

LBlock: A Lightweight Block Cipher Wenling Wu, Lei Zhang

Institute of Software, Chinese Academy of Sciences 09-Jun-2011

Outline

Background and Previous Works

LBlock: Specification

Design Rationale

Security and Performance Evaluations

Background

Application Security Requirements

RFID applications, wireless sensor network...

Hain Features

- extremely resource constrained environment
 - Weak computation ability
 - Small storage space
 - Strict power constraints
- Moderate security requirement

Solutions: Lightweight Ciphers

mCrypton, HIGHT, PRESENT, CGEN, DESL, MIBS, KATAN, TWIS, ...

6/9/2011

Previous Works

PRESENT Bogdanov, Knudsen, Leander, Paar, Poschmann, Robshaw, Seurin, Vikkelsoe CHES '07

- SP-network, 31-round, 64-bit block, 80/128-bit key
- Attacks:
 - linear attack on 25-round
 - differential attack on 16-round
 - statistical saturation attack on 15-round
- **HIGHT** Hong, Sung, Hong, Lim, Lee, Koo, Lee, Chang, Lee, Jeong, Kim, Kim, Chee CHES '06
 - Generalized Feistel Structure, 32-round, 64-bit block, 128-bit key

Attacks:

- related-key attack on full-round
- related-key impossible attack on 31-round
- saturation attack on 22-round

mCrypton, CGEN, DESL, MIBS, KATAN/KTANTAN, TWIS ...

- differential distinguisher on full-round TWIS
- meet-in-the-middle attack on KTANTAN family

6/9/2011

ACNS 2011

Land Street La.

LBlock

Motivation

- New proposals in cipher design are always valuable attempts.
- Improve cryptanalysis and design techniques

Hain Idea

- Trade-off between security and performance
- Ultra lightweight in both hardware and 8-bit platforms

第 The Name -- LBlock ~ LuBan lock "鲁班锁" ~ Lightweight Block cipher 6/9/2011

Overall Parameters

Variant Feistel structure, 32-round, 64-bit block, 80-bit key

Encryption Algorithm

1. For
$$i = 2, 3, ..., 33$$
, do
 $X_i = F(X_{i-1}, K_{i-1}) \oplus (X_{i-2} < < 8)$

2. Output $C = X_{32} || X_{33}$ as the 64-bit ciphertext

6/9/2011

Round function *F*

Round function *F*

$$F: \{0,1\}^{32} \times \{0,1\}^{32} \longrightarrow \{0,1\}^{32} \\ (X,K_i) \longrightarrow U = P(S(X \oplus K_i))$$

ACNS 2011

6/9/2011

Specification of LBlock

Decryption

1. For $j = 31, 30, \dots, 0$, do $X_j = (F(X_{j+1}, K_{j+1}) \oplus X_{j+2}) >>> 8$

2. Output $M = X_1 || X_0$ as the 64-bit plaintext.

ACNS 2011

and shares

6/9/2011

And they be

2. Design Rationale

Structure

Variant Feistel Structure

Main Features

- Considerations about security and efficient implementation
- Feistel-type structure suitable for lightweight environment
- Choice of the rotation constant

6/9/2011

Design Rationale

S-Box Layer

- Efficiency in hardware implementation
 - 4-bit s-boxes used, average require about 22 GE

ACNS 2011

And Print of

Security Property

- best differential probability
- best non linearity
- no fix point
- completed

.......

good algebraic order

6/9/2011

Design Rationale

Diffusion P-Layer

4-bit word-wise permutation P in round function

S-bit left rotation in the right half

- need no additional area cost in hardware implementation
- also suitable for software environments with word-wise structure
- their combination can guarantee both the best diffusion rounds and the number of active S-boxes

Design Rationale

Key Scheduling Part

design in a stream cipher way

 choice of the rotation constant in update step
 <<< 29 can break the 4-bit word structure and avoid weak relations between subkeys

employ two 4-bit S-boxes as non-linear part

ACNS 2011

Choice of constants and position of constant addition

3. Security Evaluation

Differential/Linear Cryptanalysis

Section 2 Sec

Rounds	\mathbf{DS}	\mathbf{LS}	Rounds	\mathbf{DS}	\mathbf{LS}
1	0	0	11	22	22
2	1	1	12	24	24
3	2	2	13	27	27
4	3	3	14	30	30
5	4	5	15	32	32
6	6	6	16	35	35
7	8	8	17	36	36
8	11	11	18	39	39
9	14	14	19	41	41
10	18	18	20	44	44

Table Guaranteed number of active S-boxes of LBlock

Conclusion

there is no useful 15-round differential/linear characteristic for LBlock

6/9/2011

Security Evaluation

Impossible Differential Cryptanalysis

Best impossible differential characteristic: 14-round

1	(0000000, 00α0000) ¹⁴ /→(0β000000, 00000000)	9	(0000000, 0000α000) ¹⁴⁷ →(β0000000, 0000000)
2	(0000000, 00α0000) ¹⁴ /→(β0000000, 0000000)	10	(0000000, 0000α000) ¹⁴⁷ /→(00000β00, 00000000)
3	(00000000, 00α00000) ¹⁴ / _→ (00β00000, 00000000)	11	$(0000000, 0000\alpha 000) \xrightarrow{147} (0000000\beta, 0000000)$
4	(00000000, 00α00000) ¹⁴ / _→ (0000β000, 00000000)	12	$(0000000, 00000\alpha 00) \xrightarrow{147} (\beta 0000000, 0000000)$
5	(0000000, 00α0000) ¹⁴⁷ /→(000000β0, 0000000)	13	(0000000, 000000α0) ¹⁴ /→(0β000000, 00000000)
6	(0000000, 000α0000) ¹⁴ /→(0β000000, 00000000)	14	$(0000000, 000000\alpha) \xrightarrow{147} (0\beta 000000, 0000000)$
7	(0000000, 0000α000) ¹⁴ /→(0β000000, 00000000)	15	$(0000000, \alpha 000000) \xrightarrow{147} (\beta 0000000, 0000000)$
8	(0000000, 0000α000) ¹⁴ / _→ (000β0000, 0000000)	16	$(0000000, 0\alpha00000) \xrightarrow{147}{7} (\beta 0000000, 00000000)$

Conclusion: key recovery attack can reach 20-round

6/9/2011

Security Evaluation

Integral Attack

Best integral characteristic: 15-round

Rounds	Integral characterisitcs				
0	AAAC AAAA AAAA AAAA				
1	AAAC ACAC AAAC AAAA				
2	CCCC AAAC AAAC ACAC				
3	ACAC CCCC CCCC AAAC				
4	CCCC ACCC ACAC CCCC				
5	ACCC CCCC CCCC ACCC				
6	CCCC CCCC ACCC CCCC				
7	CCCC CCAC CCCC CCCC				
8	CCCC CCCA CCCC CCAC				
9	CCCC AACC CCCC CCCA				
10	CCCC AAAC CCCC AACC				
11	CCAA ACAA CCCC AAAC				
12	CAAB AAAA CCAA ACAA				
13	B?AA BBAA CAAB AAAA				
14	?B?B ?B?B B?AA BBAA				
15	?????????????B?B?B?B				

Conclusion: key recovery attack can reach 20-round

6/9/2011

Security Evaluation

Related-Key Attacks

Best related-key differential: 14-round with 32 active S-boxes

Rounds	ΔX_L	ΔRK	ΔI_S	ΔO_P	ΔX_R
1	01200101	00000000	01200101	20012100	01222121
2	02200001	00000000	02200001	20010100	01200101
3	00000001	02000000	02000001	20000100	02200001
4	00000002	00000000	00000002	00000100	00000001
5	00000000	00000008	0000008	00000200	00000002
6	00000000	00000000	00000000	00000000	00000000
7	00000000	00000000	00000000	00000000	00000000
8	00000000	00000400	00000400	00001000	00000000
9	00001000	00000000	00001000	00000010	00000000
10	00000010	00000000	00000010	00000002	00001000
11	00100002	00020000	00120002	01010100	00000010
12	01011100	00000000	01011100	21002010	00100002
13	31002210	00000000	31002210	20102012	01011100
14	21012013	04000000	25012013	41200212	31002210

 Table
 14-Round related-key differential characteristic of LBlock

ACNS 2011

And they of

6/9/2011

4. Performance Evaluation

Hardware Evaluation: 1320 GE

	-		
Module	Speed	Area	
	Optimized	Optimized	
64-bit Data Register	384	192	
Key Addition	87	87	
S-box Layer	174.8	174.8	
P Layer	0	0	
32-bit XOR	87	87	
80-bit Key Register	480	212	
S-boxes (Key Scheule)	43.7	30	
5-bit Constant XOR	13.5	13.5	
Control Logic	50	70	
\mathbf{Sum}	$1320~\mathrm{GE}$	$866.3 \mathrm{GE}$ (with RAM)	

TableArea requirement of LBlock

6/9/2011

Conclusion

LBlock

tries to achieve better hardware and software performance

should achieve enough security margin against known attacks

In the end, we strongly encourage the security analysis of LBlock and various helpful comments

Contact Us

% Email: wwl@is.iscas.ac.cn zhanglei1015@is.iscas.ac.cn

Thank you for your attention !

