Biblio

Export results:
Author Title [ Type(Desc)] Year
Filters: First Letter Of Last Name is W  [Clear All Filters]
Book Chapter
C. Alcaraz, G. Fernandez, and F. Carvajal, "Security Aspects of SCADA and DCS Environments",
Critical Infrastructure Protection: Information Infrastructure Models, Analysis, and Defense, J. Lopez, S.. Wolthunsen, and R. Setola Eds., Advances in Critical Infrastructure Protection: Information Infrastructure Models, Analysis, and Defense. LNCS 7130. 7130, Springer-Verlag, pp. 120-149, September 2012. More..

Abstract

SCADA Systems can be seen as a fundamental component in Critical Infrastructures, having an impact in the overall performance of other Critical Infrastructures interconnected. Currently, these systems include in their network designs different types of Information and Communication Technology systems (such as the Internet and wireless technologies), not only to modernize operational processes but also to ensure automation and real-time control. Nonetheless, the use of these new technologies will bring new security challenges, which will have a significant impact on both the business process and home users. Therefore, the main purpose of this Chapter is to address these issues and to analyze the interdependencies of Process Control Systems with ICT systems, to discuss some security aspects and to offer some possible solutions and recommendations.

PDF icon BC2011Alcaraz.pdf (683.38 KB)
Conference Paper
I. Agudo, D. Nuñez, G. Giammatteo, P. Rizomiliotis, and C. Lambrinoudakis, "Cryptography Goes to the Cloud",
1st International Workshop on Security and Trust for Applications in Virtualised Environments (STAVE 2011), C. Lee, J-M. Seigneur, J. J. Park, and R. R. Wagner Eds., Communications in Computer and Information Science 187, Springer, pp. 190-197, June, 2011. DOI More..

Abstract

In this paper we identify some areas where cryptography can help a rapid adoption of cloud computing. Although secure storage has already captured the attention of many cloud providers, offering a higher level of protection for their customer’s data, we think that more advanced techniques such as searchable encryption and secure outsourced computation will become popular in the near future, opening the doors of the Cloud to customers with higher security requirements.

PDF icon agudo2011cryptography.pdf (122.42 KB)
X. Wang, et al., "Location Proximity Attacks against Mobile Targets: Analytical Bounds and Attacker Strategies",
23rd European Symposium on Research in Computer Security (ESORICS 2018), LNCS 11099, Springer, pp. 373-392, 2018. DOI More..

Abstract

Location privacy has mostly focused on scenarios where users remain static. However, investigating scenarios where the victims present a particular mobility pattern is more realistic. In this paper, we consider abstract attacks on services that provide location information on other users in the proximity. In that setting, we quantify the required effort of the attacker to localize a particular mobile victim. We prove upper and lower bounds for the effort of an optimal attacker. We experimentally show that a Linear Jump Strategy (LJS) practically achieves the upper bounds for almost uniform initial distributions of victims. To improve performance for less uniform distributions known to the attacker, we propose a Greedy Updating Attack Strategy (GUAS). Finally, we derive a realistic mobility model from a real-world dataset and discuss the performance of our strategies in that setting.

PDF icon rios2018mob.pdf (398.3 KB)
C. Alcaraz, E. Etcheves Miciolino, and S. Wolthusen, "Multi-Round Attacks on Structural Controllability Properties for Non-Complete Random Graphs",
The 16th Information Security Conference (ISC), vol. 7807, Springer, pp. 140–151, 09/2015. DOI More..

Abstract

 The notion of controllability, informally the ability to force a system into a desired state in a finite time or number of steps, is most closely associated with control systems such as those used to maintain power networks and other critical infrastructures, but has wider relevance in distributed systems. It is clearly highly desirable to understand under which conditions attackers may be able to disrupt legitimate control, or to force overriding controllability themselves. Following recent results by Liu et al., there has been considerable interest also in graph-theoretical interpretation of Kalman controllability originally introduced by Lin, structural controllability. This permits the identification of sets of driver nodes with the desired state-forcing property, but determining such nodes is aW[2]-hard problem. To extract these nodes and represent the control relation, here we apply the POWER DOMINATING SET problem and investigate the effects of targeted iterative multiple-vertex removal. We report the impact that different attack strategies with multiple edge and vertex removal will have, based on underlying non-complete graphs, with an emphasis on power-law random graphs with different degree sequences.

PDF icon alcaraz2013controla.pdf (169.18 KB)
M. Egorov, ML. Wilkison, and D. Nuñez, "NuCypher KMS: Decentralized key management system",
Blockchain Protocol Analysis and Security Engineering 2018, 01/2018.
C. Alcaraz, and S. Wolthusen, "Recovery of Structural Controllability for Control Systems",
Eighth IFIP WG 11.10 International Conference on Critical Infrastructure Protection, SRI International, Arlington, Virginia, USA , vol. 441, Springer, pp. 47-63, 2014. DOI More..

Abstract

Fundamental problems in control systems theory are controllability and observability, and designing control systems so that these properties are satisfied or approximated sufficiently. However, it is prudent to as- sume that an attacker will not only be able to subvert measurements but also control the system. Moreover, an advanced adversary with an understanding of the control system may seek to take over control of the entire system or parts thereof, or deny the legitimate operator this capability. The effectiveness of such attacks has been demonstrated in previous work. Indeed, these attacks cannot be ruled out given the likely existence of unknown vulnerabilities, increasing connectivity of nominally air-gapped systems and supply chain issues. The ability to rapidly recover control after an attack has been initiated and to detect an adversary’s presence is, therefore, critical. This paper focuses on the problem of structural controllability, which has recently attracted substantial attention through the equivalent problem of the power dom- inating set introduced in the context of electrical power network control. However, these problems are known to be NP-hard with poor approx- imability. Given their relevance to many networks, especially power networks, this paper studies strategies for the efficient restoration of controllability following attacks and attacker-defender interactions in power-law networks. 

PDF icon 430.pdf (418.49 KB)
D. Nuñez, I. Agudo, M. Egorov, and ML. Wilkison, "Sistema de Acceso Delegado a Información Cifrada para Apache Hadoop",
III Jornadas Nacionales de Investigación en Ciberseguridad, URJC, pp. 174-175, 06/2017. More..

Abstract

En este artículo presentamos un sistema que permite delegación de acceso a información cifrada para Apache Hadoop, de forma segura y transparente al usuario. Para ello usamos técnicas criptográficas avanzadas basadas en el recifrado delegado. Con este sistema, es posible almacenar en Hadoop los datos de forma cifrada y delegar de forma segura el acceso a los nodos de computación. El funcionamiento es transparente ya que se integra con la capa del sistema de ficheros nativa HDFS. Además, el recifrado delegado permite hacer rotación de claves de cifrado de forma segura y rápida.

C. Alcaraz, E. Etcheves Miciolino, and S. Wolthusen, "Structural Controllability of Networks for Non-Interactive Adversarial Vertex Removal",
8th International Conference on Critical Information Infrastructures Security, vol. 8328, Springer, pp. 120-132, 2013. DOI More..

Abstract

The problem of controllability of networks arises in a number of different domains, including in critical infrastructure systems where control must be maintained continuously. Recent work by Liu et al. has renewed interest in the seminal work by Lin on structural controllability, providing a graph-theoretical interpretation. This allows the identification of driver nodes capable of forcing the system into a desired state, which implies an obvious target for attackers wishing to disrupt the network control. Several methods for identifying driver nodes exist, but require undesirable computational complexity. In this paper, we therefore investigate the ability to regain or maintain controllability in the presence of adversaries able to remove vertices and implicit edges of the controllability graph. For this we rely on the POWER DOMINATING SET (PDS) formulation for identifying the control structure and study different attack strategies for multiple network models. As the construction of a PDS for a given graph is not unique, we further investigate different strategies for PDS construction, and provide a simulative evaluation.

PDF icon 1810.pdf (625.81 KB)
Conference Proceedings
S. Qing, W. Mao, J. Lopez, and G. Wang Eds., "Information and Communications Security, 7th International Conference, ICICS 2005, Beijing, China, December 10-13, 2005, Proceedings",
ICICS, vol. 3783, Springer, 2005. More..
X.. Xiang, J. Lopez, H.. Wang, and W.. Zhou Eds., "Proceeding of the 3rd International Conference on Network and System Security (NSS 2009)",
3rd International Conference on Network and System Security (NSS 2009), IEEE Computer Sociaty, OCT 2009.
Journal Article
J. Lopez, R. Rios, F. Bao, and G. Wang, "Evolving privacy: From sensors to the Internet of Things",
Future Generation Computer Systems, vol. 75, Elsevier, pp. 46–57, 10/2017. DOI (I.F.: 4.639)More..

Abstract

The Internet of Things (IoT) envisions a world covered with billions of smart, interacting things capable of offering all sorts of services to near and remote entities. The benefits and comfort that the IoT will bring about are undeniable, however, these may come at the cost of an unprecedented loss of privacy. In this paper we look at the privacy problems of one of the key enablers of the IoT, namely wireless sensor networks, and analyse how these problems may evolve with the development of this complex paradigm. We also identify further challenges which are not directly associated with already existing privacy risks but will certainly have a major impact in our lives if not taken into serious consideration. 

Impact Factor: 4.639
Journal Citation Reports® Science Edition (Thomson Reuters, 2017)

PDF icon Lopez2017iotpriv.pdf (440.5 KB)
A. Winfield, J. Sa, C. Fernandez-Gago, C. Dixon, and M. Fisher, "On the Formal Specification of Emergent Behaviours of Swarm Robotics Systems",
International Journal of Advanced Robotics Systems, vol. 2, SAGE Publishing, pp. 363-371, 2005. DOI More..

Abstract

It is a characteristic of swarm robotics that specifying overall emergent swarm behaviours in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation we need such specifications. This paper explores the use of temporal logic to formally specify, and possibly also prove, the emergent behaviours of a robotic swarm. The paper makes use of a simplified wireless connected swarm as a case study with which to illustrate the approach. Such a formal approach could be an important step toward a disciplined design methodology for swarm robotics.

C. Alcaraz, J. Lopez, and S. Wolthunsen, "OCPP Protocol: Security Threats and Challenges",
IEEE Transactions on Smart Grid, vol. 8, issue 5, IEEE, pp. 2452 - 2459, 02/2017. DOI (I.F.: 7.364)More..

Abstract

One benefit postulated for the adoption of Electric Vehicles (EVs) is their ability to act as stabilizing entities in smart grids through bi-directional charging, allowing local or global smoothing of peaks and imbalances. This benefit, however, hinges indirectly on the reliability and security of the power flows thus achieved. Therefore this paper studies key security properties of the alreadydeployed Open Charge Point Protocol (OCPP) specifying communication between charging points and energy management systems. It is argued that possible subversion or malicious endpoints in the protocol can also lead to destabilization of power networks. Whilst reviewing these aspects, we focus, from a theoretical and practical standpoint, on attacks that interfere with resource reservation originating with the EV, which may also be initiated by a man in the middle, energy theft or fraud. Such attacks may even be replicated widely, resulting in over- or undershooting of power network provisioning, or the (total/partial) disintegration of the integrity and stability of power networks.

Impact Factor: 7.364
Journal Citation Reports® Science Edition (Thomson Reuters, 2017)

PDF icon AlcarazLopezWolthusen2017.pdf (389.27 KB)
C. Alcaraz, J. Lopez, and S. Wolthusen, "Policy Enforcement System for Secure Interoperable Control in Distributed Smart Grid Systems",
Journal of Network and Computer Applications, vol. 59, Elsevier, pp. 301–314, 01/2016. (I.F.: 3.500)More..

Abstract

Interoperability of distributed systems in charge of monitoring and maintaining the different critical domains belonging to Smart Grid scenarios comprise the central topic of this paper. Transparency in control transactions under a secure and reliable architecture is the aim of the policy enforcement system proposed here. The approach is based on the degree of observation of a context and on the role-based access control model defined by the IEC-62351-8 standard. Only authenticated and authorised entities are able to take control of those distributed elements (e.g., IEC-61850 objects) located at distant geographical locations and close to the critical infrastructures (e.g., substations). To ensure the effectiveness of the approach, it is built on graphical-theoretical formulations corresponding to graph theory, where it is possible to illustrate power control networks through power-law distributions whose monitoring relies on structural controllability theory. The interconnection of these distributions is subject to a network architecture based on the concept of the supernode where the interoperability depends on a simple rule-based expert system. This expert system focuses not only on accepting or denying access, but also on providing the means to attend to extreme situations, avoiding, as much as possible, the overloading of the communication. Through one practical study we also show the functionalities of the approach and the benefits that the authorisation itself can bring to the interoperability

Impact Factor: 3.500
Journal Citation Reports® Science Edition (Thomson Reuters, 2016)

PDF icon alcaraz2016POL.pdf (1.81 MB)