Cold Boot Key Recovery by Solving Polynomial Systems with Noise

Martin R. Albrecht¹ & Carlos Cid²

Team Salsa, LIP6, UPMC, Paris, France

Information Security Group, Royal Holloway, University of London, UK

ACNS, 07. June 2011

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

◆□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

Coldboot Attacks I

- ► Recently a method for extracting data from RAM was proposed.
- Information in DRAM is not instantly lost when the power is cut, but decays slowly over time.
- This decay can be further slowed down by cooling the chip.
- ► Thus, an attacker can
 - 1. deep-freeze a DRAM module
 - 2. move it to a target machine which dumps the content to disk
 - 3. find the most likely key candidate (which is erroneous due to decay)

4. use some mechanism to correct those errors

The technique is called Coldboot attack in literature.

Coldboot Attacks II

Definition (The Coldboot Problem)

We are given

$$\begin{split} \mathcal{K} &: \mathbb{F}_2^n \to \mathbb{F}_2^N \text{ where } N > n, \\ \text{two real numbers } 0 \leq \delta_0, \delta_1 \leq 1, \\ \mathcal{K} &= \mathcal{KS}(k) \text{ and } K_i \text{ the } i\text{-th bit of } \mathcal{K}. \\ \mathcal{K}' &= (\mathcal{K}'_0, \mathcal{K}'_1, \dots, \mathcal{K}'_{N-1}) \in \mathbb{F}_2^N \text{ with the following distribution:} \\ \Pr[\mathcal{K}'_i = 0 \mid \mathcal{K}_i = 0] = 1 - \delta_1, \quad \Pr[\mathcal{K}'_i = 1 \mid \mathcal{K}_i = 0] = \delta_1, \end{split}$$

 $Pr[K_i = 0 | K_i = 0] = 1 - \delta_1, \quad Pr[K_i = 1 | K_i = 0] = \delta_1, \\ Pr[K_i' = 1 | K_i = 1] = 1 - \delta_0, \quad Pr[K_i' = 0 | K_i = 1] = \delta_0.$

and some control function $\mathcal{E} : \mathbb{F}_2^n \to \{ \text{True}, \text{False} \}$, which returns true for the pre-image of the noise free version of K.

The task is to recover k such that $\mathcal{E}(k)$ returns *True*.

A bit $K'_i = 0$ of K' is correct with probability

$$Pr[K_i = 0 \mid K_i' = 0] = rac{Pr[K_i' = 0|K_i = 0]Pr[K_i = 0]}{Pr[K_i' = 0]} = rac{(1 - \delta_1)}{(1 - \delta_1 + \delta_0)}.$$

Likewise, a bit $K'_i = 1$ of K' is correct with probability $\frac{(1-\delta_0)}{(1-\delta_0+\delta_1)}$. We denote these values by Δ_0 and Δ_1 respectively.

Coldboot Attacks IV

Cipher	δ_0	δ_1	Success	Time
DES	0.10	0.001	100%	_
DES	0.50	0.001	98%	-
AES	0.15	0.001	100%	1s
AES	0.30	0.001	100%	30s

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten.

Lest we remember: Cold boot attacks on encryption keys.

In Proceedings of 17th USENIX Security Symposium, pages 45-60, 2008.

Can we do better and can we recover keys for more complicated key schedules like Serpent?

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

We define polynomial system solving (**PoSSo**) as the problem of finding a solution to a system of polynomial equations over some field.

Definition (PoSSo)

Consider the set $F = \{f_0, \ldots, f_{m-1}\}$ where each $f_i \in \mathbb{F}[x_0, \ldots, x_{n-1}]$.

A solution to F is any point $x \in \mathbb{F}^n$ such that

$$\forall f_i \in F : f_i(x) = 0.$$

(□▶ ◀舂▶ ◀壹▶ ◀壹▶ 壹 ∽੧੦

Max-PoSSo

We can define a family of **Max-PoSSo** (or Max-MQ) problems, analogous to the well known Max-SAT family of problems.

Definition (Partial Weighted Max-PoSSo)

Given two set \mathcal{H} and \mathcal{S} of polynomials. Find a point $x \in \mathbb{F}^n$ such that $\forall f \in \mathcal{H} : f(x) = 0$ and $\sum_{f \in \mathcal{S}} C(f, x)$ is minimized where $C : f \in \mathcal{S}, x \in \mathbb{F}^n \to \mathbb{R}_{\geq 0}$ is a **cost function** which returns 0 if f(x) = 0 and some value > 0 if $f(x) \neq 0$.

Coldboot as Partial Weighted Max-PoSSo

- Let $F_{\mathcal{K}}$ be an equation system corresponding to \mathcal{K} .
- ► Assume that for each noisy output bit K'_i there is some f_i ∈ F_K of the form g_i + K'_i where g_i is some polynomial.
- Assume that these are the only polynomials involving output bits.
- Denote the set of these polynomials S.
- Denote the set of all remaining polynomials $\in F_{\mathcal{K}}$ as \mathcal{H} .
- \blacktriangleright Define the cost function ${\mathcal C}$ as a function which returns

$$\begin{array}{ll} \frac{1}{1-\Delta_0} & \text{ for } K_i'=0, f(x) \neq 0, \\ \frac{1}{1-\Delta_1} & \text{ for } K_i'=1, f(x) \neq 0, \\ 0 & \text{ otherwise.} \end{array}$$

Express *E* as a polynomial system which is satisfiable for *k* only and add these polynomials to *H*.

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

Mixed Integer Programming I

Integer optimization deals with the problem of minimising a function subject to linear equality and inequality constraints and integrality restrictions on some or all of the variables.

Definition (MIP)

A linear mixed-integer programming problem (MIP) is defined as a problem of the form

$$\min_{x} \{ c^{\mathsf{T}} x | Ax \leq b, x \in \mathbb{Z}^{k} \times \mathbb{R}^{l} \}$$

where

A is an $m \times n$ -matrix (n = k + l),

b is an *m*-vector and *c* is an *n*-vector.

PoSSo as MIP

- ► We can express solving polynomial systems (over 𝑘₂) as Mixed Integer Programs.
- We can then use an off-the-shelf MIP solver.
- ▶ In this work we use the Integer Adapted Standard Conversion.

Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe.
Bivium as a Mixed-Integer Linear programming problem.
In Matthew G. Parker, editor, *Cryptography and Coding – 12th IMA International Conference*, volume 5921 of *Lecture Notes in Computer Science*, pages 133–152, Berlin, Heidelberg, New York, 2009. Springer Verlag.

Partial Weighted Max-PoSSo as MIP

We only need to consider Partial Weighted Max-PoSSo because it is the most general case:

- Convert each $f \in \mathcal{H}$ to linear constraints usign IASC.
- ▶ For each $f_i \in S$ add a new binary slack variable e_i to f_i and convert the resulting polynomial using IASC.
- The objective function we minimise is ∑ c_ie_i where c_i is the value of C(f, x) for some x such that f(x) ≠ 0.

Any optimal solution $x \in S$ will be an optimal solution to the Partial Weighted Max-PoSSo problem.

Coldboot as MIP

$\mathsf{Coldboot} \to \mathsf{Partial} \ \mathsf{Weighted} \ \mathsf{Max}\text{-}\mathsf{PoSSo} \to \mathsf{MIP}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへ()

Coldboot Attacks

Polynomial System Solving with Noise

Mixed Integer Programming

Application

④ 2 0 2 1 4 ≦ ▶ 4 雪 ▶ 4 目 ▶

Simplifications

- ► We do not model *E* since its representation is often too costly; consequently we have no guarantee that the optimal *k* returned is indeed the *k* we are looking for.
- ➤ We do not include all equations available to us but restrict our attention to a subset (e.g. one or two rounds).
- We may use an "aggressive" modelling strategy where we assume $\delta_1 = 0$ which allows us to promote some polynomials from S to H. The "normal" modelling assumes $\delta_1 = 0 + \epsilon$.

AES I

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● のへで

- ► Most of the key schedule is linear.
- The original key k appears in the output.
- ► The S-box size is 8-bit (explicit degree: 7).

N	δ_0	aggr	limit <i>t</i>	r	min t	avg. t	max t
2	0.05	-	3600.00	59%	50.80 s	2124.90 s	3600.00 s
3	0.15	+	60.0s	63%	1.38 s	8.84 s	41.66 s
4	0.15	+	60.0s	70%	1.78 s	11.77 s	59.16 s
4	0.30	+	600.0s	66%	4.81 s	116.07 s	600.00 s
4	0.30	+	3600.0s	69%	4.86 s	117.68 s	719.99 s
4	0.35	+	600.0s	65%	4.66 s	185.14 s	600.00 s
4	0.35	+	3600.0s	68%	4.45 s	207.07 s	1639.55 s
4	0.40	+	600.0s	47%	4.95 s	284.99 s	600.00 s
4	0.40	+	3600.0s	61%	4.97 s	481.99 s	3600.00 s
5	0.40	+	3600.0s	62%	7.72 s	704.33 s	3600.00 s
4	0.50	+	3600.0s	8%	6.57 s	3074.36 s	3600.00 s
4	0.50	+	7200.0s	13%	6.10 s	5882.66 s	7200.00 s

Table: AES considering N rounds of key schedule output.

Serpent I

- □ ▶ ▲ 🗐 ▶ ▲ 🖻 ▶ ▲ 🗐 ▶ ▲ 💷 ▶

Serpent II

- ► All key schedule output bits depend non-linearly on the input.
- The original key k does not appear in the output.
- ► The S-box size is 4-bit (explicit degree: 3).

Serpent III

N	δ_0	aggr	limit <i>t</i>	r	min t	avg. t	max t
12	0.05	-	600.0s	37%	8.22 s	457.57 s	600.00 s
12	0.15	+	60.0s	84%	0.67 s	11.25 s	60.00 s
16	0.15	+	60.0s	79%	0.88 s	13.49 s	60.00 s
16 ≪ 8	0.15	+	1800.0s	64%	95.52 s	1089.80 s	1800.00 s
16	0.30	+	600.0s	74%	1.13 s	57.05 s	425.48 s
16	0.50	+	1800.0s	21%	135.41 s	1644.53 s	1800.00 s
16	0.50	+	3600.0s	38%	136.54 s	2763.68 s	3600.00 s

Table: Serpent considering $32 \cdot N$ bits of key schedule output

Serpent IV

Ad-hoc approach:

- ► We wish to recover a 128-bit key, so we need to consider at least 128-bit of output.
- ▶ On average the noise free output should have 64 bits set to zero.
- \blacktriangleright In order to consider an error rate up to $\delta_0,$ we have to consider

$$\sum_{i=0}^{\delta_0\cdot 64\rceil} \binom{64+\lceil \delta_0\cdot 64\rceil}{i}$$

candidates and test them.

- If $\delta_0 = 0.15$ we have $\approx 2^{36.87}$.
- If $\delta_0 = 0.30$ we have $\approx 2^{62}$.

Thank you for your attention!