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Abstract

The problem of controllability of networks arises in a number of different domains, including in criti-
cal infrastructure systems where control must be maintained continuously. Recent work by Liu et al. has
renewed interest in the seminal work by Lin on structural controllability, providing a graph-theoretical
interpretation. This allows the identification of driver nodes capable of forcing the system into a desired
state, which implies an obvious target for attackers wishing to disrupt the network control. Several meth-
ods for identifying driver nodes exist, but require undesirable computational complexity. In this paper, we
therefore investigate the ability to regain or maintain controllability in the presence of adversaries able to
remove vertices and implicit edges of the controllability graph. For this we rely on the POWER DOMI-
NATING SET (PDS) formulation for identifying the control structure and study different attack strategies
for multiple network models. As the construction of a PDS for a given graph is not unique, we further
investigate different strategies for PDS construction, and provide a simulative evaluation.

Keywords: Structural Controllability, Attack Models, Complex Networks

1 Introduction
Controllability theory offers a general, rigorous, and well-understood framework for the design and analysis
of not only control systems, but also of networks in which a control relation between vertices is required
[1]. The seminal work by Lin [2] provided a graph-theoretical formulation that has only recently become the
renewed focus of research [3], which aids in understanding criteria for establishing control over networks.
Both the work by Liu et al. [3] and subsequent work focuses on the identification of so-called driver nodes
using non-rigorous maximum matching (to find subset of driver nodes that do not share input vertices)
[4, 5]. In this paper, we study an alternative approach based on the POWER DOMINATING SET (PDS)
problem, which gives an equivalent formulation for identifying minimum driver node subsets (denoted ND
in the following discussion) sufficient to reach a desired configuration from an arbitrary configuration in a
finite number of steps; for a time-dependent linear dynamical system (equation 1):

ẋ(t) = Ax(t)+Bu(t), x(t0) = x0 (1)

where x(t) is a vector (x1(t), . . . ,xn(t))T representing the current state of a system with n nodes at time
t; A is an adjacency matrix n× n giving the network topology identifying interaction among nodes, B an
input matrix n×m, where m ≤ n, identifying the set of nodes controlled by a time-dependent input vector
u(t) = (u1(t), . . . ,um(t)) which forces the system to a desired state. The system in eq. 1 is controllable if
and only if rank[B,AB,A2B, . . . ,An−1B] = n (Kalman’s rank criterion). Whilst straightforward, for large
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networks the exponential growth of input values as a function of nodes is problematic, giving importance to
the work on structural controllability by Lin [2].

The robustness of such networks has been studied by Pu et al. [5] inter alia, while work by both Liu et al.
[3] and Wang et al. [4] has shed light on the effects of attacks (edge and vertex removal) on the network and
the subgraph representing the controlling structures, clearly identifying the effect that network topology has
on the impact achievable by such removal attacks. One problem immediately arising from vertex removal
from a minimal power dominating set is the reconstruction and recovery of control.

Direct computation is undesirable as the PDS problem in general graphs has been shown to be W [2]-
hard by Downey and Fellows [6], also showing that PDS is only Θ(logn)-approximable for general graphs.
However, we argue that sub-optimal approximations are of considerable interest if this allows the efficient
re-construction of a power dominance relationship that has only been partially severed.

In this paper we therefore study the effects of different non-interactive attack patterns (i.e. attackers are
assumed to choose only a single set of vertices) resulting in vertex and edge removal from control graphs and
interactions with the choice of equivalent PDS. For critical infrastructure networks, such as electric power
networks or information networks, several topologies are of interest in which the concept of controllability
underlines the importance of the technique itself for protection. We therefore study elementary (Erdős-
Renyi) random graphs, but also small-world (Watts-Strogatz) and scale-free (Barabási-Albert) graphs, also
with preferential attachment and provide simulation results for different parameter sets.

The remainder of this paper is structured as follows: Section 2 briefly reviews related work and the
relationship between structural controllability and power dominance while section 3 describes the network
models and resulting topologies as well as the derivation of control networks and strategies for attack based
on limited vertex removal. We then proceed to study the impact of such attacks on different network and
equivalent control topologies simulatively in section 4 before discussing the results and giving our conclu-
sions together with an outlook on our on-going work.

2 Structural Controllability and Power Domination
In eq. 1, the matrix A gives the network topology, and the matrix B can be interpreted as the set of nodes
with the capacity to drive control. Lin [2] gives the interpretation of G(A,B) = (V,E) as a digraph where
V =VA∪VB the set of vertices and E = EA∪EB the set of edges. In this representation, VB comprises nodes
able to inject control signals into the entire network, i.e. those constituting u(t) in eq. 1.

Two main approaches for determining VB have been studied; most attention has been paid to the maximal
matching approach. Liu et al. [3] have recently observed that in directed networks, cacti (interconnection
point between systems) and matchings in certain bipartite graphs are in a one-to-one correspondence and
have gained considerable attention from their study of these structures, using the non-rigorous cavity method
(applied to solve mean field approaches in statistical physic) for different classes of random directed graphs,
notably directed versions of random regular graphs, the Erdős-Renyi random graph, and power-law random
graphs. Of particular interest is the identification of minmum subsets of unmatched (driver) nodes ND not
sharing input vertices. Matchings in graphs is a well-studied problem, and polynomial algorithms exist
[7, 8], but this is not matched by understanding of graphs with fixed degree sequence and is the subject of
on-going research that is both of mathematical interest and for motivated by the characteristics of networks
as recent work by Pósfai et al. shows [9].

The robustness of controllability of several random graph classes including degree sequences found in
existing (i.e. complex) networks has been investigated by Wang et al. [4], describing a perturbation strategy
based on adding edges to graphs, while Pu et al. describe the effect of random and targeted vertex removal
on matchings in Erdős-Renyi random graphs and scale-free graphs, although we note that the underlying
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results have been proven rigorously previously by Bollobás and Riordan [10]. We also note the results by
Sudakov and Vu on graph resilience for both local and global properties [11].

In this paper, however, we concentrate on an alternative approach to the study of structural controllability,
POWER DOMINATING SET (PDS). This problem was introduced by Haynes et al. [12] as a variant of the
well-studied problem of domination motivated in part by the structure of electric power networks and the
efficient monitoring of such networks. The basic decision problem (DOMINATING SET, DS) is NP-complete
with a polynomial-time aproximation factor of Θ(logn) as shown by Feige [13]. The PDS problem can be
summarised by two rules, simplified by Kneis et al. [14] from the original formulation by Haynes et al.:

OR1 A vertex in the ND observes itself and all its neighbours.

OR2 If an observed vertex v of degree d ≥ 2 is adjacent to d − 1 observed vertices, the remaining un-
observed vertex becomes observed as well.

which is reduced to DOMINATING SET by the omission of OR2; whilst we are also interested in the
digraph formulation, for an undirected graph G = (V,E) and an integer k ≥ 0, PDS seeks a set ND ⊆V with
|ND| < k, which can observe all vertices in V satisfying OR1 and OR2. As can be seen, this also gives
an intuitive formulation for control networks. However, for the general case, Haynes et al. have shown the
NP-hardness of PDS, which is also the case for bipartite and chordal graphs; as noted above, PDS is also
only Θ(logn)-approximable with recent results by Aazami bounding this to a factor of 2log1−e n [15] unless
NP ⊆ DTIME(npolylog(n)), and the parameterised intractability results for DS imply W [2]-hardness [16].
Moreover, PDS is a non-local problem in that correctness of PDS cannot be checked by only considering
a graph neighbourhood, and while it is polynomial-time solvable for max-degree 2 graphs, the best current
result for cubic graphs due to Binkele-Raible and Fernau is exponential (in polynomial space) [17]. Guo
et al. give complexity results for a number of graph classes including circle, planar, split, and partial k-tree
graphs [16], while Pai et al. give recent results on grid graphs [18] and Atkins et al. on block graphs [19].
We now give pseudocode for a simple algorithm to determine the DS based on OR1 in algorithm 2.1:

Algorithm 2.1: OR1 (G(V,E))

output (DS = {vi, . . . ,vk} where 0 ≤ i ≤ |V |)

Choose vertex v ∈ V
DS←{v} and N(DS)←{vi, . . . ,vk} ∀ i ≤ j ≤ k/ (v,v j) ∈ E
while V − (DS∪N(DS)) 6=�

do

Choose vertex w ∈ V − (DS∪N(DS)); ⇐=
DS← DS ∪ {w}
N(DS)← N(DS) ∪ {vi, . . . , vk} where ∀ i ≤ j ≤ k \ (w,v j) ∈ E;

return (DS)

The PDS algorithm 2.2 is analogously derived from OR2:
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Algorithm 2.2: OR2 (DS)

output (ND = {vi, . . . ,vk} where |ND| ≥ |DS|)

ND← DS;
i← 1;
while i≤ |ND|

do



Choose vertex w ∈ ND with degree d ≥ 2;
if (d−1 vertices ∈ N(w) and ⊆ ND) and
(∃ vertex w1 ∈ U where w1 ∈ N(w))

then


ND ← ND ∪ {w1};
U ← U \ {w1};
i ← 1;

else
{

i ← i + 1;
return (PDS)

3 Network and Attack Models
We now describe the graph classes and variants studied subsequently along with the variants of algorithm
2.1 and several attack strategies:

3.1 Network Models
As a baseline we consider the Erdős-Renyi (ER) random graph class [20], often constructed as ER(n, p) with
n vertices where each edge included in the graph is determined independently with probability p, as this has
also been studied intensively for other approaches described in section 2.

We also consider the simple Watts-Strogatz (WS) random graph model [21], which is given as a con-
struction beginning with a ring lattice of n vertices connected to k neighbours as determined by path lenghts,
and with independent probability p choosing an edge of the graph where one vertex to which the edge is in-
cident is chosen uniformly at random, but disallowing duplicate edges (ensuring the graph is simple). These
so-called “small world” networks are connected, and have a vertex distance of logn

logz (where z is the vertex
mean degree), but unlike the Erdős-Renyi random graph exhibit significant clustering, making it an appro-
priate model e.g. for social networks where the degree distribution following a Dirac delta function centered
on the median degree K is suitable. For a considerable number of networks, however, this is not the case,
and we chose to include the popular Barabási-Albert (BA) model exhibiting a power-law degree distribution
[22]. A construction giving a BA random graph starts with an initial graph of at least 2 vertices with degree
≥ 1 and proceeds to add vertices where each new vertex is connected to existing ones with a probability
proportional to the number of edges that existing vertices have of pi =

ki
∑1≤ j≤m k j

where k j is the degree of
vertex i and m the number of vertices at the time that vertex i is added. The resulting degree distribution
follows a power law, giving a small number of nodes with high degree. Empirical studies by Cohen et al.
give an exponent between 2 and 3 when analysing a number of actual networks, which also have a small
diameter d ∼ ln lnn [23] and a low vertex clustering coefficient. Finally, we also study a further power-law
graph model (PLOD), but with lower clustering coefficient [24]. As noted in section 2, we require connected
acyclical graphs without self-loops following Lin’s structural controllability theorem.

3.2 Vertex Choices
The rules OR1,OR2 do not identify a single power dominating set (or set of driver nodes ND) for a given
graph; we therefore have chosen three generation strategies:

1. Beginning with a vertex of maximum out-degree,
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2. beginning with a vertex of minimum out-degree, and
3. randomly choosing an initial vertex

We note that these also do not identify unique sets for given graph instances. For simplicity, we describe
strategies based on algorithm 2.1 satisfying OR1. For a given strategy we assume that an instance Nstrategy

D
is represented by a partial order given by the out-degree (≤ or ≥) in case of Nmax

D or Nmin
D , respectively; in

case of Nrand
D , no such relation exists; however, we do assume vertices to be enumerated regardless of the

above in the following for each individual instance as we will need to reason over specific instances in the
following section.
Nmax

D Obtains ND based on vertices with maximum out-degree, defining a vertex choice sequence generating
the set of DS for OR1. All vertices with maximum degree d are considered before those with degree
d′ < d following OR1 (see algorithm 3.1).

Nmin
D Generates ND analogous to Nmax

D , but using vertices (∈W ) with the minimum out-degree d until these
are exhausted before identifying nodes with degree d′ > d (see algorithm 3.1).

Nrand
D Obtains ND satisfying OR1 defined in algorithm 2.1 in which the set of DS is generated by randomly

choosing a vertex v ∈ V in each iteration.

3.3 Attack Models
The strategies defined in section 3.2 for obtaining ND are analysed according to five attack models (denoted
here as AMi) described below. For the analysis, we assume that the attacker has full knowledge of the
network and ND, and will seek to remove vertices from ND but cannot remove arbitrary numbers of vertices.
In this paper we study five different models (see also algorithm 4.1):

AM1 This strategy attacks the first driver node v in a given ordered set Nstrategy
D . The attack consists of

removing edges until isolating v from the network, which may also result in isolating several vertices
with dependence (i.e. also control relation) on v or partitioning of the underlying graph.

AM2 Seeks to delete vertices v ∈ PDS positioned in the middle of the ordered set obtained for a given
Nstrategy

D .
AM3 Removes last element v in ordered set given by Nstrategy

D .
AM4 Removes vertices v ∈ V with highest betweenness centrality of the graph.
AM5 Randomly deletes a vertex v ∈ V not within Nstrategy

D in order to analyse the behaviour of the entire
graph after the isolation/removal of the target v.

Algorithm 3.1: MAXIMUM/MINIMUM STRATEGIES FOR OR1 (G(V,E))

output (DS = {vi, . . . ,vk} where 0 ≤ i ≤ |V | with max./min. out-degree);

d← Obtain max./min. out-degree in V ;
DS←{}; N(DS)←{};
while (V − (DS∪N(DS)) 6=�)

do



W ← Obtain the set o f vertices ∈ V o f degree d;
for each w ∈ W (chosen randomly)

doif w /∈ (DS ∪ N(DS))

then
{

DS← DS ∪ {w};
N(DS)← N(DS) ∪ {zi, . . . , zk} ∀ i ≤ j ≤ k \ (w,z j) ∈ E;

d←U pdate d with next-smaller/-larger out-degree in V ;
return (DS)
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4 Structural Controllability under Vertex Removal
To evaluate the three types of structural controllability strategies (Nmax

D , Nmin
D and Nrand

D ) described in section
3.2, several attack patterns were studied for the graph topologies described in section 3.1. As large-scale
networks are of particular interest, networks with 50 . . .2000 vertices were studied. The focus has been on
sparse graphs that are representative of critical infrastructures such as power networks, this is reflected in
the parameter choice for the different topologies (e.g. pk = 0.3 in ER/WS; d− = 2 in BA for α ≈ 3). Under
these conditions, robustness is evaluated from two perspectives:

1. degree of connectivity, and
2. degree of observability.

For the former case, diameter (Dm), density, and average clustering coefficient (CC) are considered. These
values should maintain small values in proportion to the growth and the average degree of links (AD), and
more specifically after an attack. For observability, we consider the remaining observable network as a
percentage (OR1).

Algorithm 4.1: ATTACK MODELS (G (V,E),AM,Nstrategy
D )

output (Isolation o f a vertex f or a given G (V,E));
local target← 0;

if AM == AM1
then

{
target← Nstrategy

D [1];

else



if AM == AM2
then

{
target← Nstrategy

D [(SIZE(Nstrategy
D ))/2];

else



if AM == AM3
then{
target← Nstrategy

D [(SIZE(Nstrategy
D ))];

else


if AM == AM4

then{
target← BETWEENNESS CENTRALITY(G (V,E));
else

{
target← OUTSIDE Nstrategy

D (G (V,E),Nstrategy
D );

ISOLATE VERTEX(G (V,E), target);
return (G (V,E))

The diameter for ER graphs remains broadly stable for larger numbers of nodes as is well-known; how-
ever, the density and CC (see figures 1 and 2) for small networks (with 50 . . .500 vertices) is significantly
reduced after the attack. This reduction is even more notable when the perturbation is targeted, i.e. to loca-
tions with maximum out-degree (AM1 on Nmax

D , AM3 on Nmin
D ) or with the highest betweenness centrality

inside the network (AM4 on Nmax
D , Nmax

D , and Nrand
D ). With a similar behaviour for small networks, WS

topology behaviour may appear somewhat confusing as it does not fully capture small-world behaviour in
which network diameter is significant. The reason for this lies in the fact that we work with small con-
nectivity probabilities (pk = 0.3) where the average degree of links reaches small values (≈ 2) regardless
the network dimension (see table 1). On the other hand, although table 1 and figure 2 also highlight that
small WS networks lose diameter values and CC with respect to the initial network, this does not affect to
the global network density. Therefore, this type of topology is resilient to PDS vertex isolation, and more
particularly to those vertices with the maximum out-degree or with the highest betweenness centrality.

For power-law distributions, parameters for BA distributions remain almost invariant for both small
networks and large networks (cf. figures 3 and 4), confirming overall resilience but some sensitivity in ob-
servability (table 3) to attacks of type Nmax

D on small networks (50 nodes). Table 3 shows the fraction of
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Figure 1: Global density after attack in ER and WS networks
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Figure 2: Clustering coefficient after attack in ER and WS networks
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Figure 3: Global density after attack in BA and low-exponent power-law networks

observed nodes for each topology and shows observability remaining high (' 90% and 100% of observabil-
ity) after attack. Similar to the base BA distribution, low-exponent power-law networks appear robust except
to AM4 attacks where the network diameter varies for any distribution (50 . . .2000) when the node with the
highest centrality is targeted. In contrast, AM5 attacks do not present major risks with respect to intentional
threats, but can have an impact on observability with 90% of observation in the worst case. This means that
observability is a factor not only dependent on the network topology and construction strategies of driver
nodes (Nmax

D , Nmax
D and Nrand

D ), but also on the nature of the attack or perturbation [5] where degree-based
attacks are more significant.

ER WS BA with al pha' 3 PLOD with α ' 0.3
50 100 500 1000 2000 50 100 500 1000 2000 50 100 500 1000 2000 50 100 500 1000 2000

Before Attack
DA 6.66 17.39 80.03 157.86 312.17 1.66 2.00 1.97 1.99 1.99 24.50 30.16 1.97 1.99 1.99 2.06 2.04 2.08 2.10 2.11
Dm 3 4 5 5 5 12 14 38 78 78 1 4 9 11 13 6 12 28 35 46

AM1
Nmax

D Dm 3 4 5 5 5 12 16 38 78 78 1 4 9 11 13 6 12 28 35 46

Nmin
D Dm 3 4 5 5 5 12 14 38 78 78 1 4 9 11 13 6 12 28 35 46

Nrand
D Dm 3 4 5 5 5 12 14 39 68 78 1 4 9 11 13 7 12 28 35 46

AM2
Nmax

D Dm 4 4 5 5 5 12 14 38 78 78 1 4 9 11 13 6 12 28 35 46

Nmin
D Dm 3 4 5 5 5 12 14 37 78 78 1 4 9 11 13 6 12 28 35 46

Nrand
D Dm 3 4 5 5 5 12 14 39 78 78 6 6 9 11 13 6 12 28 35 46

AM3
Nmax

D Dm 3 4 5 5 5 9 14 38 78 78 1 4 9 11 13 7 12 28 35 46

Nmin
D Dm 4 4 5 5 5 9 14 38 78 78 1 4 9 11 13 6 12 28 35 46

Nrand
D Dm 3 4 5 5 5 12 16 39 78 78 1 4 9 11 13 6 11 28 35 46

AM4
Nmax

D Dm 4 4 5 5 5 9 15 45 78 78 1 4 9 11 13 8 11 25 33 51

Nmin
D Dm 4 4 5 5 5 9 15 45 78 78 1 4 9 11 13 9 11 25 33 51

Nrand
D Dm 4 4 5 5 5 9 15 45 78 78 1 4 9 11 13 9 11 25 33 51

AM5
Nmax

D Dm 4 4 5 5 5 12 14 38 78 78 1 4 9 11 13 6 12 28 35 46

Nmin
D Dm 4 4 5 5 5 12 14 38 78 78 1 4 9 11 13 6 12 28 35 46

Nrand
D Dm 3 4 5 5 5 12 16 39 78 78 1 4 9 11 13 6 12 28 35 46

Table 1: Network diameter before and after a perturbation or attack
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Figure 4: Local density after attack low-exponent power-law networks

100 1000 2000
0

0.01

0.02

0.03

0.04
MAXIMUM: Density after an attack ï PLOD 0.1

Nodes

D
en

si
ty

100 1000 2000 100 1000
0

0.01

0.02

0.03

0.04
MINIMUM: Density after an attack ï PLOD 0.1

Nodes

D
en

si
ty

100 1000 2000 100 1000
0

0.01

0.02

0.03

0.04
RANDOM: Density after an attack ï PLOD 0.1

Nodes

D
en

si
ty

 

 
Bef.
F
M
L
BC
O

100 1000 2000 100 1000
0

0.01

0.02

0.03

0.04

0.05
MAXIMUM: Density after an attack ï PLOD 0.5

Nodes

D
en

si
ty

100 1000 2000 100 1000
0

0.01

0.02

0.03

0.04

0.05
MINIMUM: Density after an attack ï PLOD 0.5

Nodes

D
en

si
ty

100 1000 2000 100 1000
0

0.01

0.02

0.03

0.04

0.05
RANDOM: Density after an attack ï PLOD 0.5

Nodes

D
en

si
ty

 

 
Bef.
F
M
L
BC
O

Figure 5: Global density after attack low-exponent power-law networks

Varying the exponent of the power-law distribution (α = 0.1, 0.3 and 0.5), we observe no significant
change in global density after perturbation (cf. figures 3 and 5), even when the diameter vary after an AM-4
threat with respect to the rest of threats (see table 2); a relevant datum highlighting the above analysis. Even
so, tables 3 and 2 show that the observation percentage remains high with varying exponents independent of
connectivity.
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Diameter CC Observation Rate
PLOD α ' 0.1 PLOD α ' 0.5 PLOD α ' 0.1 PLOD α ' 0.5 PLOD α ' 0.1 PLOD α ' 0.5

100 1000 2000 100 1000 2000 100 1000 2000 100 1000 2000 100 1000 2000 100 1000 2000
AM1

Nmax
D 10 36 36 14 25 46 0.0152 0.0028 0.0013 0.0192 0.0036 0.0007 99.0 99.7 99.9 98.0 99.7 100.0

Nmin
D 10 36 36 14 25 46 0.0162 0.0028 0.0013 0.0169 0.0039 0.0007 100.0 99.8 99.85 100.0 99.8 100.0

Nrand
D 9 36 36 14 23 46 0.0180 0.0028 0.0013 0.0176 0.0036 0.0007 100.0 99.9 99.9 100.0 99.8 100.0

AM2
Nmax

D 10 36 36 14 25 46 0.0136 0.0028 0.0013 0.0198 0.0039 0.0007 99.0 99.7 99.9 98.0 99.9 100.0

Nmin
D 10 36 36 14 25 46 0.0153 0.0028 0.0013 0.0195 0.0039 0.0007 100.0 99.8 99.85 100.0 99.8 100.0

Nrand
D 9 36 36 14 25 46 0.0155 0.0028 0.0013 0.0187 0.0039 0.0007 100.0 99.9 99.9 100.0 99.8 100.0

AM3
Nmax

D 10 36 36 14 25 46 0.0123 0.0028 0.0013 0.0179 0.0039 0.0007 99.9 99.7 99.9 98.0 99.9 100.0

Nmin
D 12 36 36 14 25 46 0.0146 0.0028 0.0013 0.0181 0.0039 0.0007 100.0 99.8 99.85 100.0 99.8 100.0

Nrand
D 10 36 36 14 23 46 0.0158 0.0028 0.0013 0.0181 0.0039 0.0007 100.0 99.9 99.9 100.0 99.8 100.0

AM4
Nmax

D 12 36 38 11 26 51 0.0145 0.0028 0.0013 0.0162 0.0037 0.0007 99.0 99.7 99.9 97.0 99.9 100.0

Nmin
D 12 36 38 11 26 51 0.0146 0.0028 0.0013 0.0151 0.0037 0.0007 100.0 99.8 99.85 100.0 99.8 100.0

Nrand
D 11 36 38 11 26 51 0.0148 0.0028 0.0013 0.0151 0.0037 0.0007 1000.0 99.9 99.9 100.0 99.8 100.0

AM5
Nmax

D 10 36 36 14 25 46 0.0153 0.0028 0.0013 0.0187 0.0039 0.0007 99.0 99.7 99.85 97.0 99.8 99.95

Nmin
D 10 36 36 14 23 46 0.0155 0.0028 0.0013 0.0198 0.0039 0.0007 99.0 99.8 99.8 100.0 99.8 99.95

Nrand
D 10 36 36 14 23 46 0.0158 0.0028 0.0013 0.0198 0.0039 0.0007 99.0 99.8 99.85 100.0 99.7 99.95

Table 2: Diameter and observation rate for a varied exponentiation of PLOD

5 Conclusions
In this paper we have analysed the robustness of power-dominating sets (PDS) determining the controllability
of a network on a number of network topologies including elementary Erdös-Renyi random graphs as well as
the small-world Watts-Strogatz models and several scale-free networks including the Barabási-Albert model
and particularly power-law networks which approximate structures e.g. found in power networks [25]. We
have studied the effects of several non-interactive attack types on the PDS and underlying graphs, showing
even limited targeted attacks to be highly disruptive in connectivity terms in power-law and small-world
networks, or in observability terms in scale-free networks. Ongoing and future work extends this analysis
to interactive and concurrent attacks and the development of efficient stabilisation mechanisms preserving
domination properties and hence controllability for the types of graph studied here as little is presently
known for these highly relevant classes [16].

ER WS BA with α ' 3 PLOD with α ' 0.3
50 100 500 1000 2000 50 100 500 1000 2000 50 100 500 1000 2000 50 100 500 1000 2000

AM1
Nmax

D 92.0 86.0 99.8 99.5 99.95 96.0 89.0 99.8 99.7 99.9 20.0 97.0 100.0 100.0 100.0 98.0 100.0 100.0 99.6 100.0

Nmin
D 100.0 100.0 100.0 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Nrand
D 92.0 96.0 98.4 99.5 99.8 96.0 98.0 96.2 97.8 97.85 94.0 96.0 99.8 99.8 99.9 100.0 100.0 100.0 100.0 100.0

AM2
Nmax

D 100.0 86.0 100.0 99.8 99.9 100.0 90.0 99.80 99.9 99.95 20.0 95.0 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0

Nmin
D 100.0 100.0 100.0 100.0 100.0 100.0 98.0 100.0 99.9 100.0 100.0 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Nrand
D 88.0 98.0 98.4 99.3 99.85 96.0 98.0 96.2 97.8 97.85 94.0 96.0 99.8 99.8 99.9 100.0 100.0 100.0 100.0 100.0

AM3
Nmax

D 100.0 91.0 100.0 99.9 100.0 100.0 91.0 100.0 99.9 100.0 20.0 96.0 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0

Nmin
D 100.0 100.0 99.8 99.9 99.95 98.0 98.0 100.0 100.0 100.0 100.0 99.0 100.0 100.0 99.95 100.0 100.0 100.0 100.0 100.0

Nrand
D 86.0 96.0 98.0 99.3 99.8 96.0 98.0 96.2 97.8 97.85 92.0 96.0 99.8 99.8 99.9 100.0 100.0 100.0 100.0 100.0

AM4
Nmax

D 98.0 90.0 99.8 99.9 99.95 100.0 91.0 99.8 100.0 99.95 20.0 97.0 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0

Nmin
D 100.0 99.0 99.8 99.9 99.95 98.0 98.0 99.8 100.0 99.95 100.0 98.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Nrand
D 90.0 97.0 98.2 99.3 99.75 96.0 98.0 96.2 97.8 97.85 92.0 95.0 99.8 99.8 99.9 100.0 100.0 100.0 100.0 100.0

AM5
Nmax

D 98.0 90.0 99.8 99.9 99.95 98.0 90.0 99.8 99.9 99.95 50.0 95.0 100.0 100.0 100.0 98.0 100.0 99.8 100.0 99.95

Nmin
D 98.0 99.0 99.8 99.9 99.95 98.0 98.0 99.8 99.9 99.95 100.0 98.0 100.0 100.0 100.0 98.0 99.0 99.8 100.0 99.95

Nrand
D 90.0 96.0 98.4 99.3 99.8 96.0 97.0 96.2 97.8 97.85 96.0 96.0 99.6 99.8 99.85 100.0 100.0 99.8 100.0 99.95

Table 3: Observation rate after perturbation or attack
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