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Abstract

Automatic restoration of control wireless networks based on dynamic cyber-
physical systems has become a hot topic in recent years, since most of their ele-
ments tend to have serious vulnerabilities that may be exploited by attackers. In
fact, any exploitation may rapidly extend to the entire control network due to its
problem of non-locality, where control properties of a system and its structural
controllability can disintegrate over time. Unfortunately, automated self-healing
processes may become costly procedures in which the reliability of the strategies
and the time-critical of any recovery of the control can become key factors to re-
establish the control properties in due time. This operational need is precisely
the aim of this paper, in which four reachability-based recovery strategies from
a thereotical point of view are proposed so as to find the best option/s in terms
of optimization, robustness and complexity. To do this, new definitions related to
structural controllability in relation to the type of distribution of the network and
its control load capacity are given in this paper, resulting in an interesting practical
study.

Keywords: Structural controllability, control systems, cyber-physical systems,
restoration, self-healing

1 Introduction
As control systems continue to grow both in size and complexity [1] by adapting the
new cyber-physical systems (CPSs) for the automation of operations, the protection of
such networks from external or unforeseen forces becomes an essential issue. Namely,
operational efficiency has an important role to play in the monitoring and management
of many of our critical infrastructures (CIs) such as industrial automation applications
or power grids. Unfortunately such functionality today is highly susceptible to threats
and/or changes. Many of these changes come from vulnerabilities or incompatibilities
of the cyber-physical control elements, which tend to incorporate and connect com-
putation elements with existing physical components [2, 3] through multiple types of
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communication technologies like, for example, wireless [4]. However, the exploita-
tion of these vulnerabilities is also intertwined with the nature of the threats, which
may sometimes cause a minor or even, major impact on the performance, security and
safety of the underlying infrastructures [5].

In these circumstances it is easy to understand that preventive measures related to
resilience and fault-tolerance have to be properly addressed in critical environments [6],
regardless of the fact that some measures can become quite difficult to implement [7, 8].
For example, the mere act of helping restore large and complex control distributions to
their natural state in time, might provoke serious complexities that may subsequently
affect the overall performance of the system. So it becomes crucial to research how to
design optimized recovery mechanisms that can ‘automatically’ establish connectivity
of control from anywhere and at any time. However, the implementation of large con-
trol networks can also be quite costly from a research point of view. This means that
the modeling and simulation of the challenge (taking into account the network topology
and the nature of its distribution), have to be done through graph theory.

Within the literature some authors have already tried to address restoration topics
through graph theory. For example, Nakayama et al. base their research on tie-set
notions, associated with graphical-theoretical tree structures so as to implement a ring-
based solution against link failures [9]. A variant of this solution is the rapid spanning
tree protocol (RSTP), an evolution of the spanning tree protocol (STP), to manage
traffic loops and broadcast congestion in mesh topologies [10]. Tree-like structures are
also applied to group and activate, through a nice tree decomposition, backup instances
of driver nodes in charge of delivering control signals to the rest of nodes of the network
[11], or to build edge-redundant networks to activate backup links [11, 12, 13]. Médard
et al. in [12] support their approach on two trees so that the removing of any resource
leaves each destination connected to one of the directed trees; whereas Quattrociocchi
et al. in [13] center their study on modeling a routing protocol based on the maximum
spanning tree and on the online activation of fixed redundant links. Likewise, Wang
et al. apply the redundancy concept in the controllability field by applying transitivity
of control routes, taking into account a control robustness index with reliance on the
number of driver nodes [14]. Wang et al. in [15] and Ding et al. in [16] also propose
optimizing the robustness of controllability by adding a minimum number of strategic
links within the network.

However, more research on dynamic preservation of control structural properties
for critical environments is still required since most of these approaches are composed
of static structures for the recovery, and/or are centered on the restoration of general-
purpose networks. Indeed, the vast majority of the critical control systems follow par-
ticular topological structures of the type power-law y ∝ xα , [17], whose structures tend
to produce small sub-networks similar to current control substations. Moreover, this
research shortfall also forces us to think that it is necessary to propose specific restora-
tion strategies that help the underlying system (i) maintain its control properties at all
times and (ii) survive in crisis situations. So, four restoration strategies for structural
controllability are presented in this paper. They are based on the automatic activation
of redundant edges so as to exhibit the optimal scenario, and on the dynamic reach-
ability of nodes through relink techniques together with a further set of parameters
described throughout this paper. To complement this study, analyses on which of these
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approaches are the most suitable for critical contexts with heavy dependence on CPSs
are also presented, thereby complying with optimization aspects.

In order to clarify some theoretical concepts introduced in the following sections
and their relationships with respect to the main goals and contributions of this paper,
topics related to structural controllability and power dominance are described here. The
concept of structural controllability was introduced by Lin in 1974 [18] so as to model
the controllability and its control capacity through graphical representations, where the
control is generally associated with a subset of nodes with the maximum capacity of
dominance. This subset of nodes, also known as driver nodes and denoted here as
ND, has to be selected according to a predefined method based on the type of context
and the general structure of its networks; in our case, attending to power-law control
networks. A suitable method is, for example, the POWER DOMINATING SET (PDS)
problem defined by Haynes et al. in [19] rather than the traditional maximum matching
method. Through PDS it is possible to obtain the set of ND in charge of managing the
control of the entire or a supart of the network, whose concept was originally designed
as a variant of the well-studied problem of domination and motivated in part by the
structure of electric power networks and their monitoring networks [19]. Therefore
these two concepts, structural controllability and PDS, constitute the theoretical basis
of our research, and the goal now is to provide a redundancy-based restoration layer
with the possiblity of reaching linear complexities in optimal restoration scenarios.

The remainder of this paper is structured as follows: Section 2 outlines preliminary
concepts concerning dynamic control networks, in addition to detailing the initial as-
sumptions and the threat model. Section 3 presents the four recovery strategies together
with their redundancy principles, which are theoretically developed and discussed in
Section 4. Finally, Section 5 concludes the paper and presents future work.

2 Dynamic control: preliminary
Let a directed weighted Gw(V,E) graph represent the construction of a control system
composed of V control nodes corresponding to cyber-physical elements, and E com-
munication links. Through Gw(V,E), it is possible to characterize dynamic control
networks capable of accepting the existence of loops and weighted edges to plot con-
trol loads related to controllability. In the real-world, many of these variables traverse
specific links that help control devices (or driver nodes), such as remote terminal units
or gateways in charge of managing sensor or actuator states, to be reached. This in
turn recreates a decentralized system where the main control exclusively depends on
a dominant subset of elemental nodes and links. Concretely, these links contain the
maximum capacity to conduct the main traffic1 between two points, also defined here
as the control load capacity (CLC).

To represent this capacity it is necessary to work with a weighted decentralized
system containing information about the edge betweeness centrality (EBC) [5]. EBC
is an indicator that corresponds to the sum of the fraction of the shortest paths that pass
through a given edge, such that, edges with the highest centrality participate in a large

1Note that we do not consider in this study either the type of traffic or the content of messages, only those
concepts that help define mechanisms of restoration.
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number of shortest paths. The result is a weighted matrix related to Gw(V,E) whose
weights are computed as follows:

EBC(e) = ∑
s,t∈V

δ (s, t | e)
δ (s, t)

(1)

where δ (s, t) denotes the number of shortest (s,t)-paths and δ (s, t | e) the number
of paths passing through the edge e. Hence, CLC in control theory corresponds to
the traditional weighted interaction strength matrix A [5] supported by the linear time-
invariant (LTI) dynamical system introduced by Kalman in [20]:

ẋ(t) = Ax(t)+Bu(t), x(t0) = x0 (2)

From this equation, ẋ(t) comprises the vector (x1(t), . . . ,xn(t))T containing the cur-
rent state of n nodes at time t; A, the network topology with the interaction strength
(n×n); and B an input matrix (n×m, m≤ n) holding the set of driver nodes, controlled
by a time-dependent input vector u(t) = (u1(t), . . . ,um(t)) responsible for forcing the
system to reach a desired configuration state. The system in Equation 2 is controllable
if and only if rank[B,AB,A2B, . . . ,An−1B] = n (Kalman’s rank criterion). However,
whilst the computation of this equation seems to be straightforward, for large and
heterogeneous networks like CPSs embedded in control systems where the number
of nodes grows exponentially (e.g., sensors, actuators, smart meters, remote units or
hand-led interfaces), it becomes extremely expensive and problematic. So the problem
associated with maintaining weights in A and the exponential growth of nodes leads
to a new control theory known as structural controllability [18], which is described in
more detail below.

2.1 Structural controllability and its CLC
Structural controllability refers to a graphical-theoretical interpretation of the style
Gw(A, B) = (V,E) where A and B contain non-zero weights, such that V = VA ∪VB
comprises the set of vertices and E = EA∪EB the set of edges. In this representation,
VB, analogous to u(t) in Equation 2, embraces all those nodes with the capacity to inject
control signals throughout the entire network, which is composed of different control
load capacities, li, j, for each edge ei, j in E (i.e., li, j is part of the concept of CLC).

As indicated above, there are two main approaches that obtain the minimum, but
not the only set of driver nodes associated with VB: the maximum matching and the
PDS. In graph theory, the former aims to obtain ND (unmatched nodes) by identifying
those nodes that do not share input vertices [21]. Although the concept has been proven
multiple times [15, 14, 5], we primarily focus on the PDS problem by offering the
necessary means to exemplify, through graph theory, structures similar to real power
grids and their monitoring systems, and whose concept corresponds to an extension
of the DOMINATING SET (DS). From the original formulation of the PDS, given by
Haynes et al. in [19], the problem was later simplified into two fundamental observation
rules by Kneis et al. in [22]. These two rules, substantiated on the ‘dominance’ concept,
are as follows:

OR1 A vertex in ND observes itself and all its neighbors, complying with DS.
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OR2 If an observed vertex v of degree d+ ≥ 2 is adjacent to d−1 observed vertices,
the remaining un-observed vertex becomes observed as well. This also implies
that OR1 ⊆ OR2 given that the subset of nodes that comply with OR1 becomes
part of the set of nodes that complies with OR2.

Both rules and their susceptibility to threats have also been analyzed in recent pub-
lications [1, 23], and for different types of graphs under the restriction of degree and
specific graph structures (circle, planar, split, and partial k-tree graphs as well as grid
and blocks). However, and as previously mentioned, we are not interested in applying
the concept of PDS in general distributions. Rather our interest lies in applying the
PDS problem in power-law networks since most of the topologies of CIs follow similar
structures to y ∝ xα [17].

The pursuit of all these methods and their application as a whole results in a com-
plex control structure supported by EBC to establish control loads. The handling of
anomalous loads is done through the definition given by Nie et al. in [5], in which the
capacity of a node, li, j, is always bounded to “the maximum load that the edge, ei, j,
can operate”. In normal situations, li, j, has to be related to the initial capacity, denoted
here as L0

i, j (n× n), and depending on the type of activity within the network and the
overloading of the links, the initial state of the network may significantly vary over
time. Therefore, the load capacity has to be managed each time by verifying that li, j
does not exceed maximum CLC [5]:

Hi, j = (1+α)×L0
i, j (3)

of size n× n, where α comprises a tolerance indicator with value α > 0 and
Lt=0

i, j ≤ Lt>0
i, j ≤ Hi, j. Under these conditions, any topological impact may force the

system not only to redistribute its control loads, but also its shortest paths, thereby
affecting, sooner or later, the network diameter. This could also trigger a cascading
effect when the permitted thresholds, retained in Hi, j, are clearly surpassed. Given this
and its importance for control contexts, the following section provides a set of initial
assumptions required for dynamic control restoration together with the threat model.

2.2 Initial assumptions and the adversarial model
Apart from cyclicity between nodes, the existence of li, j in each ei, j and li, j ≤ Hi, j, the
two observation rules (OR1, OR2) introduced in the previous section must not be vio-
lated at any moment. In relation to this, the number of driver nodes should not increase
significantly during the life cycle of the network, maintaining, as much as possible,
its spatial complexity. This also means that no protection approach should hamper the
control processes and the responsiveness degree of the system, while still providing the
necessary means to self-heal the control in time, with a reasonable computational cost.

For the analysis, the adversary model follows a weak model in which adversaries
are able to access the general structure of the graph, its topology and the location of
the current driver nodes, despite the random nature of ND. We also assume that their
mobility within the network and their performances remain reduced to a random subset
of nodes, such that δ ≤ |V |2 , where their actions are focused on availability and integrity
of assets, composed of random (launch random actions on an arbitrary set of nodes) or
targeted attacks (specific actions on particular nodes).

Within the random category, four attacks are highlighted:
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• [R1] isolate a selective set of nodes by removing all their edges (e.g., jamming);

• [R2] arbitrarily choose some nodes and remove a few, but not all, of their edges
(e.g., obstacles, congestion);

• [R3] randomly insert a limited set of nodes whose links are causally created; and

• [R4] arbitrarily add new edges within the network.

In real scenarios, there also exists the possibility of finding mobile automation con-
texts in which nodes do not necessarily have to be compromised. They may, for exam-
ple, (i) leave a network by themselves (henceforth denoted as [Lv]) by simply removing
all their connections, or (ii) join the network, by themselves, by increasing the number
of members and links. To tackle these two new situations, we consider the definition
of [R1] but without applying preventive measures to avoid the re-connection, and [R3]
to engage the new joining.

With respect to the targeted class, four kinds of attacks can be identified:

• [T1] isolate those nodes with the highest degree, i.e., the hubs;

• [T2] isolate the node with the highest strength within the network, equivalent to
the node with the highest CLC − max(∑i∈E(EEB(v, i)+EEB(i,v))); and

• [T3] remove an arbitrary set of δ links with the highest peaks of centrality.

3 Four reachability-based strategies
Reachability of assets and their maintenance can be achieved through four types of
reconnection approaches, the strategies of which aim to find redundant pathways, for
each disconnected vertex vi ∈V . For the relink, the approaches force the system to first
identify those most prominent {nd1 , . . . ,ndn} ∈ ND, such that:

STG1 Select one “brother” nd located in the surrounding area, such that (nd ,vi) /∈ E,
but there exists a common node v j ∈ E where (v j,nd) ∈ E and (v j,vi) ∈ E, and
it may serve as a possible candidate to establish a new redundant relationship
(nd ,vi) ∈ E. Note that the selection of prominent nodes is restricted to the
redundancy principles described below.

STG2 Choose one “father” nd with the capacity for reconnecting (nd ,vi) ∈ E.

STG3 Take one “grandfather” nd located to 2-hops with the ability to relink vi.

STG4 Select one “remote” nd situated at n-hops with the possibility of relinking vi in
crisis situation.
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Figure 1: Restoration scenarios STGx (x = {1,2,3,4}) and redundancy principles P3.1
and P3.2

If we observe Figure 1, it is possible to see that the first three scenarios ( STGx
(x = {1,2,3})) establish a protection on a local level, whereas STG4 addresses the
protection for a remote level in which the selection of outstanding driver nodes relies on
the minimum diameter, using for this the traditional breadth-first search (BFS) method.
Each link represents the control load capacity between two points, li, j; and when a node
has different paths (e.g., x,y,z) to transmit a critical message until reaching j, then it
is necessary to choose the path with the highest load capacity: max{li,x, li,y, li,z}. For
the mapping of secondary routes, it is also necessary to redesign the OR1 and OR2
algorithms specified in [1], not only to select the best driver candidates but also to
introduce, from the initial stage (the commissioning phase), redundant pathways. This
modification involves:

• expanding the DS selection scheme (OR1 included in [1]) by adding redundant
links; and

• extending the approach OR2 from [1] so as to avoid breaking the second obser-
vation rule due to the existence of new links.

Given this, the next section specifies the new approaches of OR1 and OR2, since
they constitute the foundation of the new restoration strategies.
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Algorithm 3.1: REDUNDANCY PRINCIPLES (Gw(V,E),G r
w(V,E

′),DS,
NP1

D ,vi)

output (NP2
D )

local candidate,Ond,DSnd ,NP2
D ←�;

while (NP1
D 6=�)

do



candidate← Randomly select one candidate ∈ NP1
D ;

DSnd ← (CHILDRENa(candidate,Gw(V,E))∩DS;
Ond ← (CHILDREN(candidate,Gw(V,E))\DSnd ;
comment: P3.1 (see Section 3.1);

if (vi ∈ DS) and restriction given in P3.1

then


DSnd ← (CHILDREN(G r

w(V,E),candidate))∩DS;
Ond ← (CHILDREN(G r

w(V,E),candidate))\DSnd ;
if restriction given in P3.1

then
{

NP2
D ← NP2

D ∪ candidate;

else



comment: P3.2 (see Section 3.1);

if (vi /∈ DS) and restriction given in P3.2

then


DSnd ← (CHILDREN(G r

w(V,E),candidate))∩DS;
Ond ← (CHILDREN(G r

w(V,E),candidate))\DSnd ;
if restriction given in P3.1

then
{

NP2
D ← NP2

D ∪ candidate;
NP1

D ← NP1
D \ candidate;

return (NP2
D )

a
CHILDREN: returns the children of a given node vi , such that ∀v j ∈V , (vi ,v j ) ∈ E.

3.1 Redundancy principles and approaches
For the specification of the new OR1 and OR2 approaches, three basic redundancy
principles have to be defined, which help remodel the control structures in relation to
redundant pathways. These principles are described as follows and sketched out in
Algorithm 3.1:

P1 The selection of new paths is conditioned by all those edges belonging to those
driver nodes ∈ DS (since OR1 ⊆ OR2 − cf. Section 2.1) with the highest edge
betweeness centrality EBC(v) − i.e., those nodes containing the highest control
capacity li, j.

P2 Any relink should be done, taking into account the properties of the underlying
network. As the control network is based on power law distributions, the redun-
dancy should be subject to those nodes with the maximum degree in order to
comply with the power notion. P1 and P2 result in a new set of driver nodes NP1

D
representing the set of suitable candidates for the relink, capable of ensuring the
greatest control transference in perturbed scenarios.

P3 The selection of driver nodes has to be limited to OR2 (cf. Section 2.1), in which
the type of node to be relinked has to be considered (see Figure 1):

P3.1 If the unobserved node is part of DS, then it is necessary to find a driver
node nd ∈ NP1

D that does not infringe OR2, such that: (|Ond | ≥ 2 and
|DSnd | ≥ 0) or (|Ond | = 0 and |DSnd | ≥ 0), where Ond denotes the set of
observed nodes controlled by an nd , and DSnd represents the set of driver
nodes controlled by an nd ∈ DS.
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P3.2 If the unobserved node is not part of DS, then it is necessary to find a
driver node nd ∈ NP1

D such that (|Ond | ≥ 1 and |DSnd | ≥ 0) or (|Ond | = 0
and |DSnd |= 0).

The result of P3 is a new set of driver nodes NP2
D , such that NP1

D ⊆ NP2
D . To satisfy

these principles and to obtain the maximum CLC (i.e., Hi, j in Equation 3) that Gw
can support at any given moment, a second graph G r

w(V,E
′) of the same size as Gw is

required. G r
w comprises all the redundant links from the commissioning phase such that

|E ′| ≥ |E|, and through this graph it is possible to map the entire system and compute
Hi, j, whereas Lt≥0

i, j provides information of Gw at each state t ≥ 0. The update of G r
w

will depend on the optimization of the restoration mechanisms, which are described in
detail below.

3.2 OR1 and OR2 based on redundant pathways
The reconstruction of OR1 and OR2 presupposes considering the four restoration
strategies laid out in Section 3 and the redundancy principles specified in Section 3.1,
leading to Algorithm 3.2 and Algorithm 3.4. Both extend the rudimentary versions de-
fined in [1] so as to include redundant links in E ′ from the commissioning phase, and
protect the most critical control pathways over time. The identification of these routes
is done through Algorithm 3.3, which is responsible for extracting the most prominent
driver nodes from NP1

D and NP2
D .

Algorithm 3.2: OR1v2
a (Gw(V,E),G r

w(V,E
′),ST G,Lvb)

local DS,relink←�,N←V ;
output (Gw(V,E),G r

w(V,E),DS)

DS← OR1(Gw(V,E));comment: Procedure OR1 included in [1];

while (N 6=�)

do



Randomly choose one vi ∈ N;
{Gw(V,E),G r

w(V,E
′)}← STGS (ST G,Gw(V,E),G r

w(V,E
′),

DS,vi,Lv);
if vi ∈ DS

then N← N \{vi};

else

if relink 6=�
then DS← DS∪ vi;
else N← N \{vi};

return (Gw(V,E),G r
w(V,E),DS)

aOR1v2, a redesigned version from the original OR1 specified in [1].
bLv represents the set of those nodes that leave (by themselves) a determined network.
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Algorithm 3.3: STGS (ST G,Gw(V,E),G r
w(V,E

′),DS,vi,relink,Lv)

output (Gw(V,E),G r
w(V,E

′))
local f athers,brothers,grand f athers,Ond ,DSnd ,NP1

D ,NP2
D ,candidate;

comment: P1 and P2 (see Section 3.1);

if ST G 6= STG4

then



f athers← ((FATHERS(Gw(V,E),vi)\Lv)∩DS
while ( f athers 6=�)

do



if ST G 6= STG2

then



if ST G = STG1

then


brothers← ((CHILDREN(Gw(V,E),
f athers(i))\Lv)∩DS
NP1

D ← NP1
D ∪MAXI EBC∗a(Gw(V,E),

f athers(i),brothers);

else


grand f athers← ((FATHERb(Gw(V,E),
f athers(i))\Lv)∩DS
NP1

D ← NP1
D ∪MAX EBC∗(Gw(V,E),

f athers(i),grand f athers);
f athers← f athers\ f athers(i);

if ST G = STG2
then NP1

D ←MAX EBC∗(Gw(V,E), f athers,vi);
else

{
NP1

D ←MINIMUM DIAMETER WITH EBC*c(Gw(V,E),DS);
comment: P3 (see Section 3.1);

NP2
D ← REDUNDANCY PRINCIPLES(Gw(V,E),G r

w(V,E
′),DS,NP1

D ,vi);
if NP2

D 6=�

then
{

candidate← Randomly select one candidate ∈ NP2
D ;

G r
w(V,E)← UPDATE NETWd(G r

w(V,E),candidate,vi);
return (Gw(V,E),G r

w(V,E
′))

aMAX EBC∗ : returns ND with the maximum EBC included in Gw(V,E) (P1) and the maximum dominance (P2).
b

FATHERS: set of fathers nodes f j that comprises a determined node vi / ∀ f j ( f j ,vi) ∈ E.
cMINIMUM DIAMETER WITH EBC*: returns ND with the min. diameter and the max. EBC∗ .
dUPDATE NETW: relinks the candidate to node vi / (candidate, node) ∈ E.

The second observation rule OR2 in Algorithm 3.4 has to verify until twice the
fulfillment of the dominance. The first round is applied in Gw and the second one in
its extended version G r

w. In this way, any activation of redundant pathways in Gw at
a state t, will prevent the appearance of one or several nd of degree d+ ≥ 2 adjacent
to d− 1 observed vertices, which could infringe OR2 (cf. Section 2.1). This double
exploration is crucial to providing a complete enough control structure at each life state
t of the system.
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Algorithm 3.4: OR2v2
a (Gw(V,E),G r

w(V,E
′),ST G,Lv)

local DS,ND
output (Gw(V,E),G r

w(V,E),ND)

{Gw(V,E),G r
w(V,E

′),DS}← OR1(Gw(V,E),G r
w(V,E

′),ST G,Lv);
comment: Procedure OR2 included in [1] with an overhead of O(n2) [11];

ND← OR2(Gw(V,E),DS);
comment: In the following, the algorithm considers G r

w(V,E
′) and OR2;

i← 1;
while i≤| ND |

do


Choose vertex w ∈ ND with degree d ≥ 2;
N← CHILDREN(G r

w(V,E),w);
if (d−1 vertices ∈ N and (∃ a vertex w1 ∈ U where w1 ∈ N)

then
{

ND ← ND ∪ {w1};U ← U \ {w1}; i ← 1;
else i ← i + 1;

return (Gw(V,E),G r
w(V,E

′),ND)

aOR1v2, a redesigned version from the original OR2 specified in [1].

As part of this analysis, we provide a brief study of computational complexity,
evaluating the upper bound for the new versions of OR1 and OR2 together with their
restoration scenarios STGx (x = {1,2,3,4}). For simplicity, we denote |V |= n, | E |=
e, | ND |= nd, where we assume that nd ≈ n in the worst case. Concretely, Algorithms
3.2 and 3.4 are quite dependent on the complexity of the traditional algorithms OR1
and OR2, also analyzed in [11] with an overhead of O(n2), and on the complexity of
Algorithm 3.3 and the type of restoration scenario. For STGx (x= {1,2,3}), Algorithm
3.3 has to explore, for each node ∈ V , the existence of a father, brother or grandfather
driver with the highest CLC in Gw (P1) and the highest degree (P2); both entailing a
cost of O(n+ e+ n+ e) = O(e+ n) = O(n) − the process of verifying P1 and P2 is
encompassed in a unique function denoted here as EBC*. STG4 becomes analogous
to STGx (x = {1,2,3}) but with the difference that it needs to explore those nd ∈ ND
with the minimum diameter. As we apply the BFS method (well-known to be O(n+e))
to obtain the minimal ND with the minimum diameter in Gw, the cost of obtaining NP1

D ,
considering EBC* in this first stage, is O(n+ e+ e+n) = O(n).

Once NP1
D has been computed, Algorithm 3.1 has to be executed to extract NP2

D . As-
suming that |NP1

D |≈ nd in the worst case, the verification of OR2 in Gw and G r
w for each

descendant driver node in NP1
D becomes O(n2). Note that the costs implicit in assign-

ment and if instructions tend to O(1), and the same occurs with the updating of Gw and
G r

w since the insertion of new links does not involve an additional cost to Algorithm
3.3. As a result, the cost of computing Algorithm 3.3 becomes O(n+ n2) = O(n2).
With all this information in hand, the cost of computing the new version of OR1 is
of at least O(n× n2) = O(n3) in the commissioning phase; whereas the new version
OR2 implies O(n3) by computing Algorithm 3.2, O(kn2) (OR2 of [1]) and O(kn2)
by processing the second rule in G r

w) (also stated in [11]), resulting in an overhead of
O(n3 + kn2 + kn2) = O(n3). Unfortunately, the computational cost of the new dom-
inance versions (OR1, OR2) is higher than the traditional versions, but this increase
is only applicable in the initial phase, when the redundant control is being configured.
With respect to spatial complexities, it is worth noting that the spatial cost is heav-
ily dependent on each STGx (x = {1,2,3,4}). In the case of STG2, the cost may
be similar to the cost required by the traditional OR1 and OR2 since the redundancy
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is exclusively concentrated on the father drivers. In contrast, the spatial cost in STGx
(x= {1,3,4}) may significantly rise depending on the selection of external driver nodes
(brothers, grandfathers or remote nodes) and its penalty in OR2 (see Algorithm 3.4).

4 Analysis and discussion
Let Lv be the set of leaving nodes belonging to [Lv] (cf. Section 2.1); Ae the set of
active links in Gw(V,E) such that Ae ⊆ E ′; and Fnd the set of father drivers that observe
a determined vertex in V . Algorithm 4.1 combines the functional features of the four
restoration strategies described in the previous section.

Algorithm 4.1: DYNAMIC RECOVERY (Gw(V,E),G r
w(V,E

′),ND,Lv,Ae,
ST G)

local vi,Fnd , f ound,candidates, f athers
output (Gw(V,E),G r

w(V,E
′),ND)

for vi← 1 to |V |
do

Fnd ← FATHERS(Gw(V,E),vi)∩ND;
if (Fnd =�) and (vi /∈ Lv)

then



comment: Optimal solution;

f ound← false ;
f athers← FATHERS(G r

w(V,E),vi)∩ND;
while f athers 6=�) and not f ound

do

Randomly choose a vertex candidate ∈ f athers;
if (candidate /∈ Ae)

then f ound← true ;
if f ound

then
{

G r
w(V,E)← UPDATE NETW (G r

w(V,E),candidate,vi);
Ae← Ae ∪{candidate};

else



comment: Sub-optimal sol. - STG4 in Algorithm 3.3;

NP1
D ←MIN. DIAMETER WITH EBC*(Gw(V,E),ND \Lv);

NP2
D ← RED. PRINCIPLES(Gw(V,E),G r

w(V,E
′),DS,NP1

D ,vi);
if NP2

D 6=�

then


candidate← Randomly select one nd ∈ NP2

D ;
G r

w(V,E)← UPDATE NETW (G r
w(V,E),

candidate,vi);
Gw(V,E)← NEW EBCa(Gw(V,E));
Ae← Ae ∪{candidate}; f ound← true ;

if not f ound

then

{
comment: Non-optimal solution;

ND← ND ∪{vi};

else
{
{Gw(V,E),G r

w(V,E
′)}← STGS (ST G,Gw(V,E),

G r
w(V,E

′),ND,vi,Lv);
return (Gw(V,E),G r

w(V,E
′),ND)

aNEW EBC: re-compute Equation 1 to update the control load capacities retained in Gw(V,E).

The heuristic (i.e., Agorithm 4.1) is based on three main restoration blocks, cate-
gorized according to:

• Optimal solution, capable of reestablishing the control by automatically activat-
ing an ei, j ∈ E ′. As the link activation is practically straightforward, the compu-
tational cost in performing this part of the algorithm is O(n).

12



• Sub-optimal solution, with the ability to: (i) dynamically find an nd ∈ ND with
the minimum diameter in Gw and the maximum EBC* that ensures coverage of
the unobserved node; and (ii) search a redundant pathway (dependent on STGx
(x = {1,2,3,4})) that guarantees a secondary way to the unobserved node in the
near future. This dynamic search of prominent driver nodes follows the princi-
ples P1, P2 and P3. If none of these principles are achieved, then Algorithm 4.1
looks at the possibility of offering at least a non-optimal solution. The computa-
tional overhead, at this point, becomes important since it not only contemplates
the charge required in EBC* (O(n)) but also the charge necessary to verify P3.1
or P3.2 (Algorithm 3.1, O(n2)), the upgrading of loads in Gw(V,E) after repara-
tion with a further cost of O(n2log(n)) [24], and the updating of Gw(V,E) and
Ae. That is, O(n+n2 +n2log(n)) = O(n2log(n)).

• Non-optimal solution, to the contrary, deals with transforming any unobserved
node to an observed node by including it as part of the ND. In this way, the node
is able to observe itself and comply with at least the first observation rule, OR1.
Note that this option is also closely related to [R3], when new nodes need to
be joined to the network, or the previous options are not reached properly. In
either of these two circumstances, the spatial complexity proportionally grows
according to the number of unobserved nodes, tearing up the desirable conditions
described in Section 2.2.

The correctness proof of the restoration problem is solved when the following re-
quirements are satisfied: (1) the algorithm that restores, ensures controllability without
violating the control structural properties (restoration); (2) the algorithm is able to
properly finish in a finite time (termination); and (3) the algorithm is able to terminate
and provide control at any moment (validity).

For the former requirement, if a node vi is not observed by an nd ∈ ND in a state t,
then the control at that moment is not guaranteed. But if there exists (either at local or
at remote) a redundant link in E ′ ∈ G r

w(V,E
′) created from the commissioning phase,

such that (nd2 ,vi) ∈ E ′ and nd2 ∈ ND, then this link is activated complying with OR1
and OR2 via Algorithms 3.2 and 3.4. Otherwise, Algorithm 4.1 finds an nd2 with the
minimum diameter and EBC* (i.e., P1 and P2) such that (nd2 ,vi) ∈ E ′ and it ensures
OR2 (P3) by Algorithm 3.1, further complying with OR1 by having found a suitable
driver node nd2 capable of observing itself and all its neighbors. In the case that it is
unable to find an appropriate candidate, Algorithm 4.1 is forced to convert the unob-
served vi to a driver node to obey at least OR1 such that OR1 ⊆ OR2. This way of
modeling the network repair means that the structural controllability is maintained at
all times where all the nodes are observed by one or several driver nodes ∈ ND or by
itself if it is an nd .

Through induction we show the termination of the algorithm, where we first define
the initial and final conditions, and the base cases. The precondition adds that Gw is
threatened by one or several (targeted or random) attacks (cf. Section 2.2), probably
leaving some nodes in Gw without observation (Fnd = �); whereas the post-condition
certifies that the network is fully observed (Fnd 6=�) where OR1 and OR2 are fulfilled.
As for the base cases:
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Case 1: ∀ nodes in V , Fnd 6= � after perturbation. In this case the loop of Algorithm
4.1 is completely processed where all the nodes are covered by a driver node in
ND.

Case 2: ∀ nodes processed in V , ∃ one vi ∈V such that Fnd =� after perturbation. In
these circumstances, three scenarios must be distinguished for vi:

• Optimal solution: ∃ a father nd ∈ f athers such that (nd ,vi) ∈ E ′. In this
case, the conditions, P1, P2 and P3 are met from the commissioning phase
onward.

• Sub-optimal solution: G r
w(V,E

′) does not cover vi through an edge in E ′,
so it is necessary to explore the existence of one or several candidates
{nd1 ,nd2 , . . . ,ndn} with: (i) the minimum diameter and EBC*, and (ii) with
the capability to relink vi complying with P3.
If these candidates exist, then NP1

D 6= 0 and Algorithm 3.1 verifies the ex-
istence of an nd ∈ NP1

D that suffices P3.1 or P3.2 depending on vi. If in
addition this nd exists, then NP2

D 6= � guaranteeing the relink. Otherwise,
the algorithm enters the non-optimal solution.

• Non-optimal solution: if there is no suitable redundant link in E ′ or NP2
D =

�, then ND is updated by adding vi as driver node; i.e.: ND←− ND∪{vi}.

In the first two cases, the network is updated through a new link and in such a
way that ∀ nodes in V , Fnd 6= �, satisfying the post-condition. For the second
case, ND is actualized and OR1 is finally met where OR1 ⊆ OR2.

Induction: if we assume that we are in step k (k ≥ 1) of the loop where ∃ several
nodes {v1,v2, . . . ,vn} in V with Fnd = �, we can observe that for these nodes,
three possible cases can arise as stated in Case 2. At the end of Algorithm 3.1
with k = |V |, the set Fnd 6= � for all the nodes in V , once again satisfies the
post-condition. This also states that the latter requirement (the validity) is also
satisfied since Algorithm 4.1 finishes and ensures that the two observation rules
are provided at all times.

4.1 Experimental results and discussion
In order to show the practical validity of Algorithm 4.1 for small (∼ 100-500 nodes),
medium (∼ 500-1000 nodes) and large (∼ 1000-1500 nodes) networks, a case study
written in Matlab is presented in this section. The experiments have been planned to
perturb a random number of nodes (δ ≤ |V |2 ) belonging to pure power-law distributions.
Specifically, our research focuses on the Power-Law Out-Degree (PLOD) [25] with a
low connectivity probability of α = 0.1 for illustrating realistic scenarios, where we
evaluate: (1) the spatial overhead invested in ND, and (2) the effects caused after δ dis-
turbances such as the cascading effect and the optimization of STGx (x = {1,2,3,4}).
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Figure 2: Spatial complexity before and after perturbation and restoration

Figure 2 shows the spatial cost invested by the new versions OR1 (DS) and OR2.
To understand this, it is necessary to observe the value associated with Nbe f

D (the state
of ND before repair) with respect to the Norig

D given in [1], as well as the increase of
Na f t

D after repair. The results indicate that the cardinality of the new Nbe f
D regarding

|Norig
D | is insignificant, regardless of the increase of DS for STGx (x = {1,3}). Namely,

the difference between |Na f t
D | and |Nbe f

D | after repair becomes relevant when the threat
is related to [Lv] or [R3], since the controllability properties are infringed and the
network in general needs a new assignation of driver nodes (a concept also supported
by the analysis in Section 4).

In relation to this research, Figure 3 illustrates the effect of the threats carried out
in the respective recovery scenarios, where we observe that the joining of δ members
([R3]), the insertion of δ edges ([R4]), and the isolation of the node with the highest
degree (the hubs, [T1]) and the highest strength ([T2]) are the most devastating threats.
The effect becomes more notable in those scenarios in which the redundant control is
located in the surrounds (STGx (x = {1,2,3})), reaching a fall of 60-80% of the entire
network for [R3] and [R4]. This also means that STG4 can become more resilient to
topological changes. Moreover, these results certainly ratify the findings in [13, 21],
where it is concluded that power-law networks are in general quite sensitive to threats
related to degree sequence.

Figures 4 and 5, in constrast, simplify the simulation results with respect to the
optimization of strategies STGx (x = {1,2,3,4}). From these two figures it is possible
to appreciate how the system, depending on the degradation of the structural control-
lability properties after a threat, is able to drive one (non-optimal, suboptimal or opti-
mal) strategy or another. In addition, as the number of attacks can be high in a round
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Figure 3: Cascading effect after perturbation
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Figure 4: Optimization of STGx (x = {1,2,3,4}) considering random attacks
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Figure 5: Optimization of STGx (x = {1,2,3,4}) considering targeted attacks and [Lv]

(δ ≤ |V |2 ), the degradation of the structural controllability can drastically change. If
the majority of surrounding links are lost, the recovery should then depend on the less
optimal strategies. But even so, it is also possible to note from the figures that STG4
followed by STG1 are the best strategies for self-healing with reduced restoration costs
(O(n)) for the majority of simulated cases, whereas the worst scenario is STG3 in
which the rate of optimization is mainly bounded to the sub-optimal solution. How-
ever, STGx (x = {1,4}) is quite susceptible to new integrations where the non-optimal
rate reaches more than 50%, as opposed to the outcome of STG2. In these conditions,
we determine that critical wireless environments should primarily be subject to relink
procedures based on STG4. But even so, we also believe that the combined option
STGx (x = {1,4}) would be the best option to guarantee protection at both local and
remote level, without discarding the possibility of adapting STG2 to facilitate the in-
tegration of new members within a given network. However, this hypothesis requires
evaluating the trade-off between safety and maintenance costs [26, 27] when one or
several redundancy strategies are established for each node within the network. So this
study will be part of our future work.

5 Conclusions and future work
Modernized control systems based on CPSs for dynamic automation of operations tend
to suffer from (slight or grave) perturbations or frequent changes due to the mobile and
sensitive nature of the wireless communications. In this context, the inherent non-
locality problem of the control networks is a matter of utmost importance. Automated
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and reliable self-healing solutions have to be considered as an integral part of network
designs. However, most current solutions lack efficient strategies that ensure an accept-
able repair cost and responsiveness in time [11], complicating the provision of effective
solutions for critical environments. For this reason, four reachability-based restoration
strategies have been presented in this paper, so as to find optimal solutions that guaran-
tee control at all times and without damaging the structural controllability properties.
Specifically, this research has entailed the restructuring of the two fundamental domi-
nance rules given in [22] to allow redundancy of control links, either at local or remote
level. From these four strategies, we have discovered that the best options are mainly
to be found in those distant locations with the highest control load capacity and highest
degree, followed by those brother drivers located in the nearest surrounding area. Both
strategies offer optimal solutions for the great majority of simulated studies, reaching
the expected restoration costs (O(n)).

Now, our intention is to broaden the study to find the most suitable redundancy
combinations considering the lessons learned here, trying not to lose a suitable balance
between installation and maintenance costs, and safety [26, 27].
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