

Bundesamt für Sicherheit in der Informationstechnik

Exponent Blinding Does not Always Lift (Partial) SPA Resistance to Higher-Level Security

Werner Schindler (Bundesamt für Sicherheit in der Informationstechnik (BSI)) and Kouichi Itoh (Fujitsu Laboratories LTD.)

7th, June, 2011, ACNS2011

Device destruction is unnecessary
 → advantageous factor for an attacker

Type of Power Analysis

- Simple Power Analysis (SPA)
 - Reveals a key from a single power trace, (or from the average of single power traces to reduce noise)
- Differential Power Analysis (DPA)
 Reveals a key by a differential of
 - plurality of power traces

Cryptographic Devices must prevent both SPA and DPA

Attack with SPA (on RSA)

 Distinguishes elementary operations from a single power trace, which is correlated to the key bits.

ür Sicherheit in der

RSA decryption: $c^d \pmod{N}$,

input: ciphertext c, private key, d=d[k-1]||..||d[0] (k-bit) T=1for i=k-1 down to 0 $T = T^2 \pmod{N}$ /* Square (S) */ if d[i]=1 $T=T \times c \pmod{N}$ /* Multiply (M) */ return $T = c^d \pmod{N}$ calculated only when d[i]=1

Power trace: *d* is revealed by distinguishing between S, M S M S S M d = 1 0 1

SPA countermeasure

- Square and Multiply method (S&aM, Coron CHES'99)
 - Performs dummy multiplications when d[i]=0
 - Small-memory solution, and suitable for smartcards RSA Decryption with S&aM: $c^d \pmod{N}$

Attack with DPA

Considers differentials of power traces to reveal the key

ür Sicherheit in der nformationstechnik

 <u>Data randomization</u> technique works as countermeasure **DPA** Countermeasure (on RSA)

Decryption without countermeasures

für Sicherheit in der Informationstechnik

> $c^d \pmod{N}$ (c: plaintext, d: private key, N: modulus)

<u>Decryption with exponent blinding</u> (countermeasure)

 $c^{d+r_i\phi(N)} \pmod{N}$ (r_i : random number, $\phi(\cdot)$: Euler's totient function)

randomized

• Decryption (only) with base blinding (countermeasure) \rightarrow vulnerable to a local timing attack!(Schindler PKC'02)

Our question

 How secure is the following combination?

ür Sicherheit in der

- S&aM (SPA countermeasure)
- exponent blinding (DPA countermeasure)
- We focus on its security against SPA. It is
 - secure to `classical' SPA attacks, but...
 - it could be only **partial SPA-resistant** when using **special SPA attacks**

Burdesant für Sicherheit in der An example of Special SPA attacks Fußirsu (Yen, Mycrypt '05)

 By using c = -1, an attacker must distinguish the fixed value operation M: 1×-1, S1:(-1)² and S2:(1)²

Homma et. al, "SPA using a steady value input against RSA hardware implementation", SCIS '07

 Attacks proposed by Schindler at PKC'02 and CT-RSA 2008 are also applicable

Theory: insecure and non-SPA resistant Real: due to noise, some operations are indistinguishable →partially SPA-resistant (some observed bits are false)

Our goal

- FUĴITSU
- Partial SPA-resistance was supposed be secure enough even for <u>very small error bits ratio</u>
 - -e.g. 5% unnoticed error bits in 1024-bit RSA key \rightarrow recovering cost: $\sum_{j=0,...,51} 1024C_j = 2^{288}$

• So far:

ür Sicherheit in der

- Partial SPA-resistance was supposed to be secure

Our proposal

Two attacks that tolerate error bits

– Basic attack:

ür Sicherheit in der

tolerates high error rates,

- but requires many power traces and large computational workload
- Enhanced attack:
 tolerates lower error rates than the basic attack but requires by far less power traces
- Our attacks are applicable to:
 - RSA without CRT / RSA with CRT - ECC

Basic attack

Bundesamt für Sicherheit in der Informationstechnik

Notation

- v_i: randomized exponent in the cryptographic device
 v_i = d + r_iy, where
 r_i: unknown random number in *i*-th decryption
 y: \u03c6(N) or \u03c6(p) in RSA, #E in ECC
- v_i ' : randomized exponent with error bits, observed by an attacker

 $-v_i' = d + r_i y + e_i$, where

ür Sicherheit in der

rmationstechnik

- r_i : random number in *i*-th decryption
- y : $\phi(N)$ or $\phi(p)$ in RSA, #*E* in ECC
- e_i : guessing error

Bundesant Informationstechnik Basic attack: Entire procedure Fuintsu

- Step B-1. Observe randomized exponent v_i '
 - $v_1 = 10010100010100101$ $v_2 = 001101110101010101$
 - $\sqrt{3} = 10011100110100100$ $\sqrt{3} = 00111110110100011$
- Step B-2. Classify v_i ' with regard to the random number r_i
 - As soon as one class contains t elements it is chosen as "winning class".

 Step B-3. Correct the error bits by applying majority decision (bitwise) to the "winning class" → key is revealed

Theory and experimental result shows

 ≤ 23% error in ECC, or ≤30% error in RSA
 is tolerable for classification

Experiment results on deciding whether $r_i = r_i$ (10000 trials)

ECC				RSA					
log ₂ d	log ₂ r _i	Е	ТР	FP	log ₂ d	log ₂ r _i	Е	TP	FP
256	16	0.15	1.0	0.0000	1024	16	0.20	1.0	0.0000
256	16	0.20	0.9762	0.0001	1024	16	0.25	1.0	0.0001
256	16	0.23	0.8206	0.0000	1024	16	0.30	0.8756	0.0000

 ε : Error ratio, TP: True Positive, FP: False Positive

 ε : error ratio, R: bit length of r_i

16

Enhanced attack

Bundesamt für Sicherheit in der Informationstechnik

Basic attack: Disadvantages

- Even moderate parameters t require
 - at least $O(2^R)$ power traces

ür Sicherheit in der

- (R = bit length of the random numbers)
- at least $O(2^{2R})$ computations
- NOTE: If the total number of decryptions is limited (clearly) below 2^{R/2}:
 - \rightarrow Basic attack becomes definitely infeasible

To reduce the required number of power traces...

Our next proposal: enhanced attack

New idea: u-sum algorithm

- Basic attack
 Find pairs of power traces with identical random numbers
 - \rightarrow Many power traces are required

ür Sicherheit in der

Enhanced attack
 Find pairs of u-tuples of power traces with identical sums of the random numbers ("identical u-sums")
 → Reduces the number of power traces drastically!

Enhanced attack: Entire proc.(1/2)

- Step E-1. Observe randomized exponents v_i '
 - P = 10010100010100101
 - $v_{3} = 10011100110100100$

für Sicherheit in der

- **v** = 00110111010101011
- $10100100 \quad \bigcirc = 00111110110100011$
- Step E-2. Find pairs of u-tuples for which the u-sum of the random numbers r_i are equal (here: u=2)

 Step E-3. Solve the system of linear equations obtained in Step E-2 → random numbers are revealed (up to a shift)

 $\begin{array}{ll} r_1 = 100010101 & r_4 = 010101011 \\ r_2 = 101000101 & r_5 = 111010010 \\ r_3 = 100101010 & r_6 = 100110110 \end{array}$

Enhanced attack: Entire proc.(2/2)

• Step E-4. Remove the random number r_i from v_i'; obtain the correct key value by majority decisions and correction algorithm

Note: In ECC, $v_i' - r_i \#E$ represents d with error bits

- $r_1 = 00110111010101111$
- $v_2 r_2 \#E = 00111110110100011$

für Sicherheit in de

- $v_3 r_3 \#E = 100111101101101101$
- $v_4 r_4 \# E = 001001110101111$
- $v_5 r_5 \#E = 01111110110100111$

 (simplified description)

Corrected key

(*) For RSA, attacker tries to obtain $\phi(N)$ in place of d.

d = 00111110110101111

Unlike for the basic attack all v_i 's can be used for majority decision

Bundesant Informationstechnik Step E-2: Finding u-tuple pairs Fujirsu

• Apply statistical test on Ham(NAF($v_{i,1}$ '+ $v_{i,2}$ ' - $v_{j,1}$ '- $v_{j,2}$ ')) to decide whether $r_{i,1}$ + $r_{i,2} = r_{j,1} + r_{j,2}$

(*)NAF representation is used. HAM(NAF ($v_{i,1}'+v_{i,2}'-v_{j,1}'-v_{j,2}'$)) HAM(NAF($v_{i,1}'+v_{i,2}'-v_{j,1}'-v_{j,2}'$)) (Case $r_{i,1}+r_{i,2}=r_{j,1}+r_{j,2}$) μ_M $\gamma(=\mu_U-6.5\sigma_u)$ μ_U

Theoretical and experimental results show:

- In 256-bit ECC, 8% (u=2), 6% (u=3), or 4% (u=4), and
- in 1024-bit RSA, 13% (u=2), 9% (u=3), or 6% (u=4) are tolerable for 16-bit random numbers r_i .
- The attack efficiency decreases for increasing R but scales much better than the basic attack

Bundesant Informationstechnik Step E-3:Solve linear equations FUJITSU

Obtained equations from Step E-2

With enough equations dim(ker(B))=2
 → We proved that a basis of ker(B) is given by

- -(1,1,...,1) and
- $(r_1, ..., r_N)$ = correct random numbers used by the device

r_i's are revealed (up to an additive shift)

Step E-3:How many linear equations/power traces are required? Theory

$$E(\# linear \ equations) \approx \frac{N^{2u}}{2u!u!} \times \frac{c(u)}{2^{R}}$$

where *N*: number of power traces *R*: bit length of the random number

$$c(2) \approx \frac{2}{3}, c(3) \approx \frac{11}{20}, c(u) \approx \frac{\sqrt{3}}{\sqrt{\pi u}} (u \ge 4)$$

Experiments

	u=2		u=3		u=4	
Ν	116	128	28	32	16	20
rate on dim(ker(B))=2	43/50	49/50	49/50	50/50	12/50	50/50

Estimated number of power traces (theory)

#power traces is reduced to 128 (u=2), 32 (u=3) or 20 (u=4)

Step E-4:Experimental results

ECC (log₂d=256, log₂r_i=16, 300 trials)

ε	N	success rate		
0.13	25	99.7%		
0.13	30	100%		
0.08	16	100%		
0.08	10	91%		

• RSA ($\log_2 d = 1024$, $\log_2 r_i = 16$, 300 trials)

Е	Ν	success rate		
0.13	100	99%		
0.13	128	100%		
0.08	45	95%		
0.08	35	74%		

ε: error ratio

Tolerates 13% error in both ECC and RSA

FUITSU

Summary and conclusion

Bundesamt für Sicherheit in der Informationstechnik

Summary

	u	R	error rate		# of power trace		
			ECC	RSA	ECC	RSA	
Basic	_	10	23%	28%	7425	23682	
		16	20%	maybe ~26%	137000	maybe as ECC	
Enhanced	2	16	8%	13%	128	128	
	3	16	6%	9%	32	32	
	4	16	4%	6%	20	20	

Countermeasure

ür Sicherheit in der

nformationstechnik

- Using large random numbers
- ≥ 64 -bit random numbers should suffice

Conclusion (I)

für Sicherheit in der

formationstechnik

- We proposed two novel attacks that can break S&aM (SPA countermeasure) combined with exponent blinding (DPA countermeasure), even when the observed exponents include error bits
 - Basic attack: principally tolerates higher error rates (≥ 20%), but even moderate t's require (≥ 0(2^R)) power traces and many comparisons (≥ 0(2^{2R}));
 Attacks on R ≤ 24 (probably also for larger R) should definitely be feasible. If the number of power traces is (significantly) smaller than 2^{R/2} even 2-birthdays will not occur.

Conclusion (II)

ür Sicherheit in der

ormationstechnik

- Enhanced attack: tolerates lower error rates (≤ 13%), but requires only a small number of power traces (≤ 128 for R=16)
 Attacks on R ≤ 40 (probably also for larger R) should definitely be feasible.
- We showed the effectiveness of our attack both theoretically and experimentally
- For increasing R the efficiency of both attacks decreases but the enhanced attack scales much better

Thank you for your attention!

Bundesamt für Sicherheit in der Informationstechnik