Simple and Efficient Single Round Almost Perfectly Secure Message Transmission Tolerating Generalized Adversary

Ashish Choudhury (ISI Kolkata, India) Kaoru Kurosawa (Ibaraki Univ., Japan) Arpita Patra (Aarhus Univ., Denmark)

Encryption Schemes

	Must share a secret-key	Don't share a secret-key
Computational	SKE	PKE
Unconditional	One-time pad	

Does there exist ?

	Must share a secret-key	Don't share a secret-key
Computational	SKE	PKE
Unconditional	One-time pad	???

Yes

• (1975) Wyner

Wire-tap channel model

- (1984) Bennett and Brassard BB84
- (1993) Dolev, Dwork, Waarts and Yung Network model

- Alice and Bob are a part of a network
- There are n channels between them
- Adversary can corrupt (listen and forge) at most t channels

Indeed, in Internet

- There are many channels between A and B
- No adversary can corrupt all the routers

A scheme should satisfy

• (Perfect Privacy)

Adversary learns no information on the secret message s

• (Perfect Reliability)

Bob can receive s correctly

(Adversary cannot forge s)

PSMT denotes

- Perfectly
- Secure
- Message
- Transmission
- Scheme

We consider an Undirected Network

• Each channel is two-way

1 Round Protocol

2 Round Protocol

PSMT exists

1-round	iff n ≧ 3t+1
2-round	iff n ≧ 2t+1

where the adversary can corrupt t out of n channels.

Almost PSMT

- requires
- (Perfect Privacy)

Adversary learns no information on the secret message s

(Almost Perfect Reliability)
 Pr[Bob can receive s] > 1- ε

If $n \ge 2t+1$,

PSMT requires	2 rounds
Almost PSMT requires	only 1 round

So far

	PSMT	Almost PSMT
Threshold adversary	We have seen	We have seen
How about General adversary	?	?

Desmedt et at.

- Threshold adversaries are not realistic
- when dealing with computer viruses,
- such as
- the I LOVE YOU virus
- and the Internet virus/worm
- that only spread to
- Windows, respectively Unix.

Adversary can corrupt

- $B_1 = \{1, 2, 3\}$ or $B_2 = \{3, 4\}$ or $B_3 = \{1, 5\}$.
- Let

$\Gamma = \{B_1, B_2, B_3\}$

• Such **/** is called an adversary structure.

Monotone

- We say that Γ is monotone
 if B ∈ Γ and B'⊂ B, then B' ∈ Γ
- For example.
 - if an adversary can corrupt $B=\{1,2,3\}$, then she can corrupt $B'=\{1,2\}$ clearly.
- In what follows,
 we assume that Γ is monotone

Hirt and Maurer

- Introduced adversary structure in the context of multiparty protocols
- They generalized
 n ≥ 2t+1 to Q² adversary structure
 n ≥ 3t+1 to Q³ adversary structure

Γ satisfies Q²

- If $P \cup P \neq \{1, \dots, p\}$
- $B_i ∪ B_j \neq \{1, \dots, n\}$ • for any B_i, B_j ∈ Γ

$\Gamma = \{B_1, B_2, B_3\}$

- Such that
 - $B_1 = \{1, 2, 3\}, B_2 = \{3, 4\}, B_3 = \{1, 5\}.$
- is Q² because
 - $B_1 \cup B_2 = \{1, 2, 3, 4\} \neq \{1, \dots, 5\}$ $B_1 \cup B_3 = \{1, 2, 3, 5\} \neq \{1, \dots, 5\}$ $B_2 \cup B_3 = \{1, 3, 4, 5\} \neq \{1, \dots, 5\}$

Γ satisfies Q³

- If
 B_i U B_j U B_k ≠ {1, …, n}
- for any B_i , B_j , $B_k \in \Gamma$

For general adversaries,

1-round PSMT	iff Γ satisfies Q ³
2-round PSMT	iff Γ satisfies Q ²

	PSMT	Almost PSMT
Threshold adversary	We have seen	We have seen
General adversary	We have seen	

? is

	PSMT	Almost PSMT
Threshold adversary	We have seen	We have seen
General adversary	We have seen	?

For the ?

- Patra, Choudhary, Srinathan, and Rangan
- showed an almost PSMT for Q².

However,

- At least 3 rounds
- Exponential time

This paper shows

An efficient 1 round almost PSMT for Q²

	# of rounds	Efficiency
Patra et al.	At least 3	Inefficient
Our scheme	1	Efficient

Hence for Q² adversary structure,

PSMT requires	2 rounds
Almost PSMT	only 1 round
requires	(This paper)

In a Secret Sharing Scheme

• For a secret s,

Dealer computes a share vector (share₁, \cdots , share_n), and gives share_i to player P_i

Proposition

For any adversary structure Γ, there exists a linear secret sharing scheme (LSSS)

such that

- if $B \in \Gamma$, then B has no information on s
- if $A \notin \Gamma$, then A can reconstruct s We call it an LSSS for Γ

A share vector is computed by multiplying (s, random vector) to some matrix M

In our 1 round almost PSMT

- We are given:
 - > An adversary structure Γ satisfying Q² condition

- We then use an LSSS for this Γ
- Suppose that the sender wants to send a message $(s_1, ..., s_L)$ to the receiver.

For s₁, sender computes

Sender sends to the receiver

For s₂, sender computes

Sender sends to the receiver

Adversary learns no information on each s_i

- because Adv can listen to only a subset of channels B ∈ Γ
- From our property of the LSSS,
 - $B \in \Gamma$ give no information on s_i

However

- Adv may forge the shares in $B \in \Gamma$
- To detect this forgery,
 Sender sends some additional authentication information.

We consider polynomials

$$p_1(x) = \frac{\text{share}_{11} + \text{share}_{21} x + \dots + \frac{\text{share}_{L1} x^{L-1}}{3}$$

Suppose that $p_1(x)$ is forged

 $Pr_{\alpha 2} [p_1(\alpha_2) = p_1(\alpha_2)] \leq (L-1)/|F|$

where L-1=deg $p_1(x)$ and the LSSS is computed over a finite field F

But

- Suppose that channel 1 is not corrupted and channel i is corrupted.
- Then

 $(\alpha_i, p_1(\alpha_i))$ leaks some information on $p_1(x) = share_{11} + share_{21} x + \dots + share_{L1} x^{L-1}$

Sender hides $p_1(\alpha_i)$ as follows

This is one-time pad

We do the same thing

• For $p_2(x), ..., p_n(x)$

Again forged $p_1(x)$ is detected

with

 $Pr_{\alpha 2}$ [$p_1(\alpha_2) + k_{12} ≠ p_1(\alpha_2) + k_{12}$]≧1- (L-1)/|F|

Lemma

- If p₁(x) is forged,
- then

it is rejected by a correct channel i

with prob.

$$1 - \frac{L-1}{|F|}$$

Next Receiver

Reconstructs the message

 (s_1, \dots, s_L) as follows.

Proposition

• If Γ is Q², then for any B $\in \Gamma$, B^c $\notin \Gamma$

(Proof)

- Suppose that $B^c \in \Gamma$.
- Then
 - B and B^c ∈Γ B U B^c={1, …, n}
- This is against Q²

Suppose that

Then the forged p₁(x) is rejected by channels {4 and 5} ∉ Γ

Hence

	then p ₁ (x) is rejected
If $p_1(x)$ is forged,	by some A ∉ Γ
If $p_1(x)$ is not forged,	by some B ∈ Γ

So Receiver behaves as follows

If $p_1(x)$ is rejectedThen Receiverby some $A \notin \Gamma$ rejects $p_1(x)$ by some $B \in \Gamma$ accepts $p_1(x)$

Lemma

- If p₁(x) is forged,
 R rejects it with high probability
- Otherwise

R accepts it correctly

Receiver accepts

 $p_4(x) = \text{share}_{14} + \text{share}_{24} x + \dots + \text{share}_{L4} x^{L-1}$ $p_5(x) = \text{share}_{15} + \text{share}_{25} x + \dots + \text{share}_{L5} x^{L-1}$

Since {4,5} is an access set of the LSSS

 $p_{4}(x) = share_{14} + share_{24} x + \dots + share_{L4} x^{L-1}$ $p_{5}(x) = share_{15} + share_{25} x + \dots + share_{L5} x^{L-1}$ \downarrow s_{1}

Receiver can reconstruct

Since {4,5} is an access set

 $p_{4}(x) = \text{share}_{14} + \frac{\text{share}_{24}x + \dots + \text{share}_{L4}x^{L-1}}{p_{5}(x)} = \text{share}_{15} + \frac{\text{share}_{25}x + \dots + \text{share}_{L5}x^{L-1}}{\bigcup}$ $\int_{S_{1}} S_{2}$

Receiver can reconstruct

Since {4,5} is an access set

Receiver can reconstruct

Theorem

- Our protocol satisfies perfect privacy
- It also satisfies almost perfect reliability
The computational cost

• is polynomial in the size of the LSSS

The size of LSSS (=d)

is the # of rows of the matrix M

The communication cost

 Sender sends O(Ld+d²) field elements, where d is the size of the LSSS

As a special case,

- For threshold adversaries s.t. n≧2t+1, (adversary can corrupt t channels),
- our scheme is more efficient and simpler than the existing almost PSMT

Lower bound

 For threshold adversaries given by Patra, Choudhary, Srinathan and Rangan

 In any 1-round almost PSMT with n=2t+1, Sender must send Ω(nL) field elements to send a message (s₁, …, s_L)

Patra et al. also showed

• A construction of

1-round almost PSMT for n=2t+1

which satisfies their bound

However

- It is complex
- It uses extrapolation technique, extracting randomness and etc.

Our almost PSMT

- Also satisfies the bound of Patra et al.
 if L ≧ n
- Further
 - it is more efficient and much simpler

Summary

We showed an efficient 1-round almost PSMT for Q²

PSMT requires	2 rounds
Almost PSMT	only 1 round
requires	(This paper)

As a special case,

- For threshold adversaries s.t. $n \ge 2t+1$,
- our scheme is more efficient and simpler than the previous almost PSMT