Biblio

Export results:
Author Title [ Type(Desc)] Year
Filters: Keyword is wireless sensor networks and Author is Ruben Rios  [Clear All Filters]
Book Chapter
R. Rios, J. Lopez, and J. Cuellar, "Location Privacy in WSNs: Solutions, Challenges, and Future Trends",
Foundations of Security Analysis and Design VII, vol. 8604, no. LNCS, Springer, pp. 244-282, 2014. DOI More..

Abstract

Privacy preservation is gaining popularity in Wireless Sensor Network (WSNs) due to its adoption in everyday scenarios. There are a number of research papers in this area many of which concentrate on the location privacy problem. In this paper we review and categorise these solutions based on the information available to the adversary and his capabilities. But first we analyse whether traditional anonymous communication systems conform to the original requirements of location privacy in sensor networks. Finally, we present and discuss a number of challenges and future trends that demand further attention from the research community.

PDF icon ruben2014a.pdf (686.66 KB)
Conference Paper
J. Lopez, R. Rios, and J. Cuellar, "Preserving Receiver-Location Privacy in Wireless Sensor Networks",
Information Security Practice and Experience (ISPEC 2014), vol. 8434, Springer, pp. 15-27, 05/2014. DOI More..

Abstract

Wireless sensor networks (WSNs) are exposed to many different types of attacks. Among these, the most devastating attack is to compromise or destroy the base station since all communications are addressed exclusively to it. Moreover, this feature can be exploited by a passive adversary to determine the location of this critical device. This receiver-location privacy problem can be reduced by hindering traffic analysis but the adversary may still obtain location information by capturing a subset of sensor nodes in the field. This paper addresses, for the first time, these two problems together in a single solution

PDF icon Lopez2014prl.pdf (254.78 KB)
Journal Article
R. Rios, and J. Lopez, "Exploiting Context-Awareness to Enhance Source-Location Privacy in Wireless Sensor Networks",
The Computer Journal, vol. 54, Oxford University Press, pp. 1603-1615, Sept 2011. DOI (I.F.: 0.785)More..

Abstract

The source-location privacy problem in Wireless Sensor Networks has been traditionally tackled by the creation of random routes for every packet transmitted from the source nodes to the base station. These schemes provide a considerable protection level at a high cost in terms of message delivery time and energy consumption. This overhead is due to the fact that the data routing process is done in a blind way, without knowledge about the location of the attacker. In this work we propose the Context-Aware Location Privacy (CALP) approach, which takes advantage of the ability of sensor nodes to perceive the presence of a mobile adversary in their vicinity in order to transmit data packets in a more energy-efficient and privacy-preserving manner. In particular, we apply the concepts of CALP to the development of a shortest-path CALP routing algorithm. A permissive and a strict version of the protocol are studied for different adversarial models and the proposed schemes are evaluated through simulation experiments in terms of privacy protection and energy consumption. Finally, we present the conclusions of the paper as well as possible extensions of this work.

Impact Factor: 0.785
Journal Citation Reports® Science Edition (Thomson Reuters, 2011)

PDF icon Rios2011b.pdf (573.86 KB)
R. Rios, J. Cuellar, and J. Lopez, "Probabilistic receiver-location privacy protection in wireless sensor networks",
Information Sciences, vol. 321, Elsevier, pp. 205 - 223, 07/2015. DOI (I.F.: 3.364)More..

Abstract

Wireless sensor networks (WSNs) are continually exposed to many types of attacks. Among these, the attacks targeted at the base station are the most devastating ones since this essential device processes and analyses all traffic generated in the network. Moreover, this feature can be exploited by a passive adversary to determine its location based on traffic analysis. This receiver-location privacy problem can be reduced by altering the traffic pattern of the network but the adversary may still be able to reach the base station if he gains access to the routing tables of a number of sensor nodes. In this paper we present HISP-NC (Homogenous Injection for Sink Privacy with Node Compromise protection), a receiver-location privacy solution that consists of two complementary schemes which protect the location of the base station in the presence of traffic analysis and node compromise attacks. The HISP-NC data transmission protocol prevents traffic analysis by probabilistically hiding the flow of real traffic with moderate amounts of fake traffic. Moreover, HISP-NC includes a perturbation mechanism that modifies the routing tables of the nodes to introduce some level of uncertainty in attackers capable of retrieving the routing information from the nodes. Our scheme is validated both analytically and experimentally through extensive simulations.

Impact Factor: 3.364
Journal Citation Reports® Science Edition (Thomson Reuters, 2015)

PDF icon rios2015.pdf (692.33 KB)
R. Rios, and J. Lopez, "(Un)Suitability of Anonymous Communication Systems to WSN",
IEEE Systems Journal, vol. 7, no. 2, IEEE Systems Council, pp. 298 - 310, Jun 2013. DOI (I.F.: 1.746)More..

Abstract

Anonymous communication systems have been extensively studied by the research community to prevent the disclosure of sensitive information from the analysis of individuals’ traffic patterns. Many remarkable solutions have been developed in this area, most of which have proven to be effective in the protection of user privacy against different types of attacks. Recently, the privacy preservation problem has also been considered in the realm of wireless sensor networks (WSNs) due to their imminent adoption in real-world scenarios. A special challenge that arises from the analysis of the flow of sensor nodes’ communications is the location privacy problem. In this work we concentrate on analyzing the suitability of traditional anonymous communication systems originally designed for the Internet to the original scenario of sensor networks. The results show that, in most cases, traditional solutions do not provide the adequate protection means for the particular problem of location privacy, while other solutions are too resource-consuming for the restricted capabilities of sensor nodes.

Impact Factor: 1.746
Journal Citation Reports® Science Edition (Thomson Reuters, 2013)

PDF icon Rios2012a.pdf (488.58 KB)