Biblio

Export results:
Author Title [ Type(Desc)] Year
Filters: First Letter Of Title is F  [Clear All Filters]
Conference Paper
V. Benjumea, S. G. Choi, J. Lopez, and M. Yung, "Fair Traceable Multi-Group Signatures",
Financial Cryptography and Data Security (FC’08), LNCS 5143, Springer, pp. 265-281, January, 2008. More..

Abstract

This paper presents fair traceable multi-group signatures (FTMGS) which have enhanced capabilities compared to group and traceable signatures that are important in real world scenarios combining accountability and anonymity. The main goal of the primitive is to allow multi groups that are managed separately (managers are not even aware of the other ones), yet allowing users (in the spirit of the Identity 2.0 initiative) to manage what they reveal about their identity with respect to these groups by themselves. This new primitive incorporates the following additional features: (a) While considering multiple groups it discourages users from sharing their private membership keys through two orthogonal and complementary approaches. In fact, it merges functionality similar to credential systems with anonymous type of signing with revocation. (b) The group manager now mainly manages joining procedures, and new entities (called fairness authorities and consisting of various representatives, possibly) are involved in opening and revealing procedures. In many systems scenario assuring fairness in anonymity revocation is required.We specify the notion and implement it with a security proof of its properties (in the ROM).

PDF icon VicenteBenjumea2008ab.pdf (532.38 KB)
D. Nuñez, I. Agudo, and J. Lopez, "The fallout of key compromise in a proxy-mediated key agreement protocol",
31st Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy (DBSec'17), vol. LNCS 10359, Springer, pp. 453-472, 07/2017. DOI More..

Abstract

In this paper, we analyze how key compromise affects the protocol by Nguyen et al. presented at ESORICS 2016, an authenticated key agreement protocol mediated by a proxy entity, restricted to only symmetric encryption primitives and intended for IoT environments. This protocol uses long-term encryption tokens as intermediate values during encryption and decryption procedures, which implies that these can be used to encrypt and decrypt messages without knowing the cor- responding secret keys. In our work, we show how key compromise (or even compromise of encryption tokens) allows to break forward secu- rity and leads to key compromise impersonation attacks. Moreover, we demonstrate that these problems cannot be solved even if the affected user revokes his compromised secret key and updates it to a new one. The conclusion is that this protocol cannot be used in IoT environments, where key compromise is a realistic risk. 

PDF icon nunez2017fallout.pdf (531.92 KB)
R. Roman, C. Fernandez-Gago, and J. Lopez, "Featuring Trust and Reputation Management Systems for Constrained Hardware Devices",
1st International Conference on Autonomic Computing and Communication Systems (Autonomics’07), ICST, October, 2007. More..

Abstract

Research on trust management systems for wireless sensor networks is still at a very early stage and few works have done so far. It seems that for those works which deal with the topic general features of how these systems should be are not clearly identified. In this paper we try to identify the main features that a trust management system should have and justify their importance for future developments.

PDF icon Roman2007c.pdf (110.26 KB)
J. Davila, J. Lopez, R. Peralta, and J. maria troya, "A First Approach to Latin Electronic Notary Public Services",
IFIP Conference on Security & Control of IT in Security, pp. 49-60, 2001.
V. Benjumea, J. Lopez, J. A. Montenegro, and J. M. Troya, "A First Approach to Provide Anonymity in Attribute Certificates",
2004 International Workshop on Practice and Theory in Public Key Cryptography (PKC’04), LNCS 2947, Springer, pp. 402-415, March, 2004. More..

Abstract

This paper focus on two security services for internet applications:authorization and anonymity. Traditional authorization solutionsare not very helpful for many of the Internet applications; however,attribute certificates proposed by ITU-T seems to be well suited andprovide adequate solution. On the other hand, special attention is paidto the fact that many of the operations and transactions that are part ofInternet applications can be easily recorded and collected. Consequently,anonymity has become a desirable feature to be added in many cases. Inthis work we propose a solution to enhance the X.509 attribute certificatein such a way that it becomes a conditionally anonymous attributecertificate. Moreover, we present a protocol to obtain such certificatesin a way that respects users’ anonymity by using a fair blind signaturescheme. We also show how to use such certificates and describe a fewcases where problems could arise, identifying some open problems.

PDF icon VicenteBenjumea2004.pdf (183.42 KB)
R. Rios, R. Roman, J. A. Onieva, and J. Lopez, "From Smog to Fog: A Security Perspective",
2nd IEEE International Conference on Fog and Edge Mobile Computing (FMEC 2017), IEEE Computer Society, pp. 56-61, 06/2017. DOI More..

Abstract

Cloud computing has some major limitations that hinder its application to some specific scenarios (e.g., Industrial IoT, and remote surgery) where there are particularly stringent requirements, such as extremely low latency. Fog computing is a specialization of the Cloud that promises to overcome the aforementioned limitations by bringing the Cloud closer to end-users. Despite its potential benefits, Fog Computing is still a developing paradigm which demands further research, especially on security and privacy aspects. This is precisely the focus of this paper: to make evident the urgent need for security mechanisms in Fog computing, as well as to present a research strategy with the necessary steps and processes that are being undertaken within the scope of the SMOG project, in order to enable a trustworthy and resilient Fog ecosystem.

PDF icon Ruben2017smog.pdf (486.34 KB)
Journal Article
C. Alcaraz, and J. Lopez, "FACIES: online identification of Failure and Attack on interdependent Critical InfrastructurES",
European CIIP Newsletter, vol. 7, European_CIIP_Newsletter, pp. 11-13, Nov 2013. More..

Abstract

 FACIES aims to protect water treatment systems and their control systems against accidental or intentional incidents such as failures, anomalies and cyber-attacks with a particular emphasis on stealth attacks.

H. Tsunoda, R. Roman, J. Lopez, and G. Mansfield Keeni, "Feasibility of Societal Model for Securing Internet of Things",
KSII Transactions on Internet and Information Systems, vol. 12, no. 8, KSII, pp. 3567-3588, 08/2018. DOI (I.F.: 0.711)More..

Abstract

In the Internet of Things (IoT) concept, devices communicate autonomously with applications in the Internet. A significant aspect of IoT that makes it stand apart from present-day networked devices and applications is a) the very large number of devices, produced by diverse makers and used by an even more diverse group of users; b) the applications residing and functioning in what were very private sanctums of life e.g. the car, home, and the people themselves. Since these diverse devices require high-level security, an operational model for an IoT system is required, which has built-in security. We have proposed the societal model as a simple operational model. The basic concept of the model is borrowed from human society – there will be infants, the weak and the handicapped who need to be protected by guardians. This natural security mechanism works very well for IoT networks which seem to have inherently weak security mechanisms. In this paper, we discuss the requirements of the societal model and examine its feasibility by doing a proof-of-concept implementation.

Impact Factor: 0.711
Journal Citation Reports® Science Edition (Thomson Reuters, 2018)

PDF icon Hiroshi18IoT.pdf (1.17 MB)
R. Roman, J. Zhou, and J. Lopez, "On the features and challenges of security and privacy in distributed internet of things",
Computer Networks, vol. 57, Elsevier, pp. 2266–2279, July 2013. DOI (I.F.: 1.282)More..

Abstract

In the Internet of Things, services can be provisioned using centralized architectures, where central entities acquire, process, and provide information. Alternatively, distributed architectures, where entities at the edge of the network exchange information and collaborate with each other in a dynamic way, can also be used. In order to understand the applicability and viability of this distributed approach, it is necessary to know its advantages and disadvantages – not only in terms of features but also in terms of security and privacy challenges. The purpose of this paper is to show that the distributed approach has various challenges that need to be solved, but also various interesting properties and strengths.

Impact Factor: 1.282
Journal Citation Reports® Science Edition (Thomson Reuters, 2013)

PDF icon roman2013iot.pdf (407.59 KB)
C. Fernandez-Gago, U. Hustadt, C. Dixon, M. Fisher, and B. Konev, "First-Order Temporal Verification in Practice",
Journal of Automated Reasoning, vol. 34, Springer, pp. 295-321, 2005. DOI (I.F.: 0.875)More..

Abstract

First-order temporal logic, the extension of first-order logic with operators dealing with time, is a powerful and expressive formalism with many potential applications. This expressive logic can be viewed as a framework in which to investigate problems specified in other logics. The monodic fragment of first-order temporal logic is a useful fragment that possesses good computational properties such as completeness and sometimes even decidability. Temporal logics of knowledge are useful for dealing with situations where the knowledge of agents in a system is involved. In this paper we present a translation from temporal logics of knowledge into the monodic fragment of first-order temporal logic. We can then use a theorem prover for monodic first-order temporal logic to prove properties of the translated formulas. This allows problems specified in temporal logics of knowledge to be verified automatically without needing a specialized theorem prover for temporal logics of knowledge. We present the translation, its correctness, and examples of its use.

Impact Factor: 0.875
Journal Citation Reports® Science Edition (Thomson Reuters, 2005)

A. Winfield, J. Sa, C. Fernandez-Gago, C. Dixon, and M. Fisher, "On the Formal Specification of Emergent Behaviours of Swarm Robotics Systems",
International Journal of Advanced Robotics Systems, vol. 2, SAGE Publishing, pp. 363-371, 2005. DOI More..

Abstract

It is a characteristic of swarm robotics that specifying overall emergent swarm behaviours in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation we need such specifications. This paper explores the use of temporal logic to formally specify, and possibly also prove, the emergent behaviours of a robotic swarm. The paper makes use of a simplified wireless connected swarm as a case study with which to illustrate the approach. Such a formal approach could be an important step toward a disciplined design methodology for swarm robotics.

F. Moyano, C. Fernandez-Gago, and J. Lopez, "A Framework for Enabling Trust Requirements in Social Cloud Applications",
Requirements Engineering, vol. 18, issue 4, Springer London, pp. 321-341, Nov 2013. DOI (I.F.: 1.147)More..

Abstract

Cloud applications entail the provision of a huge amount of heterogeneous, geographically-distributed resources managed and shared by many different stakeholders who often do not know each other beforehand. This raises numerous security concerns that, if not addressed carefully, might hinder the adoption of this promising computational model. Appropriately dealing with these threats gains special relevance in the social cloud context, where computational resources are provided by the users themselves. We argue that taking trust and reputation requirements into account can leverage security in these scenarios by incorporating the notions of trust relationships and reputation into them. For this reason, we propose a development framework onto which developers can implement trust-aware social cloud applications. Developers can also adapt the framework in order to accommodate their application-specific needs.

Impact Factor: 1.147
Journal Citation Reports® Science Edition (Thomson Reuters, 2013)

PDF icon moyano2013re.pdf (1.25 MB)
A. Mana, J. Lopez, J. J. Ortega, E. Pimentel, and J. M. Troya, "A Framework for Secure Execution of Software",
International Journal of Information Security (IJIS), vol. 3, no. 2, Springer, pp. 99-112, 2004. More..

Abstract

    The protection of software applications is one of the most important problems to solve in information security because it has a crucial effect on other security issues.We can find in the literature many research initiatives that have tried to solve this problem, many of them based on the use of tamperproof hardware tokens. This type of solutions depends on two basic premises: (i) to increase the physical security by using tamperproof devices, and (ii) to increase the complexity of the analysis of the software. The first premise is reasonable. The second one is certainly related to the first one. In fact, its main goal is that the pirate user can not modify the software to bypass an operation that is crucial: checking the presence of the token. However, the experience shows that the second premise is not realistic because the analysis of the executable code is always possible. Moreover, the techniques used to obstruct the analysis process are not enough to discourage an attacker with average resources. In this paper, we review the most relevant works related to software protection, present a taxonomy of those works and, most important, we introduce a new and robust software protection scheme. This solution, called SmartProt, is based on the use of smart cards and cryptographic techniques, and its security relies only on the first of previous premises; that is, Smartprot has been designed to avoid attacks based on code analysis and software modification. The entire system is described following a lifecycle approach, explaining in detail the card setup, production, authorization, and execution phases. We also present some interesting applications of Smart- Prot as well as the protocols developed to manage licenses. Finally, we provide an analysis of its implementation details.

PDF icon AntonioMana2004.pdf (496.63 KB)