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Abstract

The sophistication of Advanced Persistent Threats (APTs) targeting
industrial ecosystems has increased dramatically in recent years. This
makes mandatory to develop advanced security services beyond tradi-
tional solutions, being Opinion Dynamics one of them. This novel ap-
proach proposes a multi-agent collaborative framework that permits to
trace an APT throughout its entire life-cycle, as formerly analyzed. In
this paper, we introduce TI&TO, a two-player game between an attacker
and defender that represents a realistic scenario where both compete for
the control of the resources within a modern industrial architecture. By
validating this technique using game theory, we demonstrate that Opinion
Dynamics consists in an effective first measure to deter and minimize the
impact of an APT against the infrastructure in most cases. To achieve
this, both attacker and defense models are formalized and an equitable
score system is applied, to latter run several simulation test cases with
different strategies and network configurations.

Keywords: Opinion Dynamics, Advanced Persistent Threat, Detec-
tion, Response, Defense, Game theory.

1 Introduction

There is an evident growth in the number of cyber-security attacks that world-
wide companies have to face, which generates a huge economic loss due to the
investment performed in terms of cyber-security [2]. This situation becomes
more critical when it comes to critical infrastructures (i.e., nuclear plants, elec-
tricity grids, transport and manufacturing systems), whose industrial control
systems must be kept working under all conditions. Here, we are dealing with
SCADA (Supervisory Control and Data Acquisition) systems that have been
working in isolation from external networks for decades; nowadays, in turn,
they are increasingly integrating novel technologies such as Internet of Things
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(IoT) or Cloud Computing to outsource diverse services while cutting costs. As
a consequence, a greater effort is needed to keep up with such advancement, as
to cope with the newest attack vectors and exploitable vulnerabilities that these
systems may pose.

One of the most critical issue in recent years is the Advanced Persistent
Threats (APTs), which are sophisticated attacks that are especially tailored
to a target infrastructure, perpetrated by a well-resource organization. They
are characterized for leveraging zero-day vulnerabilities and employ stealthy
techniques that make the threat undetectable for a long period of time within
the victim network. Stuxnet was the first reported threat of this nature [6], but
many others were detected afterwards, usually months after the attack had been
completely executed [7]. On the cyber-security side, just some mechanisms have
been proposed to address this issue from a holistic perspective, beyond tradi-
tional mechanisms (e.g., firewalls, Intrusion Prevention Systems (IPS), Intrusion
Detection Systems (IDS), antivirus) that only represent a punctual protection
against APTs in their first stages [21].

Among the novel mechanisms, Opinion Dynamics [15] consists in a multi-
agent collaborative system that enables the traceability of the attack throughout
its entire life-cycle, by means of a distributed anomaly correlation. In this paper,
we propose a theoretical but realistic scenario to prove the effectiveness of that
approach under different types of attack model, using concepts supported by the
structural controllability field [8] and game theory [14]. For that goal, we develop
TI&TO, a two-player game where attacker and defender compete for the control
of the resources within a modern industrial architecture. Both players have
their own movements and associated scores, according to the behavior of an
APT and a detection system based on Opinion Dynamics, respectively. This
game is ultimately run in different simulations that aim to show the algorithm
capabilities, while also suggesting the optimal configuration of the technique
in conjunction with other defense solutions. Therefore, we can summarize our
contributions as:

• Formal definition of the TI&TO game, specifying the game board, each
player’s goal and the score rules.

• Design of an attacker model in form of a set of stages that flexibly repre-
sents the phases of an APT, to represent the movements of the attacker,
which are subject to a determined score.

• Design of a defender model based on the use of Opinion Dynamics and
response techniques (i.e., local detection, redundant links, honeypots) to
reduce the impact of the APT within the network, which also implies an
associated score in the game.

• Experiments carried out to validate the algorithm and recommend the
configuration of the defender that returns the best result.

The remainder of this paper is organized as follows: Section 2 introduces the
concept of Opinion Dynamics and highlights other proposals that apply game
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theory for the detection of cyber-attacks. In Section 3 the game is defined,
including the rules as well as the attack and defense models. Then, several
simulations are carried out and a discussion is offered in Section 4. Lastly, the
conclusions and future work are presented in Section 5.

2 Preliminaries

In this section, the main concepts that are needed to understand the basics
of TI&TO are introduced from a theoretical perspective. Firstly, we explain
the aspects of the Opinion Dynamics detection and its benefits, to later set the
background with respect to game theory.

2.1 Opinion Dynamics

The Opinion Dynamics approach proposes to aggregate the coverage of multiple
detection systems that are strategically deployed over an infrastructure, under
a common distributed framework that permanently correlates and learns from
all the malware patterns and anomalies detected. This way, various detection
solutions can be combined at all levels to anticipate the new technology scenarios
of Industry 4.0 in terms of security, by easing the traceability of attacks and the
application of effective response procedures. Under a theoretical perspective, it
was introduced in [15], and then its authors demonstrated the effectiveness of
the approach with an enhanced attack model [17] and an improved correlation
of events [16]. Concerning a practical applicability, its authors demonstrated its
capabilities to detect and monitor attacks in a real industrial testbed [18], and
also showed its contributions to the Smart Grid scenario [9], where it can help
to prevent against intrusions and blackouts.

As its name suggests, this correlation algorithm conceptually models the
opinion fluctuation in a society. It is one of the most popular consensus models
to obtain the accurate polarization of opinions in certain population [4]. In our
case, if we assume a set of agents (i.e., that monitor each device of the network)
which are connected according to a graph G(V,E) (where V is the set of agents
and E the intermediate communication links between resources), each one holds
a certain opinion (in our case, about the level of anomaly detected in its sur-
roundings) and influences those of the agents who are closer in their posture.
Eventually, once this correlation of opinion has been performed among all the
individual agents, this ’society’ (i.e., the network) is fragmented into different
clusters of opinions that correspondingly identify the areas of the network that
experience the same degree of anomaly (potentially caused by an attack focused
on that zone).

The formalization of this correlation is the following: Opinion Dynamics is
an iterative algorithm which assumes that there is a 1:1 relationship between
devices in the control network (modelled with graph G(V,E)) and individual
agents that are permanently monitoring their security state, so that we have
a set of agents A = {a1, a2, ...a|V |}. The opinion of an agent ai at iteration t
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is represented by xi(t). Initially, prior to execute the Opinion Dynamics corre-
lation, xi(0) contains the level of anomaly sensed by agent i, which is a float
number that ranges from 0 to 1 (being 1 the highest anomaly). On the other
hand, the influence between agents (to determine the new opinions in next iter-
ations) is represented by a weight given by each agent ai to the opinion of each
neighbour aj in A (i.e., there exists an edge (vi, vj) in E), which is denoted by

wij . For each agent ai in A, we have that
∑|V |
k=1 wik = 1. This way, every agent

i also takes its own opinion into account and weighs the influence of surrounding
agents depending on the closeness of their opinions, as explained in [17]. Finally,
the new opinion of the agent i in the iteration t + 1 is generated according to
the following expression:

xi(t+ 1) =
n∑
j=1

wijxj(t)

Therefore, the correlation of opinion for a given agent is performed as a weighted
sum of the other opinions. If this algorithm is executed with enough number
of iterations (something trivial due to the lower complexity of calculations),
the resulting opinions of all agents can be grouped into clusters with the same
anomaly value. Consequently, after the execution of Opinion Dynamics, the
more affected areas after an attack will be those that expose a high opinion
value.

Due to the flexible characterization of each agent opinion, this algorithm
can be conceived as a framework, since multiple detection mechanisms can be
orchestrated to analyze each host and its network activity to finally output a
single anomaly value to represent xi(0) in the algorithm. As an example, the
original authors suggest the use of anomaly detection mechanisms, vulnerabil-
ity scanners or Security Information and Event Management systems, as well as
ad-hoc machine learning techniques. These systems could be applied in a dis-
tributed way, and their outputs would be retrieved by a central correlator that
features enough computational capabilities as to execute the Opinion Dynam-
ics algorithm. This centralized entity is put into practice in [18], where other
functionalities such as the evolution of anomalies over time and the persistence
of resources are also studied.

Here, we leverage game theory to assess the utility of this mechanism when
deploying response techniques that use the information provided by Opinion Dy-
namics in multiple scenarios. For such goal, we base our game on the detection
approach and the attacker model presented in the aforementioned publications,
to study the optimal configuration of different response procedures that ulti-
mately aim to deter and eradicate the effect of an APT.

2.2 Game Theory: related work

In the context of industrial networks defense, researchers have been extensively
exploring the applicability of game theory [14]. In these networks, it is common
to cope with many levels of criticality, different network sizes, interconnectivity
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and access control policies. Therefore, decisions in terms of security frequently
fluctuate, which is harder in Industry 4.0 scenarios, where many heterogeneous
devices interact with each other and organizations exchange information using
the Cloud, Fog Computing or Distributed Ledger Technologies. In this sense,
game theory offers the capability of analyzing hundreds of scenarios, thereby
enhancing the decision making. At the same time, it also allows to validate the
effectiveness of a given technique (e.g., Opinion Dynamics in our case) if we
analyze different strategies of use for all the scenarios examined.

Based on the information that each player has, there are different types
of games: on the one hand, in a perfect information game both players are
aware of the actions taken by their adversary at all times; on the other hand, a
complete information game assumes that every player always knows the strategy
and payoffs of the opponent. As explained further in Section 3, the approach
presented in this paper (TI&TO) represents a two-player game with imperfect
and incomplete information, since no player (i.e., attacker and defender) knows
the location of the adversary within the network topology or his/her score.
According to a second level of classification, this game can be considered as
dynamic and stochastic, as both players take their actions based on the state
of the network and being exposed to events that affect them in a probabilistic
way.

There are multiple researches in the literature that fall under these classifica-
tions. Concerning complete perfect information games, Lye et al. [10] proposes
a two-player game that simulates the security of a network composed by four
nodes that can be in 18 potential states, on which both players can take up to 3
actions, that are observable at all times by the opponent. With respect to com-
plete imperfect information games, Nguyen et al. [11] propose ‘fictitious play
(FP)’, a game that considers the network security as a sequence of nonzero-sum
games were both players cannot make perfect observations of the adversary’s
previous actions. On the other hand, Patcha et. al [13] propose a incomplete
perfect information approach, for the detection of intrusions in mobile ad-hoc
networks. Whereas the attacker’s objective is to send a malicious message and
compromise a target node, the defender tries to detect it using a host-based
IDS. Another related work based on imperfect information is [20], where van
Dijk et. al propose a simple game where two players compete for the stealthy
control of a resource without knowing the actual identity of the owner until a
player actually moves.

Many of these solutions have been successfully applied to the detection of
threats. However, most of the models are based on either static games or dealing
with perfect and complete information, aiming to find an optimal strategy when
a steady state of the game is reached (being the Nash equilibrium the most
famous one) [14]. In contrast, a real control system faces a dynamic interaction
game with incomplete and imperfect information about the attacker, and the
proposed models of this category do not specify a realistic scenario with an
extensive attack model [20] [1]. This lays the base and inspiration for the design
and implementation of our proposed scheme. With TI&TO, we aim to get
insight about how to effectively implement and configure a defense strategy
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based on the use of Opinion Dynamics, under such stochastic conditions.

3 The game: attack and defense models

Once the problematic has been introduced and the Opinion Dynamics has been
explained, this section presents TI&TO from a theoretical perspective, prior to
execute simulations in Section 4. Firstly, we introduce the board, the rules and
the overall objective for both players: attacker and defender. Then, each one is
individually addressed and their attack model formalized.

3.1 The board: proposed network architecture

As defined in next subsection, TI&TO focuses on a game where both attacker
and defender fight for the control of an infrastructure. The attacker tries to
break into the network in a stealthy way by taking over as many nodes as
to complete the predefined kill chain of a specific APT. With respect to the
defender, he/she must recover those nodes until he/she completely eradicates
the threat from the network. Thus, this network infrastructure plays the role of
the game board, and must be designed realistically as to represent the topology
of a modern industrial ecosystem.

For this reason, the network used in the game embodies cyber-physical re-
sources of different nature, ranging from operational devices (OT) (e.g., sen-
sors/actuators, Programmable Logic Controllers (PLCs), SCADA systems, etc.)
to Information Technology (IT) devices from the managerial point of view (e.g.,
customer-end systems). Following the Opinion Dynamics solution [17], the
board will be an infrastructure composed by two sections with the same num-
ber of nodes: OT and IT, connected via firewalls to secure the traffic. Let the
network be represented with graph G(V,E), so that V refers to the nodes con-
nected with each other based on links contained in the E set. Thus, OT and
IT sections are represented with G(VOT , EOT ) and G(VIT , EIT ), respectively
(having V = VIT ∪VOT and E = EIT ∪EOT ). Both sections are randomly gen-
erated following a different network distribution, which enables us to simulate
different infrastructure setups. On the one hand, the IT section follows a small-
world network distribution, that models the traditional topology of TCP/IP
networks [22]. In turn, G(VOT , EOT ) is based on a power-law distribution of
type y ∝ x−α, that is commonly used for the modelling of industrial control
systems [12].

Once generated, both sections are connected by means of a set of interme-
diate firewalls VFW , so that V = VIT ∪VOT ∪VFW , in the following way: as for
the IT section, we want devices to be able to access the OT section, since they
are computationally capable nodes that commonly control the production chain
from the corporate network. This means that all nodes in VIT are connected
to VFW . However, on the OT side, only SCADA systems and other high-level
servers can access external networks, whereas the majority of them are sensors,
PLCs and devices with a restricted functionality. Consequently, the connected
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VIT −DSIT − PDSIT ψ1

VOT −DSOT − PDSOT ψ2

DSIT ψ3

DSOT ψ4

PDSIT ψ5

PDSOT ∪ FW ψ6

Table 1: Map of V to Ψ

nodes will be those that have a maximum connectivity (i.e., dominance in graph
theory) within the power-law distribution network of the OT section, given the
concepts of structural controllability stated in [3] and [5]. According to these,
the Dominating Set (DS) of a graph conforms the subset of nodes (DN hence-
forth, also called ‘driver nodes’) for which every node not in DN is adjacent
to at least one member of DN. On the other hand, if we further restrict this
condition, the Power Dominating Set (PDS) of a graph is defined as the subset
of nodes for which every edge in E is adjacent to at least one node of the PDS.
Therefore, for our concerned network infrastructure, this subset of nodes of the
OT section will be connected to the firewalls that also connect to the IT nodes.
In our simulations, we consider that the 5% of the total number of nodes in V
are firewalls, to restrict the traffic between both sections in a realistic way.

In order to characterize the types of nodes within the architecture and enrich
the network model, it is also necessary to define some related concepts that will
be useful to understand the game dynamics:

Criticality of nodes. We define the criticality of a resource as the risk subject
to that type of device within the organization, and determines the impact of
a given threat if the attack is perpetrated at that point. For example, the
criticality of a sensor is negligible compared to that of the SCADA system, which
implies dramatic consequences on the infrastructure in the event it is disrupted.
Likewise, resources in the OT section are also deemed as more critical than the
IT ones to ensure the continuity of the production chain. This will be also used
by the defender to assess which nodes should be healed in order to minimize
the impact of an APT. We formally define this concept taking into account
the graph G(V,E) introduced before. Firstly, let CRIT : V 7→ IR(0, 1) be a
function that assigns a criticality degree to all nodes of the network. In order
to distinguish which devices present a higher hierarchy within the topology, we
leverage the concept of DS and PDS introduced in Section 3.1. At the same
time, since the OT section is considered as especially critical, its devices will
have to be associated with a higher value. As a result, we define Ψ as an ordered
set of criticality values of size d, where Ψ = ψ1, ..., ψd and ψi = [0, 1], such that
∀ψi, ψi < ψi+1.

Once Ψ is defined, we can create a model that maps every element of the
network (i.e., its nodes) to the elements of Ψ. Such model, where d = 6 and
Ψ = ψ1, ψ2, ψ3, ψ4, ψ5, ψ6 to consider all elements of both network sections (i.e.,
the OT and IT section, including its nodes and the DS and PDS subsets), is

7



described in Table 1.

Vulnerability of nodes. Besides the criticality, the concept of vulnerability
involves the ease of a node to be compromised by the attacker. In this case, we
will assume that this value is opposed to the criticality, in the sense that field
devices will be commonly equipped with lower security protection measures,
whereas high-level systems that control the industrial process will embody ad-
vanced security services. Correspondingly, we can define V ULN : V 7→ IR(0, 1)
as the function that assigns a vulnerability degree to all nodes of the network.
In the same way as criticality, Υ is an ordered set that represents the vulnera-
bility of each node type, where Υ = υ1, ..., υd and υi = 1 − ψi. The particular
instantiation of these values for the simulations is carried out when the network
represented by G(V,E) is created. This is further addressed in Appendix A.

Redundancy of links. In order for the OT subnetwork to be resilient against
Denial of Service attacks located on their links, and due to the criticality of its
resources, we also consider that this section presents redundancy on its edges.
This is a solution that was also proposed in [15] as a response technique to
enable the reachability of messages across the network. In our case, with the
use of auxiliary edges in E (referred to as ER, so that ER ⊂ E), we ensure
that the detection algorithm exchanges the opinion among agents even when
some links are down as consequence of an APT. This may occur in the game
when the attacker attempts the defender to lose track of the anomalies in the
affected nodes. This way, all nodes in VOT count on an additional channel that
interconnects them with another node, based on the strategy explained in [15].
It is worthy to note that these redundant edges are just logical connections that
only serve to transfer the anomaly values between agents.

Altogether, Figure 1 conceptually shows an example of network topology
based on these assumptions together with the integration of the Opinion Dy-
namics correlator. In the diagram, the redundant edges in the OT section are
represented with dashed lines.

3.2 Rules and scoring system

We now describe the game dynamics for both players and how each of their
movements is measured in quantitative terms. Since the final objective of this
research is to assess the effectiveness of the Opinion Dynamics, we aim to analyze
the best behavior of the defender for a realistic attack model. Therefore, it
becomes necessary to utilize a formal representation of the results while following
a fair methodology for both players, which have equivalent costs and rewards
assigned to their movements in the game.

We start by defining TI&TO in an informal way. As introduced before,
both compete for the control of the game board. The base of the scoring system
works as follows: whereas the attacker earns points as it spreads the threat across
the infrastructure, the defender increases the score when those infected nodes are
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Figure 1: Example of network topology used in TI&TO

recovered. However, this is just the number of points scored, which serves as
a reference of the throughput achieved by each player. There is a termination
condition that regulates who wins a given game: as for the attacker, the game
is over when he/she manages to successfully complete all the phases of the APT
kill chain. Concerning the defender, the victory is achieved when all nodes
infected by the adversary return to their originally uncompromised state. In the
following, we give a formal definition of all the elements involved in TI&TO
and the notation used along this manuscript:

Players. There are two players: the attacker and the defender. For simplicity,
they are denoted by A and D, respectively.

Time. In our approach, time is split into discrete ticks for the interest of the
analysis. The game begins at time t = 0 and continues indefinitely as t → ∞.
At a given t, A and then D has a turn to play. They act sequentially adopting
a Stackelberg game [19], where the attacker is the leader and the defender acts
depending on the resulting state of the board.

Movement. It is performed by A or D and changes the board at time t
according to their respective attack and defense models. In brief, both players
take actions to either take over healthy nodes of the network (in the case of
the attacker) or heal a compromised node (by the defender). Therefore, every
movement can alter the state of a node. It is denoted by Mp(t)

Node State. It is a time-dependent variable N = N(t) that determines
whether a node in V is compromised (i.e., the attacker has reached it) or remains
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safe from the APT. For a given node i (belonging to the IT or OT section), Ni(t)
is equals to one if it is compromised at time t, and zero otherwise. We assume
that ∀v ∈ V,Nv(0) = 0.

Reward. Every movement performed by A orD generates a reward depending
on the ultimate goal that both of them chase, which determines the score. In this
case, A receives one point when a new node is compromised, whereas D obtains
the same reward once a previously compromised node has been successfully
recovered. A reward for a player p at a time t is denoted by Rp(t).

Cost. Besides a reward, every movement also implies a cost C for the player.
This represents the fact that the attacker can exploit vulnerabilities that in turn
may cause its detection, while the defender may stop the production chain to
recover the security state of a critical resource. It is formalized with Cp(t).

Utility. It is the total number of points scored by a player p at time t. It is
calculated as the reward minus the cost of the movement made by p, which is
denoted by Up(t). The overall goal for both players is to maximize the utility
as t→∞, until the game is over.

Strategy. We define a strategy S for a player p as the sequence of move-
ments M(t) along time for a given instance of game, represented by Sp =
{Mp(0),Mp(1), ...,Mp(t)}. As explained later on, this strategy changes as the
game evolves: whereas the attacker seeks vulnerable nodes throughout the net-
work while avoiding its detection, the defender follows an adaptive strategy
based on the last movement of A (more specifically, on the new state of the
affected nodes).

Whereas we consider the utility as a reference for the performance of both
players in a given game instance, we define three different termination states:

(TS1) Attacker wins. It is reached when he/she successfully completes all the
movements of the strategy SA, where SA = {MA(0),MA(1), ...,MA(n)}.
We assume there exists at least one last node v that is compromised, so
that Nv(n) = 1.

(TS2) Defender wins. It is accomplished when the defender manages to heal all
nodes and hence eradicate the effect of the attacker over the entire network,
before the succession of movements in SA are completed. In other words,
for a given attacker strategy SA = {MA(0),MA(1), ...,MA(n)}, there
exists t′ < n such that for all v ∈ V,Nv(t′) = 0.

(TS3) Draw. For the interest of the analysis, we define an additional third ter-
mination condition that occurs when the attacker completes the strategy
SA = {MA(0),MA(1), ...,MA(n)} but the defender also performs a last
movement that ultimately heals all nodes. In this case, we have that for
all v ∈ V,Nv(n) = 0. Even though this may be considered as an attacker
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win (since he/she succeeds in the disruption of resources), the defender
still finds the trace to the threat in the end, which shows the accuracy of
the detection technique going after the infection.

With this, the dynamics of the game and the basic rules have been presented.
However, we have to describe the precise specification of the players’ movements.
Whereas the intruder puts into practice a set of individual attack stages that
represent an APT (i.e., a strategy of n movements), the defender leverages the
Opinion Dynamics algorithm to flexibly adapt to the threat propagation over
the network. In both cases, they can apply different actions to change the state
of nodes and obtain a score based on different conditions.

3.3 Attacker model: succession of APT stages

As introduced before, we aim to find a formal representation of an APT for the
attacker model. In TI&TO, the same authors’ methodology in [17] will be used.
After an extensive review of the most important APTs reported in recent years,
it is possible to specify one of these threats as a finite succession of attack stages
perpetrated against an industrial control network defined by the graph G(V,E),
so that attackStages = {attack stage1, attack stage2, ..., attack stagen}. This
way, each attack stage corresponds to a different movement performed by the
attacker. In the following, we describe the different types of stages and explain
their effect on the game board. Then, the reward and cost generated for this
player are calculated. Lastly, the strategy creation is explained:

• initialIntrusion(IT,OT,FW ). After a phase of reconnaissance, the at-
tacker breaks into the network through a ‘patient zero’ v0 ∈ V , that can
be a node from the IT or OT section. It is the first movement of the
attacker (MA(0)), so that Nv0(0) = 1.

• LateralMovement(IT,OT,FW ). Once a node vi has been compromised,
the adversary chooses a FW (if it is accessible), IT, or OT node vj from
the set neighbours(vi) (i.e., those nodes for which there exists one edge
e = (vi, vj) such that e ∈ E). For the election of the node to take over,
we assume that the attacker scans the network in the seek for the most
vulnerable device (according to the V ULN function). We assume A can
compromise a node that has been previously healed by the defender, but
its V ULN value is then reduced by half.

• LinkRemoval . Once the attacker has perpetrated a lateral movement
from vi towards vj , that communication channel can be disrupted to decoy
the defender (and hence avoid the Opinion Dynamics detection). As a
result, the defender cannot exchange the opinion of the agents assigned to
vi and vj , since no anomaly information is transferred through that link,
as explained in the next Section.

• Exfiltration of information and Destruction . It represents the final
movement of the attacker. The adversary destroys the node that has been
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previously compromised, after possibly extracting information that is sent
to an external Command&Control network.

Each of these movements results in a different cost and reward for the at-
tacker, who determines his or her utility after each turn of the game, so that
the score can be compared with the defender. As for the reward, and aiming to
hold the symmetry between both players, they will receive one point every time
they gain control of a given node that previously belonged to the adversary. For
the attacker, it means that there exists one node v ∈ V at a time t such that
Nv(t−1) = 0 and Nv(t) = 1 after MA(t), resulting in RA(t) = 1. For simplicity,
we consider that all stages have the same reward.

With respect to the cost of every attack stage, we have to recall the Opinion
Dynamics algorithm in relationship with the defender goals. We assume all the
network resources are monitored by anomaly detection mechanisms, outputs of
which are retrieved by a Opinion Dynamics correlation system. This allows the
defender to potentially trace the movement of the attacker along the network,
since the different attack stages will generate various security alerts that in-
crease the probability of detection, so it can be conceived as a cost. In [17],
authors propose a taxonomy of detection probabilities in form of an ordered
set associated with each attack stage. Following the same procedure, here we
define Θ as the ordered set of detection probabilities, where Θ = {θ1, ..., θn} and
θi = [0, 1], such that ∀θi, θi < θi+1. This model, which is illustrated in Table
2, maps every attack stage to the elements of Θ to represent their cost. The
precise election of this taxonomy and quantitative instantiation of the θ values
is further explained in Appendix A.

As for the strategy applied for the attacker in TI&TO, SA will vary de-
pending on the state of surroundings nodes that are vulnerable at every time
t of the game. The precise behavior to define the chain of attack stages is the
following: SA always starts with an initialIntrusion , which is randomly cho-
sen from the IT or OT section (hence representing multiple kinds of APTs[7]).
Then, A attempts to make a LateralMovementFW movement to compromise
a firewall. This movement is straightforward on the IT section as every node
is connected to them. However, in case of the OT section, the attacker needs
to escalate over the hierarchy of nodes until reaching a PDS node and then the
firewall, as explained in Section 3.1. Once there, A penetrates the other section,
where we assume he/she must complete a minimum succession of σ = 3 Lat-
eralMovements (choosing the most vulnerable nodes) before finally executing
the Destruction of a resource. In that case, the game terminates complying

initialIntrusion(v0) θ3
∗LateralMovementIT,FW (vi → vj), neighbours(vi) θ4 → θ2, θ1
∗LateralMovementOT (vi → vj), neighbours(vi) θ5 → θ2, θ1

∗LinkRemoval(vi → vj) θ5 → θ5
destruction(vi) θ6

Table 2: Map of attackStages to Θ
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with TS1 or TS3, depending on the movements of D. In this sense, the de-
fender can prevent this chain from completing if he/she detects the attacker
and successfully eradicates the infection from all nodes (complying with TS2).
In order for the attacker to avoid that situation, a LinkRemoval can be exe-
cuted. In TI&TO, D makes this movement when the defender manages to heal
β = 3 nodes in a row, which represents the situation where D is close behind
the attacker on the board, as explained in the next Section.

This procedure to define the attacker strategy as the game evolves is for-
malized in Algorithm 1. Note that the attacker can always follow this chain of
stages as long as he/she posses at least one node. In case one is healed, another
node is chosen and the APT continues. Otherwise, if the defender manages to
heal all victim nodes, the game ends complying with TS2 or TS3.

Algorithm 1 Attacker strategy creation

output: SA representing the attacker strategy
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪
VFW , gameState = 0 representing initial game state

SA ← {}, V ictims← {}, numSteps← 0
attackedNode← random node in VIT ∪ VOT

SA ← SA ∪ initialIntrusion(attackedNode), V ictims← V ictims ∪ attackedNode
while gameState == 0 do

if defender healed β nodes in a row and numSteps < σ then
SA ← SA ∪ LinkRemoval

else if attackedNode is in first section attacked then
SA ← SA ∪ LateralMovementFW (nextAttackedNode)
V ictims← V ictims ∪ nextAttackedNode
attackedNode← nextAttackedNode

else if attackedNode is in second section attacked and numSteps < σ then
SA ← SA ∪ LateralMovement(IT,OT )(nextAttackedNode)
V ictims← V ictims ∪ nextAttackedNode
attackedNode← nextAttackedNode, numSteps← numSteps+ 1

else
SA ← SA ∪Destruction(attackedNode), gameState← TS1

end if

if defender healed attackedNode then
V ictims← V ictims \ attackedNode, numSteps← 0
if V ictims is empty then

if gameState == TS1 then gameState == TS3

else
gameState← TS2

end if
else

attackedNode← random node in V ictims
end if

end if
end while
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3.4 Defender model: detection and response

As discussed before, the ultimate goal of this paper is the analysis of the Opinion
Dynamics technique against the effects of a realistically-defined APT. As such,
we assume that the set of movements that the defender can leverage is sum-
marized in the execution of the algorithm at every turn of the game, followed
by an optional node reparation, as described in Section 3.2. Therefore, the de-
fender adopts a dynamic behavior which allows us to analyze the effectiveness
of different protection strategies.

We start with the basics. As mentioned in Section 3.2, the defender aims
to locate the attacker position across the whole network, keeping track of the
anomalies suffered and their persistence over each area of the network as the
game evolves. This is enabled by the Opinion Dynamics traceability, as proposed
in [17]. Thus, the status of the network is checked by the defender at each
turn: then, the most affected node is selected and, based on the severity of the
anomaly, he/she finally decides to heal the node. Depending on the accuracy
of this action, the defender receives a determined utility. This process, which
is henceforth referred to as ‘reparation’, is described in Algorithm 2. It is
repeated successively in each turn of the defender, until all compromised nodes
are repaired, complying with the defender-win condition (so that the complexity
of the defensive approach is linear) or the attacker completes its set of attack
stages. There are some aspects to point out here: firstly, the defender can decide
whether to repair the most affected node or stay idle during each turn, which
depends on a predefined threshold. Namely, if the opinion given by the agent
that monitors that node surpasses it, then the defender opts to heal it. After
executing the experiments, and since Opinion Dynamics is calculated as a sum
of weighted sum of opinions, this threshold is set to 0.5, which returns the best
outcome for the defender.

On the other hand, the reward is one as long as the defender succeeds at
healing a node that was in fact compromised; otherwise, the reward is zero.
With respect to the cost, it is equivalent to the criticality of the node that
is healed (regulated with the CRIT function), in such a way that high-level
resources are subject to a potential stop in the production chain and usually
need a greater effort in terms of security.

The reparation procedure is the main movement of the defender. However,
this reparation strategy can also be influenced by three different configurations:

• Local Opinion Dynamics. In practice, a global correlation of the Opin-
ion Dynamics agents in a synchronous way may not be feasible in a real
industrial environment. Concretely, we aim to demonstrate that the exe-
cution of the aforementioned correlation, but considering a subset of nodes
of the original network, is effective enough for the defender. Let G′(V ′, E′)
be the subgraph of G(V,E) so that V ′ ⊂ V and E′ ⊂ E. This subgraph
is built including a candidateNode and all its child nodes within graph G
located at a distance of certain number of hops (in our tests, a distance of
one or two hops will be used). The graph G′ is used for the computation of
the Opinion Dynamics, as usually performed in the original approach. The
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Algorithm 2 Reparation of nodes at time t

output: UD(t) representing the utility
local: Graph G(V,E) representing the network, where V = VIT ∪ VOT ∪ VFW

input: X representing the opinion vector of the network agents

candidateNode← node in V with maximum x(t)
OldNodeState← NcandidateNode(t), healThreshold← 0.5
if xcandidateNode > healThreshold then

RepairNode(candidateNode)
end if
if OldNodeState == 1 then

NcandidateNode(t)← 0, RD(t)← 1
else

NcandidateNode(t)← 0, RD(t)← 0
end if
CD(t)← CRIT (candidateNode), UD(t)← RD(t)− CD(t)

first election of candidateNode is established after MA(0), considering the
highest anomaly measured by the agents over the network. Afterwards,
the defender is able to locally compute the correlation and heal nodes in
subsequent movements. Thus, at every turn, the candidateNode is up-
dated to the node in V ′ with the greatest opinion, which implies moving
the Opinion Dynamics detection zone.

• Redundancy of links. In Section 3.3 section, the link removal stage
was introduced, that allows the attacker to potentially remove links from
the topology that make the defender lose track of the threat position,
by fooling the local Opinion Dynamics. At this point, we must recall
the subset of redundant links ER ⊂ E introduced in Section 3.1. These
channels will be used by the defender whenever the attacker destroys a
link in E, so that opinions will be transmitted using those links only in
that case. Despite this may seem as an advantage for the defender, those
links can randomly cover pairs of nodes that may not be affected by a link
removal. Additionally, the disruption of a link from vi to vj in E′ does
not make vj inaccessible for the local Opinion Dynamics at all times, since
there could be a third node vk covered by the defender that has another
connection (vk, vj) ∈ E′.

• Honeypots. For the interest of the analysis, the defender lastly features
the possibility of establishing honeypots. It implies modifying the network
from the beginning to assign the role of honeypot to specific nodes, which
will be randomly chosen in the simulations. These are used as a bait to
lure the attacker to compromise them by exposing a higher degree of vul-
nerability (which was regulated with the V ULN function). If the attacker
attempts to compromise it, then a higher anomaly will be generated by
that agent, which would help the defender to rapidly find the position
of the threat, eradicate the threat at a given turn t and hence update
the area of the local Opinion Dynamics detection. For our tests, 5% of
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Player Movements Reward Cost

Attacker

Initial Intrusion 1 θ3
Lateral Movement (vi → vj) 1 θ4 or θ5 + θ1*|neighbours(vi)|
Link Removal (vi → vj) 1 2 ∗ θ5
Destruction (vi) 1 θ6

Defender Node reparation (vi) 1 CRIT (vi)

Table 3: Summary of movements leveraged by attacker and defender

the total number of nodes have been considered as honeypots, which is a
minimal value to show the effectiveness of this response technique.

Table 3 summarizes the set of movements eligible for each player, indicating
their reward and cost. Note that the game approach itself is validated from a
theoretical point of view in Appendix C. In the following, we run simulations
with different configurations for the defender to assess the Opinion Dynamics
detection technique.

4 Experimental simulations and discussions

Once both attacker and defender have been described, this section presents the
results of playing games under different parameters of TI&TO. As explained,
the aim of these experiments is to find the best strategy for the defender given
an APT perpetrated by attacker.

In specific, four test cases of games are conducted to assess incremental
configurations for the defender’ strategy: (1) a local Opinion Dynamics detection
around 1 hop of distance from the observed node; (2) local detection with 2 hops
of distance: (3) the addition of redundant edges in VOT ; and (4) the integration
of honeypots within the topology. On the other hand, the attacker follows
the model explained in Section 3.3. Each test case is composed by 10 sets of
100 games, where each set is based on a new generated board, following the
network architecture introduced in Section 3.1. At the same time, different
sizes of network are considered in each test case: 100, 200 and 500 nodes.
The instantiation values for their criticality and vulnerability are presented in
Appendix A.

For each board and game set, the percentage of victories achieved by each
player (in addition to the ratio of draws) is calculated. These are shown in form
of a boxplot, where each box represents the quartiles for each player given the
different configurations of size in each case. Different conclusions can be drawn
from these simulations, which are discussed in the following.

Test Case 1: local Op. Dynamics with 1 hop, no redundancy, no
honeypots. In this case (Figure 2), the attacker clearly experiences a high
rate of victories as he/she easily escapes from the defender detection, which
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Figure 2: Test-case 1: Percentage of victories and draws

Figure 3: Test-case 2: Percentage of victories and draws

only encompasses one hop of distance from the affected node. Therefore, the
best-case scenario for D occurs when he/she just manages to follow the infection
until it is eradicated in the last turn, resulting in a draw.

Test Case 2: local Op. Dynamics with 2 hops, no redundancy, no
honeypots. With the introduction of more nodes covered by the local detec-
tion (whose number is approximately squared with respect to Test case 1), the
percentage of defender wins increases significantly, which shows the importance
of applying Opinion Dynamics on a wide area, as shown in Figure 3. However,
the number of attacker victories and draws still remain moderate, since the de-
fender has not sufficient accuracy as to keep track of A when the removal of
links is performed and the detection is eluded.

Test Case 3: local Op. Dynamics with 2 hops, redundancy, no honey-
pots. The implementation of more defensive aids results in a higher number
of wins for the defender (Figure 4). Here, the redundancy makes D able to
trace most of the attacker movements, including when that player wants to get
rid of the detection, which is more evident in smaller networks. And yet, the
defender must successfully heal all the compromised nodes across the network
that may continue the attack and be far away from the current detection focus,
which still returns a mild number of attacker victories and draws.
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Figure 4: Test-case 3: Percentage of victories and draws

Figure 5: Test-case 4: Percentage of victories and draws

Test Case 4: local Op. Dynamics with 2 hops, redundancy, honeypots.
Lastly, the addition of honeypots are a secure way for the defender to ensure the
highest number of victories, as shown in Figure 5. The presence of these devices
triggers severe anomalies when the attacker tries to compromise then. They are
sensed by the defender to rapidly locate the current affected node, as long as D
covers a wide area that contains the position of the attacker at that time. This
situation is illustrated through an example of game instance in Appendix B.

In general, we can deduce that solely by implementing Opinion Dynamics,
the defender can benefit from its detection to reduce the impact of the attacker
over the network. The protection improves with the introduction of additional
measures such as redundancy or honeypots, and the same results are obtained
for different sizes of network.

We can also draw some analysis on the overall score in these test cases: Fig-
ure 6 plots the average score of the defender and attacker for the four test cases
presented before. At a glance, we can see how D shows a superior through-
put in all cases, and a slightly higher score when using low-size networks, since
he/she experiences greater accuracy in the reparation of nodes. Also, the score
decreases as test cases implement additional defense measures: on the one hand,
the attacker generates more anomalies (and hence more costs) due to the link
removal attacks in the attempt to dodge the detection. On the other hand, the
defender has more candidates to heal due to the increased number of anomalies,
and does not always have a high accuracy in choosing them.

To sum up, by means of game theory we have demonstrated that local Opin-
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Figure 6: Percentage of victories for each player in each test case

ion Dynamics is still valid for catching the compromised nodes of the attacker
when it is applied with a minimally wide detection area (i.e., two hops of dis-
tance from the observed node) and it is paired with effective response techniques
(i.e., where honeypots pose an effective measure) that precisely make use of the
provided detection information.

5 Conclusions

The increasing impact of APTs on modern critical infrastructures demands the
development of advanced detection techniques. Opinion Dynamics paves the
way towards the effective traceability of sophisticated attacks, as described in
this paper. We have leveraged game theory through the design of TI&TO,
a two-player game based on a realistic attack and defense model that serves
as test-bench for the deployment of response procedures that make use of the
information provided by the Opinion Dynamics solution. Based on the execution
of multiple games under different configurations, we have extracted guidelines
for the correct parametrization of Opinion Dynamics, while we validate the
accuracy of the detection technique. Our ongoing work is currently revolving
around the reproduction of these test cases on a real environment and the design
of an enhanced multi-player game definition that also comprises more than
one threat taking place simultaneously. The precise analysis of the optimal
parameters for the defender approach (e.g., number of honeypots or thresholds
for the Opinion Dynamics detection) will be also carried out.
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A Instantiation of Ψ, Υ and Θ values

In Section 3.3 we have presented an ordered set of probabilities Θ that are
mapped to the different attack stages to represent the cost that every movement
of the attacker implies, which is summarized in Table 2. There are multiple
reasons behing this mapping, that are summarized as follows:

1. We assign the lowest level of detection probability (θ1) only to the devices
in the neighbourhood of the affected node in a lateral movement, since
some discovery queries will normally raise subtle network alerts.

2. The second lowest probability of detection (θ2) is linked to the elements
that are the target of a lateral movement, because these connections usu-
ally leverage stealthy techniques to go unnoticed.

3. An initial intrusion causes a mild detection probability θ3, since the at-
tacker either makes use of zero-day vulnerabilities or social engineering
techniques, which is a crucial stage for the attacker to be successful at
breaking into the network through the ‘patient zero’.

4. θ4 and θ5 are assigned to devices (from the IT and OT section, respec-
tively) causing the delivery of malware to establish a connection to an
uncompromised node in a lateral movement. In specific, since the het-
erogeneity of traffic is lower and the criticality of the resources in that
segment is greater, anomalies are likely to be detected when compared to
the IT section. On the other hand, θ5 is also assigned to the involved
nodes in a link removal stage, since it is an evident anomaly sensed by
both agents.

5. The highest probability of detection (θ6) is assigned to the last stage of the
APT, as it usually causes major disruption in the functionality of a device
or the attacker manages to connect to an external network to exfiltrate
information, which is easily detected.

Considering a realistic scenario and according to the methodology explained
in [17], we have assigned values for this ordered set and also for Ψ and Υ sets,
which regulate the criticality and vulnerability of resources in our simulations.
This instantiation of values is shown in Table 4. For the interest of realism
and to represent a certain level of randomness in the accuracy of the detection
mechanisms that every agent embodies, these values will also include a random
deviation in the experiments, with a maximum value of ±0.1.

i 1 2 3 4 5 6
ψi 0.2 0.3 0.4 0.5 0.6 0.8
υi 0.8 0.7 0.6 0.5 0.4 0.2
θi 0.1 0.3 0.4 0.5 0.6 0.9

Table 4: Instances of the Ψ,Υ,Θ ordered sets used in the simulations
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Figure 7: Example of defender-win after the attacker compromises a honeypot

B Example of Game Instance with Defender Vic-
tory

We have seen that the best results for the defender are achieved when two hops
of distance are considered and honeypots are also introduced. In this case,
the use of these two tools (besides the redundancy) are enough as to win most
of the games. The rationale behind this result is simple: when the attacker
attempts to compromise one of this fake nodes, a great anomaly is generated
which is detected by the defender, as long as he or she manages to cover a wide
area that contains the current position of the attacker (i.e., when 2 or more
hops of distance are leveraged by the local Opinion Dynamics). This behavior
is shown in Figure 7: in this network, the attacker traverses the nodes and
then they are immediately healed (they are labeled with an ‘X’ when they are
attacked and ‘H’ when they are healed, along with the anomaly measured by
Opinion Dynamics). In the last movement, the attacker attempts to compromise
a honeypot (depicted with a diamond shape) and the defender manages to locate
and eradicate the infection. Since the defender does not possess any other
compromised node, the game is over.

C Correctness proof of TI&TO

This section presents the correctness proof of TI&TO for the different cases
that may occur during a certain game instance. This problem is solved when
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these conditions are met:

1. The attacker can find an IT/OT device to compromise within the infras-
tructure.

2. The defender is able to trace the threat and heal a node, thanks to the
Opinion Dynamics detection.

3. The game system is able to properly finish in a finite time (termination
condition).

The first requirement is satisfied since we assume that the attacker can
perform different attack stages to define his/her strategy over the game board
(assuming V 6= �), such as lateral movements, links removal or destruction.
The modus operandi of the attacker is systematic, beginning with a random
node v0 ∈ VIT ∪ VOT at t = 0 which is compromised (see Algorithm 1). Then,
A penetrates the infrastructure to ultimately gain control of the operational or
corporate network, where a certain node is finally disrupted (VOT ) after a set
of σ lateral movements. In an intermediate time t of the game, the attacker can
execute a new stage as long as there is at least one node va such that Nva(t) = 1,
which becomes the new attackedNode in Algorithm 1. When the state of all
nodes is set to zero, the game terminates.

The second requirement is also met with the inclusion of intrusion detection
solutions on every agent ai ∈ A that facilitate the correlation of events. With
the local execution of the Opinion Dynamics correlation from t = 1 on the
node that presents the greatest anomaly (using one or two hops of distance),
we ensure that the agents associated with the resulting subgraph of nodes will
have an opinion xi(t) ≥ 0. According to Algorithm 2, this means that D will
heal the node with maximum opinion if that value surpasses the threshold (0.5,
as explained in Section 3.4), setting its state back to zero and updating the
detection area. Otherwise, he/she will remain idle during that turn.

We can demonstrate the third requirement (corresponding to the termina-
tion of the approach) through induction. More precisely, we specify the initial
conditions and the base case, namely:

Precondition: we assume the attacker models an APT perpetrated against
the infrastructure defined by graph G(V,E) where V 6= �, following the
strategy explained in Algorithm 1. On the other side, the defender lever-
ages Opinion Dynamics to visualize the threat evolution across the infras-
tructure and eventually repair nodes, following the procedure described in
Algorithm 2.

Postcondition: the attacker reaches the network G(V,E) and compromises
at least one node in V such that SA 6= � and continues to compromise
more devices in the loop in Algorithm 1, to achieve numSteps = σ. Player
D executes Opinion Dynamics to detect and heal the most affected nodes
after executing the correlation. The game evolves until any of the termi-
nation states (see Section 3.2) are reached.
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Case 1: numSteps = σ, but gameState is still set to zero. In this case, player
A has successfully traversed the network having V ictims 6= �. Therefore,
he/she needs to launch the Destruction movement over the attackedNode.
This makes gameState comply with TS1 temporarily until the defender
moves. If D manages to heal attackedNode and V ictims = �, then the
game also terminates, with TS3.

Case 2: numSteps < σ. In this case, the next stage in SA implies a lateral
movement. If the attacker is still in the first section where the first in-
trusion took place (whether IT or OT), he/she must locate a firewall to
perpetrate the other section before incresasing numSteps. After this, the
defender can make his/her movement and potentially heal a node, which
can make the attacker remove a link in the following iteration. If the
node healed is attackedNode, the attacker must choose another node in
V ictims, resetting numSteps = 0. In the event that V ictims = �, then
the game terminates with state TS2.

Induction: if we assume that we are in step t (t ≥ 1) in the loop in Algo-
rithm 1, then Case 1 is going to be considered until A completes his/her
strategy (TS1 or TS3). In any other case, Case 2 applies until achieving
numSteps = σ (hence applying Case 1 again) or V ictims = �. In this
last case, the game finishes with TS2.
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