary’s presence is therefore critical. In this paper we
study the problem of structural controllability that has recently re-gained
substantial attention through the equivalent problem of the Power Dom-
inating Set introduced by Haynes in the context of electrical power net-
work control. However, these problems are known to be NP-hard with
poor approximability. Given their relevance to many networks, especially
for power networks, we study strategies for the efficient restoration of

Keywords: Control Systems, Structural Controllability, Power Dom-
ination, Resilience.

1 Introduction

Domination, a central topic in graph theory, becomes a relevant theme in the
design and analysis of control systems as it is an equivalent problem to that of
(Kalman) controllability. This motivation focuses on the the concept of struc-
tural controllability introduced by Lin in [1], which is based on the control theory
as defined by Kalman in [2]:

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0 (1)

In this formulation, x(t) is a vector (x1(t), . . . , xn(t))T representing the cur-
rent state of a system with n nodes at time t; A is an adjacency matrix n× n

1

C. Alcaraz, and S. Wolthusen, “Recovery of Structural Controllability for Control Systems”, Eighth IFIP WG 11.10 International Conference on
Critical Infrastructure Protection, SRI International, Arlington, Virginia, USA vol. 441, pp. 47-63, 2014.
http://doi.org/http://dx.doi.org/10.1007/978-3-662-45355-1_4
NICS Lab. Publications: https://www.nics.uma.es/publications

giving the network topology that identifies interaction between nodes, B an
input matrix n ×m, where m ≤ n, identifies the set of nodes controlled by a
time-dependent input vector u(t) = (u1(t), . . . , um(t)) which forces the system
to a desired state in a finite number of steps. The system in Equation 1 is con-
trollable if and only if rank[B,AB,A2B, . . . ,An−1B] = n (Kalman’s rank crite-
rion). However, this formulation is quite restrictive for large networks (e.g., the
control of power networks or similarly large control systems) where there exists
an exponential growth of input values as a function of nodes. This is the main
reason that our investigations concentrate on structural controllability, where
matrix A of Equation 1 represents the network topology, and matrix B contains
the set of nodes with the capacity to drive control [3].

C. Lin also gives the interpretation of G(A,B) = (V,E) as a digraph where
V = VA ∪ VB the set of vertices and E = EA ∪ EB the set of edges. In this
representation, VB comprises those nodes capable of injecting control signals
into the entire network, also known as driver nodes (denoted as nd) correspond-
ing to input vector u in Equation 1. The identification of these nodes has so
far been studied in relation to general networks; in this paper we principally
concentrate on those power-law networks, most pertinent to a number of large-
scale infrastructure networks. To identify minimum driver node subsets ND,
we follow the approach based on the Power Dominating Set (PDS) problem
which is described in more detail in [4, 5]. This interest is primarily because
PDS-based networks have similar logical structures as real-world monitoring
systems, where driver nodes can represent, for example, remote terminal units
that control industrial sensors or actuators. In fact, the PDS problem was origi-
nally introduced as an extension of the Dominating Set (DS) by Haynes et al.
[6], mainly motivated by the structure of electric power networks and the need
for the efficient ‘monitoring’ of such networks.

Building on previous work done [4, 5], we propose in this paper several
restoration heuristics (strategies) for the control of a network once that ND has
been perturbed. Different attack patterns compromising nodes and their effects
have already been analysed extensively in [4, 5], analysing and evaluating inter-
active and non-interactive attacks, including multiple rounds between attackers
and defenders, respectively. However, it is clearly undesirable to restore overall
controllability through complete re-computation if the PDS properties have only
become partially violated — where this is possible given the constraints imposed
by compromised nodes — as the PDS problem is known to be NP-complete for
general graphs as well as for bipartite and chordal graphs as shown by Haynes
et al. in [6]. Subsequent research by Guo et al. extendedNP-completeness proofs
for planar, circle, and split graphs [7], with the exception of partial k-tree graphs
with k ≥ 1 and parametrised using ND, in which the DS and PDS problems
can become tractable in linear-time, while the parametrised intractability can
result in W [2]-hardness [8]. Pai et al. have also provided some recent results in
grid graphs [9], whilst Atkins et al. have studied block graphs [10]. There are
other approaches that address the topic of PDS for specific cases [11, 12], but
none of them focus on efficient solutions for the restoration of the PDS prob-
lem following perturbations, i.e., where a PDS of the original graph G is known

2

alongside the changes induced on G.
The restoration strategies defined in this paper center on general power-law

and scale-free distributions by offering similar characteristics to real power net-
works. In particular, we define three strategies for determining the complexity
of restoration. To evaluate the complexity, we consider: (i) A strategy without
any type of constraint for restoration; (ii) another one based on the graph di-
ameter to minimise the intrinsic problem of the non-locality of PDS; and (iii) a
strategy based on backup instances of driver nodes. We show that this offers a
gain in efficiency over re-computation whilst resulting in acceptable deviations
from an optimal (i.e., minimal |ND|) PDS. As many critical infrastructures
require timely or even real-time bounded restoration to ensure resilience and
continued operation, the ability to restore controllability rapidly is essential.

The remainder of this paper is structured as follows: Section 2 describes
the initial conditions and assumptions for perturbation and restoration in order
to then introduce the tree restoration strategies in Section 3. In Section 4
we evaluate the additional complexities, and we discuss the advantages and
disadvantages of each approach. Finally, our conclusions together with future
work are given in Section 5.

2 Conditions for the Analysis

In this section we discuss the initial assumptions and conditions used to restore
the structural controllability when nodes are being attacked from within a net-
work, including a simple graph model. Let G(V,E) be a directed acyclic graph
(DAG) based on an arbitrary set of nodes V and a set of edges E, where each
vertex vi ∈ V can be linked to other vj ∈ V such that (vi, vj) ∈ E, without
producing loops or self-loops (i.e., vi 6= vj).

2.1 Assumptions for Perturbation

The first assumption we consider here is that one or several vertices can be
targeted by one or several attackers, knowing the structure or probability dis-
tribution of edges of the graph, its topology, and the identities of the current
driver nodes ND (note that ND is not necessarily unique). Those driver nodes
that also belong to V satisfy the two observation rules for controllability, which
were simplified by Kneis et al. in [13] from the original formulation specified by
Haynes et al. in [6]. Both rules and their algorithms are detailed in [4, 5], and
below:

OR1 A vertex in ND observes itself and all its neighbours.

OR2 If an observed vertex v of degree d ≥ 2 is adjacent to d − 1 observed
vertices, the remaining unobserved vertex becomes observed as well.

Note that the omission of OR2 already results in the NP-complete DS prob-
lem, with a polynomial-time approximation factor of Θ(log n) [14]. The fol-
lowing condition is that the construction of ND is arbitrary and depends on

3

the selection of vertices satisfying OR1, allowing the customisable selection of
controllability generation strategies as specified in [4]. Once the ND has been
obtained, we evaluate two different scenarios concentrating on attacks against
either node or edge (communication link) availability [4, 5]:

SCN-1 Randomly remove some (not all) edges of one or several vertices, which
may compromise controllability of dependent nodes or disconnect parts of
the control graph and underlying network.

SCN-2 Randomly isolate one or several vertices from the network by inten-
tionally deleting all their links (i.e., this attack may result in the complete
isolation of nodes from the network).

As detailed in [4, 5], either attack scenario may result in a degradation of the
control of the network and a significant reduction of its observability (including
partial observability). To address this aspect, we identify two classes of nodes:

U-1 The node u is not observed by a nd, but belongs to ND and it is part of
the control node set.

U-2 The node u is not observed by a nd and it does not belong to ND. This
means that u is part of the set of observed nodes, denoted as O, such that
O = V − ND.

When such a node is not being observed by a member ∈ ND, the set of
unobserved nodes U has to be updated so that each node u ∈ U can be again
observed by at least one member of ND.

2.2 Assumptions for Restoration

We assume that the restoration of structural controllability ND is initially based
on searching driver nodes ∈ ND which offer coverage of unobserved nodes ∈ U
with dependence on attacked nodes ∈ A. The term coverage here refers to the
ability of a new link to be established between the best candidate ∈ ND and an
unobserved node ∈ U such that the two observation rules OR1 and OR2 are
satisfied. For this, the candidates for restoring the controllability must comply
the following properties:

1. Satisfy the conditions of OR1; i.e., select a nd ∈ ND capable of observing
itself and an unobserved u ∈ U through a new link (nd, u) ∈ E, such that
| ND | ≥ 1.

2. None of the new restoration links must violate the out-degree distribution
of a power-law network and must not introduce cycles.

3. Satisfy the conditions of OR2; i.e., verify that ∀ nd ∈ND of degree d ≥ 2,
OR2 is not infringed. This can involve the inclusion of one or several new
members in ND, such that | ND | ≤ | V |.

4

At the end of the algorithm, the restored set ND can increase the initial
number of driver nodes such that U = � (note that | ND |=| V | in degenerate
cases). However, and unfortunately, we must also consider the handicap of
non-locality of PDS and the NP-Complete demonstrated by Haynes et al. [6].

Our heuristic approach is based on ensuring that the hard constraints, i.e.,
observation rules, are satisfied primarily, and that as a secondary constraint the
out-degree distribution property of the underlying power-law network remains
unaltered. This strategy also depends on the approaches taken for each restora-
tion strategy defined in the remainder of the paper. In this case, our studies are
based on two main approaches:

APPR-1 Find a nd ∈ ND to re-link it to an unobserved node u ∈ U .

APPR-2 Find a ndbl belonging to a backup list of driver nodes such that there
is an edge between ndbl and unobserved node u ∈ U .

Likewise, each restoration strategy has to consider some of the following
“restoration rules” (heuristics) defined by us:

RR1 If u is a U-1, then we ensure that u still satisfies OR1.

RR2 If u is a U-2, and the restoration strategy follows the APPR-1 approach,
we first have to find that driver node nd ∈ ND with out-degree equal
to zero, or find a vertex nd ∈ ND of out-degree d ≥ 2 such that the
|children(nd) − ND | ≥ 1, being children(nd) a function that obtains the
set of child nodes corresponding to the out-degree of nd. In this way, we
avoid violating OR2 after the link.

RR3 If u is a U-2 and the restoration strategy follows the APPR-2 approach,
we first have to find that driver node ndbl of a given backup list with out-
degree equal to one (pointing out to itself), or find a ndbl in the backup
list of out-degree d ≥ 2 such that the |children(ndbl) − ND | > 1 to avoid
violating OR2.

Algorithm 2.1: Basic Re-Link (G(V,E),ND, U,A)

output (ND)
local S1, u, nd, or2;
or2← false ;
while U 6= �

do



(?) Randomly choose a vertex u ∈ U ;
if u /∈ ND

then{
(?) S1 ← ∀ nd ∈ ND −A with maximum in degree and

(nd, u) ∈ E is DAG;
(?) Common Relink(G(V,E),ND, S1, u, U,A, or2);

U ← U \ {u};
return ((?) Common VerifyOR2(G(V,E),ND, A, or2)))

5

3 Restoration of Structural Controllability

The three restoration rules given in Section 2.1 are the basic constraints to
address the following three restoration strategies:

STG-1 No constraints through APPR-1.

STG-2 Parametrisation using the network diameter and APPR-1.

STG-3 A backup list of driver nodes through APPR-2.

These three algorithms are developed and analysed in this section, consid-
ering in addition, the parameters and functions described above.

3.1 STG-1: Restoration Algorithm and Analysis

For any attack scenario (SCN-1, SCN-2), the approach consists of finding
those candidates ∈ ND that can provide coverage to each vertex contained in
U through a new edge. This approach is depicted in Algorithm 2.1, where the
symbol (?) is an indication for the complexity analysis given in Section 4. We
now briefly outline the semantics of Algorithm 2.1. For each unobserved node,
we verify whether it is part of ND. If a vertex u ∈ U is a nd by itself (U-1), then
it is not necessary to find a member of ND to establish the link because such
a node observes itself, satisfying the first restoration condition (RR1) given
in Section 2.2. Otherwise, we randomly choose a non-attacked nd to proceed
with link restoration. However, as this new link can change the power-law
distribution given in G(V,E), we only choose those candidates with the highest
in-degree (≥ 0) so as not to skew the degree distribution, effectively obtaining
a preferential attachment process [15]. From these candidates, we select those
that do not produce cycles after the attachment in order to comply with the
second assumption given in Section 2.2.

Algorithm 3.1: Common Re-Link (G(V,E),ND, S1, u, U,A, or2)

output (G(V,E),ND, or2)
local S2, nd;

if S1 6= �



(?) S2 ← ∀ nd ∈ S1/ (out degree == 0 or
| children(nd)−ND | ≥ 1); comment:Complying RR2

if S2 6= �
then

{
Randomly choose a nd ∈ S2;

else

{
(?) Randomly choose a nd ∈ S1;
(?) ND ← ND ∪ {nd};
(?) or2← true ;

Establish a link between nd and u, such that (nd, u) ∈ E;

else

{
ND ← ND ∪ {u};
or2← true ;

6

Regardless the type of restoration strategy (STG-1, STG-2, STG-3) and
the state of U , the verification of the existence of nodes in G(V,E) that violate
OR2 after a perturbation is always required. To be more concise, we reduce
the analysis to a subset of nodes instead of the entire graph, being this subset
of nodes those related to the set of A. Moreover, depending on the target (TG)
attacked, the analysis can vary:

TG-1 A nd has been attacked, so OR2 is performed for each nd in A. However,
the verification process is only effective for scenarios SCN-1 in which
the state of each child of an affected node has to be evaluated. This
process is disrupted when there exists a nd ∈ A of degree ≥ 2 that |
children(nd)−ND |= 1.

TG-2 A node v ∈ O has been attacked, so OR2 is applied for each v ∈ A.
However, the analysis is only effective for SCN-1 where the algorithm is
applied to those father nodes ndfv

related to v and ndfv
∈ ND. As TG-1,

the proof may be interrupted when there is a ndfv
of degree ≥ 2 with

| children(ndfv
)−ND |= 1. The set of driver fathers is obtained through

the function fathers(v) corresponding to the in-degree of v.

Algorithm 3.2: Common VerifyOR2 (G(V,E),ND, A, or2)

output (ND)
local nd, attacked ND, attacked O, or2, i;
attacked ND ← ND ∩ A; attacked O ← A − ND;
if (attacked ND /∈ �) and (or2 == false)

then

{
if ∃ a nd ∈ attacked ND that breaks OR2
then comment: SCN-1 scenario

ND ← ND ∪ {children(nd)−ND}; or2← true ;
if (attacked O /∈ �) and (or2 == false)

then



i← 1;
while (i ≤| attacked O |) and (or2 == false)
do
S1 ← fathers(attacked O[i]);
if ∃ a s1 ∈ S1 that breaks OR2

then

{
comment: SCN-1 scenario

ND ← ND ∪ {children(s1)−ND}; or2← true ;

i← i+ 1;
if or2
then Execute OR2 defined in [4];

return (ND)

As stated in Algorithm 3.2, the breach of OR2 involves an update of ND

and the execution of Algorithm OR2, which is detailed in [4]. On the other
hand, the correctness proof for STG-1 is by induction:

Precondition A 6= � such that | ND −A | ≥ 1.

Postcondition U = �, and OR1 and OR2 are fulfilled.

7

Case 1 U = � after perturbation (SCN-1 or SCN-2). Although the loop
(while) of Algorithm 2.1 is not processed, Algorithm 3.2 must be executed
to verify the fulfilment of OR2. Depending on the attack scenario, the
resolution of Algorithm 3.2 changes. For scenarios SCN-1, the loops for
the sets attacked ND and attacked O must be launched to detect the exis-
tence of one driver node (∈ attacked ND) or parent drivers (∈ attacked O)
that will violate the second controllability rule. In contrast, such sets
are not considered for SCN-2 scenarios because the affected nodes are
completely isolated, without children and parent vertices, satisfying OR2
through out degree = 0.

Case 2 U 6= � after perturbation, being | U |= 1. In these circumstances, two
cases must be distinguished:
(1) If u is U-1, the condition RR1 is met.
(2) If u is U-2, it is necessary to explore the existence of one or several
candidates {nd1 , . . . , ndn} with maximum in-degree (≥ 0) and with the
capability to cover u without producing cycles and complying with RR2.
If this is the case, we ensure that ∃ a nd ∈ND for coverage, and u therefore
becomes part of O, guaranteeing that U is null for next iteration. If not,
ND is updated with ND ∪ {u} to be observed at least by itself, where
U = � in the next iteration. However, this updating involves performing
a verification process of OR2 [4] to determine the observation degree of
the entire network after the loop of Algorithm 2.1.

Induction Assuming we are in step k (k > 1) with U 6= �, k =| U | and
| ND |≥ 1, we randomly select a node u ∈ U in each iteration of the while.
When selecting a node, two cases can arise depending on u (U-1 or U-2),
which pursue the same goals as Case 2 (but with | U |> 1). At the end of
Algorithm 2.1, the set U and k are always updated through U = U \ {u}
(see Case 2). In the next state, with k − 1, the procedure adopted is
still valid, which means that the postcondition U = � is not met and the
loop must be run again for the next state k until k = 0. When k = 0,
Case 1 occurs, and therefore the postcondition is true and Algorithm 2.1
terminates.

3.2 STG-2: Restoration Algorithm and Analysis

One extension of STG-1 is to consider the network diameter as Algorithm 3.3
describes. By induction, we expand the proof of STG-1 taking into account
the initial and final conditions and base cases. For each iteration k (k > 1) with
U 6= � and | ND |≥ 1, we randomly select a node u ∈ U . As for the previous
proof, we distinguish two types of affected nodes. If the node is U-1, then RR1
is still satisfied. However, if the node is U-2, then ∀ nd ∈ ND − A we select
nodes with the minimum diameter that ensure acyclic graphs after repair. As
the graph is unweighted, we considered the breadth-first search (BFS) method
to obtain a list of nodes together with their diameters, and through this list we
obtain those nd with minimum diameter (≥ 0) with respect to the entire graph.

8

Algorithm 3.3: Diameter-Based Relinking(G(V,E),ND, U,A)

output (ND)
local Sd1 , Sd2 , S1, u, nd, or2;
or2← false ;
while U 6= �

do



(?) Randomly choose a vertex u ∈ U ;
if u /∈ ND

then
(?) Sd1 ← BFS(G(V,E));
(?) Sd2 ← ∀ nd ∈ ND −A with minimum diameter ∈ Sd1 and

(nd, u) ∈ E is DAG;

if Sd2 6= �
{
(?) S1 ← ∀ nd ∈ Sd2 with maximum in degree(nd);
(?) Common Relink(G(V,E),ND, S1, u, U,A, or2);

else
{
ND ← ND ∪ {u}; or2← true ;

U ← U \ {u};
return ((?) verifyOR2(G(V,E),ND, A, or2)))

In the case where there does not exist a candidate node satisfying all con-
straints for coverage, the unobserved node becomes part of the ND to guarantee
at least OR1; otherwise the induction-based proof of STG-1 can be employed.
At the end of the loop, the precondition | U |= k is updated in each stage k by
computing U = U \ {u} until k = 0. As the proof of STG-1, the postcondition
is true and Algorithm 3.3 terminates when Case 1, as defined in STG-1, is
finally reached.

3.3 STG-3: Restoration Algorithm and Analysis

This strategy requires an initial pre-processing before commissioning to generate
backup instances composed of driver nodes ∈ G(V,E). These instances have
to be organised into a tree-like structure based on the concept of nice tree
decomposition. To do this, a previous construction of a tree decomposition must
be built, taking into account the network diameter to later be transformed into
a nice tree decomposition. A tree decomposition is a tree T of G(V,E) with I
nodes, where each node in T is a bag containing a set of nd ⊆ ND satisfying
the following properties [7]:

Property 1 :
⋃
i∈T bagi = ND.

Property 2 : ∀ (ndblw , ndblz) ∈ E with diameter ≥ 0, there exists a bagi in T
such that (ndblw , ndblz) ⊆ bagi.

Property 3 : ∀ bagi, bagj , bagz ∈ T , if bagj is on the path from bagi to bagz in
T then bagi ∩ bagz ⊆ bagj .

The tree width corresponds to the minimum width w over all tree decom-
positions of G(V,E), where w = maxi∈I(| bagi |∈ T) − 1 where w ≥ 1. This
means that a tree decomposition T of width w with | ND | driver nodes can be
turned into a nice tree decomposition of width w, but subject to the diameter

9

associated with each driver node within the network [16]. In this way, bags
containing driver nodes with smaller diameters are located in the leaves of T ,
whilst driver nodes with higher diameters are located closer to the root.

Algorithm 3.4: Backup Instance-Based Scheme (G(V,E), ND, A, U, Tbk,M)

output (ND)
local current diam, S1, S2, u, nd, or2, bk;
or2← false ;
while U 6= �

do



Randomly choose a vertex u ∈ U ;
if u /∈ ND

then

for bk ← 1 to M
do

comment:A search bottom-up fashion, complying RR3;

current diam←∞;
while (maximun(diameter in bagi) ≤ current diam) and

(! visited the whole Tbk)
do
if (∃ a ndbl

∈ (bagi − A) such that (ndbl
, u) ∈ E) and

(out degree == 1 or | children(ndbl
) − ND | > 1)

then

{
(?) current diam← maximum(diameter in bagi);
if ndbl

∈ ND

then S1 ← S1 ∪ {ndbl
};

else (?) S2 ← S2 ∪ {ndbl
};

if S1 = �

if S2 6= �
{
(?) Randomly choose a vertex si ∈ S2;
(?) ND ← ND ∪ {si};

else (?) ND ← ND ∪ {u};
(?) or2← TRUE;

U ← U \ {u};
return ((?) verifyOR2(G(V,E),ND, A, or2)))

For transformation to a nice tree decomposition, each node i of the tree T
has at most two children (j, z) complying with two further conditions: Nodes
with two children bagj and bagz, bagi = bagj = bagz (bagi as a join node); and
nodes with a single child bagj such that bagi = bagj∪{nd} (bagi as an introduce
node) or bagi = bagj −{nd} (bagi as a forget node). In practice, these trees are
constructed using tables with at least three columns (i, j, z), where each entry
i contains those subsets of nd in relation to i. However, this data structure also
takes into account the maximum diameter associated with each bag since the
approach does not focus on re-linking (APPR-1), the value of which remains
constant throughout the restoration process. Therefore, the spatial overhead
invested by such a table may become 3× 2w+1 = O(2w+1) entries [17].

Algorithm 3.4 describes the behaviour of the restoration strategy with one
or several nice tree decompositions Tbk as the main input parameter with a

storage cost of O(
M∑
bk=1

2w+1). The idea is to process this parameter in a bottom-

up fashion to find those driver nodes with minimum diameter that ensure the
fulfilment of RR3 stated in Section 2.2. By induction, we first define the initial
and final conditions, and base cases:

Precondition A 6= � with at least one Tbkj with M ≥ j ≥ 1.

10

Postcondition U = �, and OR1 and OR2 are fulfilled.

Case 1 Analogous to Case 1 of STG-1 in Section 3.1.

Case 2 U 6= � after perturbation, being | U |= 1. As Case 2 of the proof of
STG-1, two sub-cases are to be distinguished:
(1) If u is U-1, the condition RR1 is satisfied.
(2) If u is U-2, Algorithm 3.4 needs to traverse all trees Tbkj from the
bottom to locate those bags in Tbkj containing the best driver candidates
to cover u. This process means verifying the existence of a ndbl ∈ bagsi−A
such that (ndbl , u) ∈ E with minimum diameter in which RR3 is fulfilled.
During this process, we also explore if such a ndbl belongs to ND to avoid
increasing ND. If so, the set S1 is updated through S1 ∪{ndbl}; otherwise
the updating is for S2. In the case where S1 6= �, we ensure that u is
covered by at least one member in ND and the set O is updated, guar-
anteeing that U is empty in the next iteration. In contrast, if there is no
perfect candidate (as above) in ND and S2 6= �, we also guarantee the ex-
istence of a ndbl ∈ Tbkj with the ability to cover u, and hence O = O∪{u}
and U = � for the next iteration. However, ND must be updated with
ND ∪ {ndbl}, requiring Algorithm 3.4 to verify the observation degree of
the entire network when the loop finishes.

This verification process, described in detail in Section 3.1, may also be
performed when there is no perfect candidate (S1 = � and S2 = �) to
cover u. In this case, u becomes part of ND to comply with OR1, and
hence U = � in the next iteration. When U = � and the rule OR2 is
satisfied, the postcondition is true.

Induction In step k (k > 1) with U 6= �, k =| U | and | ND |≥ 1, we randomly
select a node u ∈ U in each iteration of the loop. When selecting a node,
two situations can occur depending on u: U-1 or U-2, and both following
the same goals set out for Case 2 (of this proof) but with | U |> 1. At
the end of the algorithm, the set U and k are always updated through
U = U \ {u}. In the next state, with k − 1, the procedure adopted is
still valid, which means that the postcondition U = � is not met and the
loop must be run up again for the next state k until k = 0. When this
happens, Case 1 of proof STG-1 must be verified to conclude that the
postcondition is true, and therefore Algorithm 3.4 finishes.

4 Complexity Analysis and Discussion

We now briefly give an analysis of computational complexity, which must be
performed for three restoration Algorithms STG-1, STG-2 and STG-3. For
the former, processing the entire U set k times where k =| U | is required. For
these k iterations, the algorithm must also find those best candidates ∈ ND−A
with the highest in-degree to ensure the fulfilment of RR2 in the best scenario,
or increase ND, at least, by one unit in the worst case.

11

For simplicity, we denote | V |= n, | E |= e, | A |= a (= 1), | ND |= nd
and f = fathers(nd); and we study the upper bound for SCN-1 and SCN-2.
To evaluate the worst scenario of each SCN-x (x = {1, 2}), we assume that
nd ≈ n and the adversarial scenario is non-interactive (a single target TG-
x (x = {1, 2})), so that if A ⊆ ND, then nd − a ≈ n as well. In addition,
we must also select the longest trace of Algorithm 2.1 that includes Algorithm
3.2, following the indication given by ? – note that both the assignment and if
instructions have constant complexity O(i) and can be neglected). To address
this aspect, we first evaluate the upper bound needed to find those non-attacked
driver nodes (ND −A) with maximum in-degree (≥ 0) that satisfy the directed
acyclic test after repair and RR2. The computation time of all of this process
may become O(kn2) if nd ≈ n.

Depending on SCN-x and the targeted node TG-x, the computational
complexity of Algorithm 3.2 can become variable as described in Section 3.1.
Namely,

• TG-1 in SCN-1: In this case, it is necessary to verify OR2 for each
attacked driver node ∈ attacked ND with a cost of O(a + e). As we are
evaluating the worst scenario, we must observe that after computing the
entire ∈ attacked ND, there exists a nd that infringes OR2, which forces
Algorithm 3.2 to compute Algorithm OR2 given in [4] with an overhead
of O(nd(nd + e)) = O(n2). Therefore, the total complexity invested for
this scenario is O(kn2 + ((a+ e) + n2)) = O(kn2).

• TG-1 in SCN-2: The verification of OR2 is not possible because of the
complete isolation of the nodes ∈ attacked ND; hence O(kn2 + (a+ e)) =
O(kn2).

• TG-2 in SCN-1: This attack scenario requires Algorithm 3.2 to explore
the existence of a parent ndfv

related to v ∈ attacked O that does not
comply with OR2. This may entail an upper bound of O(kn2 + (a(f +
e) + n2)) = O(kn2).

• TG-2 in SCN-2: Similar to TG-1 in SCN-2.

The extension of ND can be influenced according to:

• TG-x in SCN-1: An increase of at least two new nd in ND.

• TG-x in SCN-2: An increase of one unit in ND in the worst case.

The computational cost of Algorithm STG-2 becomes analogous to the
restoration strategy STG-1, but this time considering the overhead invested by
the BFS method (O(n+e)) to compute the diameter of the entire network. Once
we have obtained the list with diameter values, we extract those driver nodes
related to ND−A so as to validate them with an acyclicity test (O((nd−a)(n+
e)) = O(n2)); and in this way to later obtain the driver nodes with the highest
in-degree (O(nd − a) = O(n)) and complying with RR2 (O((nd − a) + e) =

12

Table 1: Complexity for the three restoration strategies

Threat Scenarios
SCN-1 - TG-x SCN-2 - TG-x
Time ND Time ND

STG-1 O(kn2) nd + 2 O(kn2) nd + 1

STG-2 O(kn2) nd + 2 O(kn2) nd + 1

STG-3 O(k(
M∑

bk=1

(2w+1(b + e)))) nd + 2 O(k(
M∑

bk=1

(2w+1(b + e)))) nd + 1

O(n+e)). The overhead of this first part is so far O(k((n+e)+n2+n+(n+e))) =
O(kn2) if nd ≈ n. The rest of the analysis follows the same steps as for SCN-x
and TG-x stated above, with the results summarised in Table 1.

Regarding strategy STG-3, we simplify the study considering b = w+1 (the
largest bag in Tbkj), and the worst case with nd ≈ n. To compute a bag bagi
of Tbkj with j ≤ M , Algorithm 3.4 must identify the existence of a ndbl that
complies with RR3, which gives a cost of O(b+e). To obtain the best candidates
of each backup instance Tbkj stored in memory, the algorithm needs to process

each tree with a computational cost of O(
M∑
bk=1

2w+1(b+ e)). The second part of

the approach follows the same studies described above for Algorithm 3.2, which
are also summarised below and in Table 1:

• TG-x in SCN-1: O(k(
M∑
bk=1

(2w+1(b + e)))) + O((a + e) + n2), resulting

in O(k(
M∑
bk=1

(2w+1(b + e)))), where ND increases its value at least in two

nodes in the worst case.

• TG-x in SCN-2: O(k(
M∑
bk=1

(2w+1(b+ e)))) +O(n2) = O(k(
M∑
bk=1

(2w+1

(b+ e)))), where ND increases its value at least in one node.

Therefore, the computational cost of STG-3 depends on the width w+ 1 of
Tbkj , the cost of which can become undesirable for critical scenarios where the
control needs to be resolved in linear time. However, this study concentrates on
the worst cases where nd ≈ n, without considering the ability of this approach
to prepare each backup instance using the diameter in the best cases. Similarly,
STG-1 can also be an inadequate strategy with respect to STG-2 as the di-
ameter computed in STG-2 benefits the fulfilment of RR2 (out degree = 0),
reducing computational costs and the expansion of ND in each iteration. On
the other hand, STG-1 and STG-2 have to transverse the entire network to
search for the best candidates that satisfy conditions RR1 and RR2 (explicitly
taking into account non-locality); whilst STG-3 must go over each backup in-
stance to obtain the best candidates that satisfy condition RR3. Nevertheless,

13

Table 2: Changes on ND when one or ‘n/2’ random are targeted

SCN-1

One Target n/2 Random Targets

n N
bef
D

N
STG−1
D

N
STG−2
D

N
STG−3
D

N
bef
D

N
STG−1
D

N
STG−2
D

N
STG−3
D

100 92 = = = 95 = = =
1100 1073 = = = 1072 1074 = 1073
2100 2036 = = = 2029 2034 2030 2030
3100 3000 = = = 3022 3026 = 3030

SCN-2

One Target n/2 Random Targets

n N
bef
D

N
STG−1
D

N
STG−2
D

N
STG−3
D

N
bef
D

N
STG−1
D

N
STG−2
D

N
STG−3
D

100 94 = = = 99 100 = 100
1100 1066 = = = 1049 1052 1051 1052
2100 2010 = = = 2053 2059 = 2056
3100 3026 = = = 3013 3019 3014 3036

the dynamic computation of the diameter in STG-2 again highlights the benefit
of this strategy to mitigate the non-locality problem of PDS inherent in these
strategies by pre-computation.

On the other hand, we have implemented the three strategies over a power-
law distribution known as PLOD in [18], and analysed in [4]. The developments
are based on Matlab with a low connectivity probability to produce a more
realistic critical scenario with sparse distributions, using in this case yα with
α = 0.2, and networks with medium (≤ 1000) and large (≤ 3100) number of
nodes. For each network produced, we have analysed the resulting effect that can
cause an attack of the type SCN-1 and SCN-2 in one arbitrary node (either a
TG-1 or a TG-2) or in a subset of ‘nodes/2 ’ arbitrary nodes, the nodes of which
can be either a TG-1 or a TG-2. The results of these simulations are shown in
Table 2, which depicts the efficiency of the three strategies regarding the changes
caused on the size of ND after perturbation. We can deduce from this table
that the variation of the set of driver nodes does not become significant with
respect to the number of attacked nodes; in addition to underlining that 99% of
the observation rate (with nodes of the type U-1 or U-2) were completely lost
for all cases after perturbation. Despite this, we also observed that the networks
were equally able to retake 100% the control after recovery without significant
changes in the majority of the cases; and more particularly for STG-2, thanks
in part to the use of the diameter.

5 Conclusions

Structural controllability offers a powerful abstraction for understanding the
properties of critical nodes in a control network, which is critical to restoring
control following node or link failures and in particular, deliberate attacks. This
is both to minimise the period in which a control system is held by an adversary,
and also any period in which the system may reach undesirable states — in the
case of electrical power systems and networks, this period may be in the order
of seconds or below before severe effects occur.

14

The main contributions of this paper therefore have been three repair strate-
gies for controllability in control graphs using the structural controllability ab-
straction, and relying on the Power Dominating Set formulation to gain a
clearer understanding of above all, the effects of topology constraints on these
types of repair strategies. These have included re-linking without restrictions,
re-linking with constrained network diameter, and the use of pre-computed in-
stances of driver nodes. In this way, controllability power-law networks can be
restored more efficiently than by re-computing the controlling nodes when their
links have been perturbed by attacks against the availability. The three strate-
gies have been analysed formally and subjected to a complexity analysis. The
results highlight that the use of a network diameter can be a suitable option to
establish the control at a low computational and storage cost.

As future work, we are interested in extending this analysis to explore
the possibility of restoring control subgraphs rather than the entire network
whilst retaining acceptable control graph parameters (primarily in the number
of nodes, maximum out-degree, and diameter), thereby improving the respective
approaches and their complexity. We remain particularly interested in power-
law networks and seek to optimise approximation mechanisms for controllability
that give satisfactory average-time complexity. Moreover, we will also investi-
gate further attack models, particularly where interactions between attackers
and defenders occur.

Acknowledgments

The research leading to these results has received funding from the Marie Curie
COFUND programme U-Mobility, co-financed by the University of Málaga, the
EC FP7 under GA No. 246550, and Ministerio de Economı́a y Competitividad
(COFUND2013-40259). Nonetheless, this work has also been partially sup-
ported by the the EU FP7 ARTEMIS project under GA No. 269374, and by
the Spanish Ministry of Science and Innovation through the research project
ARES (CSD2007-00004).

References

[1] C. Lin, Structual controllability, IEEE Trans. on Automatic Control, vol.
19(3), pp. 201–208, 1974.

[2] R. Kalman, Mathematical description of linear dynamical systems, Journal
of the Society of Industrial and Applied Mathematics Control Series A, vol.
1, pp. 152–192, 1963.

[3] H. Mayeda, On structural controllability theorem, IEEE Trans. on Auto-
matic Control, vol. 26(3), pp. 795–798, 1981.

[4] C. Alcaraz, E. E. Miciolino and S. Wolthusen, Structural controllability of
networks for non-interactive adversarial vertex removal, Proceedings of the

15

Eighth International Conference on Critical Information Infrastructures Se-
curity, Springer, Critical Information Infrastructures Security, LNCS 8328,
pp. 129–132, 2013.

[5] C. Alcaraz, E. E. Miciolino and S. Wolthusen, Multi-round attacks on struc-
tural controllability properties for non-complete random graphs, Proceedings
of the 16th Information Security Conference (ISC), Springer, In press, 2014.

[6] T. Haynes, S. Hedsetniemi, S. Hedetniemi and M. Henning, Domination
in graphs applied to electric power networks, SIAM Journal on Discrete
Mathematics, vol. 15(4), pp. 519-529, 2002.

[7] J. Guo, R. Niedermeier and D. Raible, Improved algorithms and complexity
results for power domination in graphs, Algorithmica, vol. 52(2), pp. 177-202,
2008.

[8] R. Downey and M. Fellows, Parameterized Complexity, Monographs in Com-
puter Science, Springer-Verlag, Heidelberg, Germany, 1999.

[9] K. Pai, J. Chang and Y. Wang, Restricted power domination and fault-
tolerant power domination on grids, Discrete Applied Mathematics, vol.
158(10), pp. 1079–1089, 2010.

[10] D. Atkins, T. Haynes and M. Henning, Placing monitoring devices in elec-
tric power networks modelled by block graphs, Ars Combinatorica, vol.
79(1), pp. 1–41, 2006.

[11] J. Brueni and L. Heath, The PMU placement problem, SIAM J. Discret.
Math., vol. 19(3), pp. 744–761, 2005.

[12] M. Dorfling and M. Henning, A note on power domination in grid graphs,
Discrete Applied Mathematics, vol. 154(6), pp. 1023–1027, 2006.

[13] J. Kneis, D. Mölle, S. Richter and P. Rossmanith, Parameterized power
domination complexity, Information Processing Letters, vol. 98(4), pp. 145–
149, 2006.

[14] U. Feige, A threshold of lnn for approximating set cover, Journal of the
ACM, vol. 45(4), pp. 634–652, 1998.

[15] A. Barabasi, R. Albert and H. Jeong, Scale-free characteristics of random
networks: The topology of the world-wide web, Physica A., vol. 272(2115),
pp. 173-187, 1999.

[16] Y. Dourisboure and C. Gavoille, Tree-decompositions with bags of small
diameter, Discrete Mathematics, vol. 307(16), pp. 2008 - 2029, 2008.

[17] J. Guo and R. Niedermeierg, Exact algorithms and applications for tree-like
weighted set cover, Discrete Mathematics, vol. 4(4), pp. 608–622, 2006.

16

[18] C. Palmer and J. G. Steffan, Generating network topologies that obey
power laws. In Proceedings of the 2000 IEEE Global Telecommunications
Conference, vol. 1, pp. 434438, 2000.

17

