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Abstract

Advanced persistent threats (APTs) demand for sophisticated trace-
ability solutions capable of providing deep insight into the movements of
the attacker through the victim’s network at all times. However, tra-
ditional intrusion detection systems (IDSs) cannot attain this level of
sophistication and more advanced solutions are necessary to cope with
these threats. A promising approach in this regard is Opinion Dynamics,
which has proven to work effectively both theoretically and in realistic
scenarios. On this basis, we revisit this consensus-based approach in an
attempt to generalize a detection framework for the traceability of APTs
under a realistic attacker model. Once the framework is defined, we use
it to develop a distributed detection technique based on clustering, which
contrasts with the consensus technique applied by Opinion Dynamics and
interestingly returns comparable results.
Keywords: clustering, consensus, opinion dynamics, distributed detec-
tion, traceability, advanced persistent threat

1 Introduction

In recent years, there has been a growing interest for advanced event man-
agement systems in the industrial cyber-security community for two main rea-
sons: (i) the integration of cutting-edge technologies (e.g., Big Data, Internet of
Things) into traditionally isolated environments, which adds complexity to data
collection and processing [1]; and (ii) the emergence of the new attack vectors
as a result of the Industry 4.0 evolution, which have not been properly studied
in context and may form part of an Advanced Persistent Threat (APT) [2].

APTs consist of sophisticated attacks perpetrated by resourceful adversaries
which cost millions every year to diverse industrial sectors [3]. The main concern
with these threats is that they are especially difficult to detect and trace. In this
context, traditional Intrusion Detection Systems (IDS) only pose a first line of
defense in an attempt to identify anomalous behaviours in very precise points of
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the infrastructure [4], and they are tailored to specific types of communication
standards or types of data, which is not sufficient to track the wide range of
attack vectors that might be used by an APT.

It is then necessary to fill this gap between classic security mechanisms and
APTs. The premise is to find proper mechanisms capable of monitoring all
the devices (whether physical or logical) that are interconnected within the or-
ganization, retrieve data about the production chain at all levels (e.g., alarms,
network logs, raw traffic) and correlate events to trace the attack stages through-
out its entire life-cycle. These measures would provide the ability to holistically
detect and anticipate attacks as well as failures in a timely and autonomous
way, so as to deter the attack propagation and minimize its impact.

To cope with this cyber-security scenario, novel candidate solutions such as
the Opinion Dynamics approach emerge [5]. These alternatives propose to ap-
ply advanced correlation algorithms that analyze an industrial network from a
holistic point of view, leveraging data mining and machine learning mechanisms
in a distributed fashion. In this paper, we formalize a framework that enables
the design and practical integration of such distributed mechanisms for the
traceability of APTs, while also comparing the features of the aforementioned
solutions according to the cyber-security needs of the industry nowadays, both
qualitatively and experimentally. Altogether, we can summarize our contribu-
tions as:

• Characterization of the context in terms of security requirements and avail-
able solutions;

• Definition of a framework for developing solutions that enable the dis-
tributed correlation of APT events, based on these security needs and a
new attacker model;

• Identification of effective techniques and algorithms for the traceability of
APTs that satisfy the proposed framework;

• Qualitative and quantitative comparison of approaches in an Industry 4.0
scenario.

The remainder of the paper is organized as follows. Section 2 presents the
state of the art of intrusion detection and anomaly correlation mechanisms,
as well as the preliminary concepts involved in the studio. Then, Section 3
presents the security and detection requirements, whereas Section 4 defines the
framework for developing solutions that fulfill them. Based on such framework,
the studied solutions are addressed in Section 5, and experimentally analysed
in Section 6. Finally, extracted conclusions are discussed in Section 7.

2 Background and preliminaries

At present, there is a plethora of intrusion detection approaches tailored for
traditional industrial scenarios (cf. [6]) and Industry 4.0 networks (cf. [7]).
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This includes specification-based IDSs, which compare the current state of the
network with a model that describes its legitimate behaviour [8]; physics-based
modeling systems, which simulates the effect of commands over the physical
dynamics of the operations [9]; and other more traditional strategies such as
signature and anomaly detection systems. Most of these detection approaches
focus on the analysis of certain aspects of industrial control systems, such as the
communication patterns, the behaviour of sensors and actuators, and others.

Still, industrial technologies are becoming more heterogeneous and attacks
are extremely localized, which makes crucial to monitor all elements and evi-
dences. Therefore, it is important for industrial ecosystems to set up more than
one detection solution to ensure the maximum detection coverage [10]. More-
over, all solutions should coexist with advanced detection platforms that take
the infrastructure from a holistic perspective, correlate all events and track all
threats throughout their entire life-cycle [11]. This holistic perspective is even
more necessary in light of the existence of APTs: sophisticated attacks com-
prised of several complex phases – from network infiltration and propagation to
exfiltration and/or service disruption [3][12].

These advanced detection platforms have been explored in traditional Infor-
mation Technology (IT) environments through forensic investigation solutions,
using proactive (that analyse evidences as incidents occur) or reactive techniques
(where evidences are processed once the events occur). Examples of these in-
clude flow-based analysis of traffic in real time [13] or the correlation of multiple
IDS outputs to highlight and predict the movements of APTs, using information
flow tracking [14] or machine learning [15]. Still, most of them are limited to a
restricted set of attacks and are not applied to a real setup.

In turn, the progress in the Industry 4.0 has not been significant with respect
to actual APT traceability solutions. In this sense, the Opinion Dynamics
approach [5] paves the way for a new generation of solutions based on the
deployment of distributed detection agents across the network. The anomalies
reported by these agents are correlated to extract conclusions about the sequence
of actions performed by the adversary, and also to identify the more affected
areas of the infrastructure. Such assessment can be conducted in a centralized
entity or using a distributed architecture of peers [16]. At the same time, it is
open to integrate external IDS to examine anomalies in the vicinity of nodes, as
well as the abstraction of diverse parameters such as the criticality of resources
or the persistence of attacks.

Despite the many capabilities of this solution (explained in Section 5.1),
it is necessary to define a more general detection model to lay the base for
the precise application of more APT traceability solutions in the Industry 4.0
paradigm. The reason is that the Opinion Dynamics capabilities can be im-
plemented modularly, they can be integrated into other correlation algorithms
and each one has a different effect on many security, detection, deployment and
efficiency constraints. These points will be addressed in the next section, where
we define the security and detection requirements involved, to latter present the
traceability framework.
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3 Security and detection requirements

Based on the state of the art presented in Section 2, this section enumerates
the requirements for the development of advanced solutions and systems that
provide a holistic perspective on industrial ecosystems. According to [7], we
should consider the following detection requirements:

(D1) Coverage. APTs make use of an extensive set of attack vectors that
jeopardize organizations at all levels. Therefore, the system must be able
to assimilate traffic and data from heterogeneous devices and sections
of the network, while also incorporating the input of external detection
systems.

(D2) Holism. In order to identify anomalous behaviors, the system must be
able to process all the interactions between users, processes and outputs
generated, as well as logs. This allows to generate anomaly and traceability
reports at multiple levels (e.g., per application, device or portion of the
network, as well as global health indicators).

(D3) Intelligence. Beyond merely detecting anomalous events within the net-
work in a timely manner, the system must infer knowledge by correlating
current events with past stages and anticipate future movements of the
attacker. Similarly, it should provide mechanisms to integrate information
from external sources – that is, cyber threat intelligence [17].

(D4) Symbiosis. The system should have the capability to offer its detection
feedback to other Industry 4.0 services, by means of well-defined interfaces.
This includes access control mechanisms (to adapt the authorization poli-
cies depending on the security state of the resources) or virtualization
services (that permit to simulate response techniques under different sce-
narios without interfering the real setup), among others.

On the other hand, we can also establish the following security requirements
with regards to the deployment of the detection solution over the network:

(S1) Distributed data recollection. It is necessary to find distributed mech-
anisms – such as local agents collaborating in a peer-to-peer fashion – that
allow the collection and analysis of information as close as possible to field
devices. The ultimate aim is to make the detection system completely au-
tonomous and resistant to targeted attacks.

(S2) Immutability. The devised solution must be resistant to modifications
of the detection data at all levels, including the reliability and veracity of
data exchanged between agents (e.g., through trust levels that weigh the
received security information), and the storage of such data (e.g., through
unalterable storage mediums and data replication mechanisms such as
immutable databases or distributed ledgers).
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(S3) Data confidentiality. Apart from the protection against data modifica-
tion, it is mandatory that the system provides authorization and crypto-
graphic mechanisms to control the access to the information generated by
the detection platform and all the interactions monitored.

(S4) Survivability. Not only the system must properly function even with the
presence of accidental or deliberate faults in the industrial infrastructure,
but also the system itself cannot be used as a point of attack. To achieve
this, the detection mechanisms must be deployed in a separated network
that can only retrieve information from the industrial infrastructure.

(S5) Real-time performance. The system must not introduce operational
delays on the industrial infrastructure, and its algorithms should not im-
pose a high complexity to ensure the generation of real-time detection in-
formation. Network segmentation procedures and separate computation
nodes (e.g., Fog/Edge Computing nodes) can be used for this purpose.

4 APT traceability framework for the Industry
4.0

After defining the detection and security requirements that a conceptual APT
traceability solution must fulfill, we now describe the guidelines for the design
and construction of its deployment architecture, the algorithms to be used, and
the attacker model under consideration.

4.1 Network architecture and information acquisition

The industrial network topology is modelled with an acyclic graph G(V,E),
where V represents the devices and E is the set of communication links be-
tween them. This way, V can be assigned with parameters to represent, for
instance, their criticality, vulnerability level or the degree of infection; whereas
the elements in E can be associated with Quality of Service (QoS) parameters
(e.g., bandwidth, delays), or compromise states that help to prioritize certain
paths when running resilient routing algorithms.

For the interest of theoretical analysis, these networks are frequently gener-
ated using random distributions that model the architecture of real industrial
systems. Also, the topology can be subdivided into multiple network segments
with different distributions [5]. This is useful, for example, to study the effects of
the attack and detection mechanisms over the corporate section (containing IT
elements) and the operational section (OT, containing pure industrial assets),
which can be connected by firewalls, so that V = VIT ∪ VOT ∪ VFW .

Regardless of the topology configuration, the detection approach must ac-
quire information from the whole set of nodes V to fulfill requirement D1 (Cov-
erage, c.f. Section 3), by using agents that are in charge of monitoring such
devices, complying with S1. Each of these agents can be either mapped to a
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individual device (following a 1:1 relationship), which would be ideal for S1,
or aggregate the data from a set of physical devices belonging to the infras-
tructure. In either case, we can assume they are able to retrieve as much data
as possible from their assigned devices, which encompasses network-related
parameters (e.g., links with other nodes, number packets exchanged, delays),
host-based data (e.g., storage, computational usage) or communication in-
formation (e.g., low-level commands issued by supervision protocols). These
data items are aimed to feed the correlation algorithm with inputs in the form
of an anomaly value for every device audited, which is formalized by vector x.
This way, xi represents the anomaly value sensed by the corresponding agent
on device i, for all i ∈ 1, 2, ..., |V |. Such value can be calculated by each agent
autonomously (e.g., applying some machine learning to determine deviations in
every data item analyzed) or leveraging an external IDS that is configured to
retrieve the raw data as input, thereby conforming to requirement D3.

From a deployment perspective, this leads to the question of where to lo-
cate the computation of anomalies and their subsequent correlation. As for
the former, agents are implemented logically, since it is not always feasible to
physically integrate monitoring devices into the industrial assets due to compu-
tational limitations. Consequently, these processes may have to run in separate
computational nodes. However, we still want to achieve a close connection to
field devices while avoiding a centralized implementation such as the one pre-
sented in [5]. The solution is then to introduce an intermediate approach based
on the concept of distributed data brokers. These components collect the data
from a set of individual devices via port-mirroring or network tapping, using
data diodes to decouple agents from actual systems and ensure that data trans-
mission is restricted to one direction, thereby shielding the industrial assets from
outside access and complying with requirements S3 and S4.

These data brokers can also convey the detection reports (i.e., the anomalies
sensed by its logical agents over the area where it is deployed) to other brokers
in order to execute the correlation in a collaborative way. In consequence, they
must be strategically deployed in a separate network such that there is at least
one path between every two brokers.

Due to this distributed nature, the correlation algorithm can make use of
two data models: Replicated database, which assumes that every agent has com-
plete information of the whole network (e.g., through distributed ledgers), and
Distributed data endpoints, where the information is fully compartmentalized
and the cross-correlation is conducted at a local level. Both approaches have
their advantages and disadvantages. The replicated database provides all agents
with a vision of the network, although it imposes some overhead. As for the dis-
tributed data endpoints, they reduce the number of messages exchanged, yet the
algorithm must deal with partial information coming from neighbour brokers.

Altogether, the ultimate election of the algorithm, data model and architec-
tural design of the agents responds to performance and overhead restrictions.
This composes the detection mechanism at a physical layer, while at an abstract
level, it must also return a set of security insights that are based on the attacker
model, described in the following.
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4.2 Attacker model

To analyze the parametrization of traceability algorithms, we need to charac-
terize the chain of actions performed by an APT over the network. We will use
the formalization described in [5] as a starting point. That paper reviews the
most relevant APTs reported in the last decade and extracts a standard repre-
sentation of an APT in the form of a finite succession of attacks stages: initial
intrusion, node compromise, lateral movement, and data exfiltration or destruc-
tion. These stages cause different anomalies that are potentially inspected by
the detection agents, according to an ordered set of probabilities [5].

Using these stages, APTs can be represented as a finite sequence of precise
events. However, the original authors did not consider the possibility of parallel
APT traces being executed simultaneously across the network, hence generating
cross-related events. We refer to them as concurrent routes followed by the
APT in the attack chain or different APTs taking place (that may eventually
collaborate). We extend the aforementioned attacker model with this novel
feature and formalize it in Algorithm 1.

In the algorithm, the effect of multiple APTs are implemented as a succession
of updates on vector x, both in the concerned node (i.e., the anomaly sensed
by its agent) and its neighbours when certain attack stages (e.g., a compromise
stage) are involved. The routine continues until all attack stages have been
executed for the entire set of APTs considered. On the other hand, the theta
values refer to the ordered set of probabilities presented in [5]: the lower value
the index of theta, the higher anomaly is reported by the agent after that phase.
That paper also illustrates the attenuation function, which decreases the values
of vector x over time based on the persistence of attacks, the criticality of the
resources affected and their influence over posterior APT phases.

During the execution of these iterations, the correlation algorithm can be
executed at any time to gain knowledge of the actual APT movements, by using
the anomalies as input. The complete explanation of inputs and outputs for the
traceability solution is further explained in next subsection.

4.3 Inputs and outputs of the traceability solution

After introducing how the information from physical devices is collected by
agents in practice and how the anomalies can be calculated in theoretical terms
for our simulations, we summarize the set of inputs for traceability solutions as:

(I1) Quantitative input. expressed with vector x to assign every industrial
asset with an anomaly value prior to conducting the correlation. As pre-
viously mentioned, it can be calculated by each associated agent or using
external detection mechanisms integrated with the data broker by taking
an extensive set of data inputs to comply with D1 and D2. In our simula-
tions, this value is given by the attack phases executed on the network in a
probabilistic way, without the detection mechanism having any knowledge
about the actual stages.
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Algorithm 1 Attacker model - anomaly calculation

input: attackSetk, representing the chain of actions of APT k, 1 ≤ k ≤ numOfApts
local: Graph G(V,E) representing the network
output: xi representing the anomaly value sensed by each agent i at the end of the APT
network, where xi ∈ (0, 1)

x← zeros(|V |) (initial opinion vector)
while attackSetk 6= �∀k ∈ {1, .., numOfApts} do

for k ← 1 to numOfApts do
if |attackSetk| > 0 then
{attack ← next attack from attackSetk}
if attack == initialIntrusion(IT,OT, FW ) then

attackedNodek ← random v ∈ V(IT,OT,FW )

x(attackedNodek)← xattackedNodek
+ θ3

else if attack == compromise then
xattackedNodek

← xattackedNodek
+ θ2

for neighbour in neighbours(attackedNodek) do
xattackedNodek

← xattackedNodek
+ θ5

end for
else if type(attack) == LateralMovement then

previousAttackedNode← attackedNodek
attackedNodek ← SelectNextNode(G, attackedNodek)
xpreviousAttackedNodek

← xpreviousAttackedNodek
+ θ5

xattackedNodek
← xattackedNodek

+ θ3,4
else if attack == exfiltration then

xattackedNodek
← xattackedNodek

+ θ4
else if attack == destruction then

xattackedNodek
← xattackedNodek

+ θ1
end if

x← AttentauteOldAnomalies(x)
attackSetk ← attackSetk \ attack

end if
end for

end while

(I2) Qualitative input. the previous values need to be enriched with informa-
tion to correlate events in nearby devices and infer the presence of related
attack stages, according to Section 4.2. At the same time, we also need
to prioritize attacks that report a higher anomaly values. We assume that
the resulting knowledge can be reflected in form of a weight wij , which is
assigned by every agent i to each of its neighbours and represents the level
of trust given to their anomaly indications when performing the correla-
tion (fulfilling S2). This parameter can be subject to a threshold ε, which
defines when two events should be correlated depending on the similar-
ity of their anomalies. Further criteria could be introduced to associate
anomalies from different agents.

With respect to the outputs of the traceability solutions, they should include,
but are not limited to the following items:

(O1) Local result to determine whether the agent is generating an anomaly due
to whether the actual infection of the associated node, as a result of a
security threat in a neighbour device or a false positive.

(O2) Information at global level, to determine the degree of affection in the
network and the nodes that have been previously taken over, filtered by
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Figure 1: Distributed detection framework

zones.

(O3) Contextual information that permits to correlate past events and visualize
the evolution of the threat, while anticipating the resources that are prone
to be compromised (D3 & D4).

This comprehensive analysis of the requirements and techniques defines a
framework for the development of distributed detection solutions for APTs in
industrial scenarios, as depicted in Figure 1. The following section presents
some of the candidate solutions that implement them and hence achieve the
APT traceability goals proposed so far.

5 Distributed traceability solutions

After explaining the proposed framework, we look for feasible solutions that
can effectively accommodate all of its statements. More specifically, we revisit
the original Opinion Dynamics approach and compare it with two alternative
mechanisms. The former is based on the concept of consensus and the two latter
are based on clustering.

5.1 Opinion Dynamics

Despite its novelty, the Opinion Dynamics approach has faced a number of im-
provements since its inception in [18]. It was originally defined as a mechanism
to address the anomalies caused by a theoretical APT, whose attacker model
was better formalized in [19]. The event correlation and traceability capabilities
were updated in [16], to latter show its implementation on an industrial testbed
in [5]. Additionally, it has been studied its application to the Smart Grid [20]
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or the Industrial Internet of Things [21]. Compared to these, the aim of the
framework is to ease the design of alternative solutions with results equal to or
better than those of Opinion Dynamics.

The correlation approach of Opinion Dynamics is based on an iterative al-
gorithm that takes the anomalies of individual agents as input, and generates
their resulting ‘opinions’ based on this formula:

xi(t+ 1) =

n∑
j=1

wijxj(t)

Where xi(t) stands for the opinion of the agent (i ∈ {1, ..., |V |}) at iteration
t, such that xi(0) contains the initial anomaly sensed in vector x prior to execute
the correlation (I1), as stated in Section 4.3. As for wij , it represents the weight
given by each agent i to the opinion of each neighbour j in G(V,E), as to model
the influence between them (I2). At this point, the original paper defined a
ε = 0.3 threshold to hold the maximum difference in opinions between every
pair of agents i and j, to associate a weight wij > 0. This way, the weight
given by an agent i is equally divided and assigned to each other neighbour
agent k that complies with ε (including itself), having

∑n
k=1 wik = 1. In [16],

the authors provide a methodology to include further security factors and other
metrics (e.g., QoS in communication links) when calculating these weight values.

Altogether, the correlation is performed by every agent as a weighted sum
of the closest opinions, and such calculation can be performed by solely using
the information from neighbouring agents, thereby adapting to the distributed
architecture based on data brokers (either replicating data or not). When exe-
cuting this algorithm with a high number of iterations, the outputs of all agents
are distributed into different groups that expose the same anomaly value, which
correspond to related attacks. As a result, the network is polarized based on
their opinions, hence satisfying O1. From these values, it is also possible to
study the degree of affection in different network zones and extract global se-
curity indicators (O2). Likewise, the evolution of a sequential APT can also be
visualized if we account for the agents opinions over time (O3), as described in
[5].

5.2 Distributed anomaly clustering solutions

Opinion Dynamics belongs to a set of dynamic decision models in complex
networks whose aim is to obtain a fragmentation of patterns within a group of
interacting agents by means of consensus. This fragmentation process is locally
regulated by the opinions and weights of the nodes, that altogether abstracts
the APT dynamics and its effects on the underlying network. This ultimately
enables to take snapshots of the current state of the network and highlight the
most affected nodes, thereby tracing APT movements from anomaly events.

This rationale can also be applied to define different mechanisms with sim-
ilar results. We propose to adapt clustering algorithms as an alternative for
the correlation of events that fulfill the defined framework. These have been
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traditionally used as an unsupervised method for data analysis, where a set of
instances are grouped according to some criteria of similarity. In our case, we
have devices that are affected by correlated attacks (see Section 4.2) and show
similar anomalies, which results in the devices being grouped together.

Classical clustering methods [22], such as K-means, partition a dataset by
initially selecting k cluster centroids and assigning each element to its closest
centroid. Centroids are repeatedly updated until the algorithm converges to a
stable solution. In our case, the anomalies detected by the agents (denoted by
the vector x) play the role of the data instances to be grouped into clusters.
However, the parametrization of this kind of algorithms impose two main chal-
lenges to properly comply with the inputs and outputs of an APT traceability
solution:

• The election of k. It is one classical drawback of the K-means, since
that value has to be specified from the beginning and it is not usually
known in advance, as in this case. Numerous works in the literature have
proposed methods for selecting the number of clusters [23], including the
use of statistical measures with assumptions about the underlying data
distribution [24] or its determination by visualization [25]. It is also com-
mon to study the results of a set of values instead of a single k, which
should be significantly smaller than the number of instances. The aim
is to apply different evaluation criterion to find the optimal k, such as
the Calinski and Harabasz score (also known as the Variance Ratio Cri-
terion) [26], that minimizes the within-cluster dispersion and maximizes
the between-cluster dispersion.

• Representation of topological and security constraints. By apply-
ing K-means, we assume the dataset consists of a set of multi-dimensional
points. However, here we have an one-dimensional vector of anomalies in
the range [0,1]. Also, the clusterization of these values is subject to the
topology and the security correlation criteria which might determine that,
for example, two data points should not be grouped in the same cluster
despite having a similar anomaly value. Therefore, it becomes necessary
to provide this knowledge to the algorithm and reflect these environmen-
tal conditions as inputs (I1 and I2) to the correlation. In this sense, some
works have proposed a constrained K-means clustering [27], and specific
schemes have been developed to divide a graph into clusters using Span-
ning Trees or highly connected components [28].

As for the first challenge, we can assume that the value of k is defined by the
different classes of nodes within the network depending on their affection degree,
which corresponds to the number of consensus between agents that Opinion
Dynamics automatically finds. Here we can adopt two methodologies: (1) a
static approach where we consider a fixed set of labels (e.g., ‘low’, ‘medium’,
‘high’ and ‘critical’ condition) to classify each agent; or (2) a dynamic approach
where k is automatically determined based on the number and typology of
attacks. In this case, we can study the Variance Ration Criterion in a range of
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k values (e.g., k={1-5}) to extract the optimal value with the presence of an
APT.

This procedure needs further improvements to make the solution fully dis-
tributed, so that each agent is in charge of locally deciding its own level of
security based on the surrounding state, instead of adopting a global approach
for all nodes. This bring us to the second challenge. A first naive solution
would be to introduce additional dimensions to the data instances representing
the coordinates of every node, together with the anomalies in vector x. We call
this approach location-based clustering. However, this approach still needs to
figure out an optimal value of k, and does not take into account the presence of
actual links interconnecting nodes in G(V,E).

To circumvent this issue while also adopting an automatic determination of
the number of clusters, we propose an accumulative anomaly clustering scheme,
which is formalized in Algorithm 2. This algorithm begins by selecting the
most affected node within the network and subsequently applies the influence
of their surrounding nodes. This is represented by adding an entire value to the
anomalies of such agents (initially from 0 to 1), which is proportional to the
anomaly of the influencing node (see max in the algorithm). This addition is
performed as long as the difference between both anomalies (i.e., the influencing
and influenced node) does not surpasses a defined threshold ε, similar to the
Opinion Dynamics approach in order to comply with I2. Then, the algorithm
continues by selecting the next one in the list of nodes inversely ordered by the
anomaly value, until all nodes have been influenced or have influenced others. At
that point, k is automatically assigned with the number of influencing nodes, and
K-means is ready to be executed with the modified data instances. The resulting
values of each agent corresponds to the decimal part of their associated centroid.
This is comparable to the ‘opinions’ in the Opinion Dynamics approach.

The intuition behind this model of influence between anomalies (which can
be enriched to include extra security factors to specify I2) assumes that succes-
sive attacks raise a similar anomaly value in closest agents, as Opinion Dynamics
suggests. At the same time, it addresses the issue of selecting k and including
topological information to the clusterization. It is validated from a theoretical
point of view in Appendix A. In the following, the accuracy of these correlation
approaches are compared under different attack and network configurations.

6 Experiments and discussions

After presenting some alternative solutions to Opinion Dynamics that fulfill the
distributed detection framework presented in Section 4, this section aims to
put these approaches to the test. More specifically, we consider the attacker
model explained in Section 4.2, which is applied against a network formalized
by G(V,E), following the structure introduced in Section 4.1. These theoretical
APTs generate a set of anomalies that serve as input to compare the traceability
capabilities of each correlation approach:

• Location-based clustering: as presented earlier, it consists of the K-
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Algorithm 2 Accumulative anomaly clustering

input: xi representing the initial anomaly value sensed by each agent i within the network,
where xi ∈ (0, 1)
output: zi representing the agents O1 output of each agent i after clustering
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪ VFW

max← |V |, k ← 0
y ← x, x′ ← x sorted in descending order
for all i ∈ x′ do

anyNeighbourFound← False
for all j ∈ neighbours(i, G) do

if yj ≤ 1 AND |yi − yj | ≤ ε then
yj ← yj +max ∗ 10
anyNeighbourFound← True

end if
end for
yi = yi +max ∗ 10
if anyNeighbourFound then

k ← k + 1
end if
max← max− 1

end for
clusters, centroid← kmeans(y, k)
for all vi ∈ V do

c← clusters(vi)
Zi ← IntegerPart(centroid(c))

end for

means algorithm taking the anomalies and coordinates of each node as
data instances. These are grouped in a number of clusters, k, which is
selected in the range from 1 to 5 according to the Variance Ratio Criterion.

• Accumulative clustering: as previously presented, it allows to dis-
tributedly locate the infection while automatically determining the op-
timal k.

• Opinion Dynamics: is the approach that serves as inspiration for our
framework and serves for comparison with the novel detection methods
introduced above.

These traceability solutions are simulated under different network and attack
configurations, as explained next. We start by running a brief attack test-
case that illustrates the features of each approach in a simple network scenario.
Based on Algorithm 1, Figure 2 shows the detection outputs (O1 and O3) of the
three approaches when correlating the anomalies of an APT perpetrated against
a simple infrastructure. This network is modelled according to the concepts
introduced in Section 4.1, to include an IT and OT section of nodes connected by
a firewall. Concretely, the figure shows an snapshot of the detection state after
the adversary has performed a lateral movement from IT node 2 to compromise
the firewall. The numeric value assigned to each node represents O1, which will
attenuate over time to highlight the most recent anomaly, according to O3.

As noted in the figure, location-based clustering fails to accurately determine
where the threat is located and selects a wide affection area instead, which is
composed by IT1, IT2 and FW1 nodes (i.e., grouped in the same cluster due
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Figure 2: Network topology used in the test case

to the average anomaly in such zone). On the other hand, the accumulative
clustering and Opinion Dynamics show a similar result, and successfully identify
both IT2 and FW1 as the affected nodes in this scenario. As for the rest of
nodes, they agree on a subtle affection value due to the noise present in the
network and the anomalies sensed in the vicinity of the attacked nodes. As
previously stated, this is modelled in a probabilistic way [5].

We now execute these solutions with a more complex network and APT
model in order to study their accuracy. In the context of cluster analysis, the
‘purity’ is an evaluation criteria of the cluster quality that is applicable in this
particular scenario. It holds the percentage of the total number of data points
that are classified correctly after executing the clustering algorithm, in the range
[0,1]. It is calculated according to the following equation:

Purity =
1

N

k∑
i=1

max|ci ∩ tj | (1)

where N is the number of nodes, k is the number of clusters, ci is a cluster
in C and tj is the classification that has the max count for cluster ci. In
our case, by ‘correct classification’ we mean that a cluster ci has identified a
group of nodes that have actually been compromised, which is determined in
the simulations (but not known by the traceability solutions). This value can be
calculated after a single execution of these three approaches to study how the
results of the initial test-case escalate to larger networks and more challenging
APTs.

Specifically, we run 10 different APTs on randomly generated network topolo-
gies of 50, 100 and 150 nodes, respectively. For simplicity, we start by executing
an individual instance of the Stuxnet APT [5] according to the attacker model
established in Section 4.2. This attack can be formally defined by the following
succession of stages:
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(a) Single APT (b) Two APTs

Figure 3: Purity average for the three test cases

attackSetStuxnet = {initialIntrusionIT , LateralMovementFW ,

LateralMovementOT , destruction}

At this point, it is worth mentioning that the lateral movement in the OT
section is performed three times to model the real behavior of this APT and its
successive anomalies, as explained in [5]. The purity value is then calculated
after every attack stage of each of the ten APTs, to ultimately compute its
average with respect to the number of nodes that have been successfully detected
and grouped in the cluster with highest value of affection.

Figure 3(a) represents these average values in the form of boxplots, where
each box represents the quartiles of each detection approach given the different
network configurations. As it can be noted, the Opinion Dynamics stands out
as the most accurate solution, closely followed by the accumulative clustering
approach. The purity of the location-based clustering falls behind, and the
three of them increase their value as the network grows in size due to the higher
number of nodes that are successfully deemed as healthy and hence not mixed
with those that are indeed affected by the APT.

Similar results are obtained when we execute two APT attacks in parallel
over the same network configurations, as shown in Figure 3(b). In this case, the
former APT is coupled with another attack, which can be assumed to be part
of Stuxnet or a completely different attack trace within the network, composed
by the following stages:

attackSetAnotherAPT = {initialIntrusionOT , LateralMovementFW ,

LateralMovementIT , destruction}

The second APT is located in a different area of the network so that it
begins by sneaking into the OT section to subsequently propagate towards the
IT portion of the infrastructure. This causes the spread of anomalies throughout
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Figure 4: Evolution of the Rand Index for 10 APTs and 150 nodes

the network hence putting location-based clustering to the test. Despite a subtle
decline in the purity of the solutions (especially in the location approach due to
the anomaly dispersion), they still output an appreciable accuracy.

On the other hand, the superiority of Opinion Dynamics and accumulative
clustering over the first approach is also evident with the study of additional
accuracy indicators, such as the Rand Index. It penalizes both false positive
(FP) and false negative (FN) labeling of affected nodes during clustering, with
respect to true positive (TP) and true negative (TN) decisions, according to the
following formula:

Rand Index =
TP + TN

TP + FP + FN + TN
(2)

Figure 4 shows the Rand Index value after each of the ten APTs in the
previous experiment (each one composed of two parallel attack traces), for the
largest network size (150 nodes). The plot clearly shows a steady accuracy of the
two latter approaches (close to 1), contrasting with a lower value in the location-
based approach, which faces a lack of precision when it comes to correctly locate
the affection areas, for the same reasons discussed before. Despite the promising
results of our clustering approach in terms of accuracy, we are currently in the
process of assessing its performance (compliance with S5 requirement).

7 Conclusions

The irruption of APTs is demanding for the development of innovative solutions
capable of detecting, analyzing and protecting current and upcoming critical in-
frastructures. After an exhaustive analysis of the security and detection require-
ments for these solutions, we come up with a framework for developing APT
traceability systems in Industry 4.0 scenarios, inspired by a promising approach
called Opinion Dynamics. This framework considers various network architec-
tures, types of attack and data acquisition models to later define the inputs
and outputs that traceability solutions should include to support the aforemen-
tioned requirements. This lays the base for the development and comparison of
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novel solutions in this context. As a means to validate the proposed framework,
we define two novel protection mechanisms based on clustering, which feature
comparable results to the Opinion Dynamics (based on consensus). According
to our experiments, the proposed clustering mechanism also presents optimal
traceability of events in a distributed setting. The roadmap of this research now
leads to further validation and possible extensions of the proposed framework,
as well as to the application of these techniques to diverse real-world industrial
scenarios.
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A Correctness proof of the clustering detection
approach

This section presents the correctness proof of the consensus-based detection,
both the location and accumulative approach. This problem is solved when
these conditions are met:

1. The attacker is able to find an IT/OT device to compromise within the
infrastructure.

2. The traceability solution is able to identify an affected node, thanks to
the clustering mechanism and fulfilling O1.

3. The detection can continuously track the evolution of the APT and prop-
erly finish in a finite time (termination condition), complying with O2 and
O3.

The first requirement is satisfied under the assumption that the attacker
breaks into the network and then moves throughout the topology following a
finite path, according to the model explained in Section 4.2. Thus, an APT is
defined as at least one sequence of attack stages against the network defined
by G(V,E). If we study each of these traces independently, and based on the
distribution of G, the attacker can either compromise the current node vi in the
chain (as well as performing a data exfiltration or destruction) or propagate to
another vj ∈ V , whose graph is connected by the means of firewalls, according
to the interconnection methodology illustrated in [5] and summarized in Section
4.1.

As for the second requirement, it is met with the correlation of anoma-
lies generated by agents in each attack phase. As presented with the attacker
model, the value of these anomalies are determined in a probabilistic manner,
depending on two possible causes: (1) the severity of the attack suffered and the
criticality of the concerned resource; or (2) an indirect effect caused by another
attack in the vicinity of the monitored node. Either way, the O1 correlation
helps to actually determine whether the attack has been effectively perpetrated
against that node, or it belongs to another APT stage in its surroundings. This
information is deduced from the combination of I2 (the contextual information)
together with these anomalies (i.e., I1), by using K-means to group these nodes
and associate them with actual attacks.

We can easily demonstrate the third requirement (i.e., the termination of
the approach) through induction. To do so, we specify the initial and final
conditions as well as the base case:

Precondition: we assume the attacker models an APT against the network
defined by graph G(V,E) where V 6= �, following the behaviour explained
in Algorithm 1. On the other hand, the detection solution based on clus-
tering can firstly sense the individual anomalies in every distributed agent,
hence computing I1 and I2.
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Postcondition: the attacker reaches at least one node in G(V,E) and con-
tinues to execute all stages until attackSet = � in Algorithm 1. Over
these steps, it is possible to visualize the threat evolution across the in-
frastructure, following the procedure described in Algorithm 2 in the case
of accumulative clustering, and running K-means with both I1 and spatial
information, in the case of location-based clustering.

Case 1: the adversary intrudes the network and takes control of the first node
vi ∈ V , and both clustering approaches cope with the scenario of grouping
healthy nodes apart from the attacked node. This is calculated by the K-
means algorithm within a finite time, by iteratively assigning data items
to clusters and recomputing the centroids.

Case 2: the adversary propagates from a device node vi to another vj , so that
there exist (vi, vj) ∈ E. In this case, the correlation with K-means aims to
group both affected nodes within the same cluster, which can be visualized
graphically. As explained before, this is influenced by the attack notoriety
and the closeness in the anomalies sensed by their respective agents (i.e.,
the threshold ε in Algorithm 2), as well as extra information given by I2.

Induction: if we assume the presence of k ≥ 1 APTs in the network, each one
will consider Case 1 at the beginning and will separately consider Case 2
until attackSet = � for all k, ensuring the traceability of the threat and
complying with the postcondition. Eventually, these APTs could affect
the same subset of related nodes in G, which is addressed by the K-means
to correlate the distribution of anomalies (again, attempting to distinguish
between attacked nodes and devices that may sense side effects), in a finite
time.

This way, we demonstrate the validity of the approach, since it finishes and
it is able to trace the threats accordingly.

21


